Galactosemia: Towards Pharmacological Chaperones
Abstract
:1. Introduction
2. Pharmacological Chaperones
3. Potential in the Treatment of Galactosemia
4. Towards the Discovery of Pharmacological Chaperones for Galactosemia
4.1. Experimental Approaches
4.2. Computational Approaches
5. Potential Issues with Clinical Use
5.1. Screening, Testing and Sequencing
5.2. Dosing
5.3. Toxicity
5.4. Costs and Returns on Investments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timson, D.J. The molecular basis of galactosemia—Past, present and future. Gene 2016, 589, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timson, D.J. Molecular Genetics of Galactosaemia. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2017. [Google Scholar] [CrossRef]
- Fridovich-Keil, J.L. Galactosemia: The good, the bad, and the unknown. J. Cell. Physiol. 2006, 209, 701–705. [Google Scholar] [CrossRef]
- Fridovich-Keil, J.L.; Walter, J.H. Galactosemia. In The Online Metabolic and Molecular Bases of Inherited Diseases; Valle, D., Beaudet, A.L., Vogelstein, B., Kinzler, K.W., Antonarakis, S.E., Ballabio, A., Eds.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Demirbas, D.; Coelho, A.I.; Rubio-Gozalbo, M.E.; Berry, G.T. Hereditary galactosemia. Metabolism 2018, 83, 188–196. [Google Scholar] [CrossRef]
- Maratha, A.; Stockmann, H.; Coss, K.P.; Estela Rubio-Gozalbo, M.; Knerr, I.; Fitzgibbon, M.; McVeigh, T.P.; Foley, P.; Moss, C.; Colhoun, H.O.; et al. Classical galactosaemia: Novel insights in IgG N-glycosylation and N-glycan biosynthesis. Eur. J. Hum. Genet. 2016, 24, 976–984. [Google Scholar] [CrossRef] [Green Version]
- Holden, H.M.; Rayment, I.; Thoden, J.B. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 2003, 278, 43885–43888. [Google Scholar] [CrossRef] [Green Version]
- Frey, P.A. The Leloir pathway: A mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1996, 10, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Caputto, R.; Leloir, L.F.; Trucco, R.E.; Cardini, C.E.; Paladini, A.C. The enzymatic transformation of galactose into glucose derivatives. J. Biol. Chem. 1949, 179, 497–498. [Google Scholar] [CrossRef]
- Waisbren, S.E.; Potter, N.L.; Gordon, C.M.; Green, R.C.; Greenstein, P.; Gubbels, C.S.; Rubio-Gozalbo, E.; Schomer, D.; Welt, C.; Anastasoaie, V.; et al. The adult galactosemic phenotype. J. Inherit. Metab. Dis. 2012, 35, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Gozalbo, M.E.; Haskovic, M.; Bosch, A.M.; Burnyte, B.; Coelho, A.I.; Cassiman, D.; Couce, M.L.; Dawson, C.; Demirbas, D.; Derks, T.; et al. The natural history of classic galactosemia: Lessons from the GalNet registry. Orphanet J. Rare Dis. 2019, 14, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuiper, A.; Grunewald, S.; Murphy, E.; Coenen, M.A.; Eggink, H.; Zutt, R.; Rubio-Gozalbo, M.E.; Bosch, A.M.; Williams, M.; Derks, T.G.J.; et al. Movement disorders and nonmotor neuropsychological symptoms in children and adults with classical galactosemia. J. Inherit. Metab. Dis. 2019, 42, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Gubbels, C.S.; Land, J.A.; Evers, J.L.; Bierau, J.; Menheere, P.P.; Robben, S.G.; Rubio-Gozalbo, M.E. Primary ovarian insufficiency in classic galactosemia: Role of FSH dysfunction and timing of the lesion. J. Inherit. Metab. Dis. 2013, 36, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Fridovich-Keil, J.L.; Gubbels, C.S.; Spencer, J.B.; Sanders, R.D.; Land, J.A.; Rubio-Gozalbo, E. Ovarian function in girls and women with GALT-deficiency galactosemia. J. Inherit. Metab. Dis. 2011, 34, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welling, L.; Bernstein, L.E.; Berry, G.T.; Burlina, A.B.; Eyskens, F.; Gautschi, M.; Grunewald, S.; Gubbels, C.S.; Knerr, I.; Labrune, P.; et al. International clinical guideline for the management of classical galactosemia: Diagnosis, treatment, and follow-up. J. Inherit. Metab. Dis. 2017, 40, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCorvie, T.J.; Timson, D.J. Structural and molecular biology of type I galactosemia: Disease-associated mutations. IUBMB Life 2011, 63, 949–954. [Google Scholar] [CrossRef] [PubMed]
- McCorvie, T.J.; Timson, D.J. The structural and molecular biology of type I galactosemia: Enzymology of galactose 1-phosphate uridylyltransferase. IUBMB Life 2011, 63, 694–700. [Google Scholar] [CrossRef]
- Flanagan, J.M.; McMahon, G.; Brendan Chia, S.H.; Fitzpatrick, P.; Tighe, O.; O’Neill, C.; Briones, P.; Gort, L.; Kozak, L.; Magee, A.; et al. The role of human demographic history in determining the distribution and frequency of transferase-deficient galactosaemia mutations. Heredity 2010, 104, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyfield, L.; Reichardt, J.; Fridovich-Keil, J.; Croke, D.T.; Elsas, L.J., II; Strobl, W.; Kozak, L.; Coskun, T.; Novelli, G.; Okano, Y.; et al. Classical galactosemia and mutations at the galactose-1-phosphate uridyl transferase (GALT) gene. Hum. Mutat. 1999, 13, 417–430. [Google Scholar] [CrossRef]
- Wells, L.; Fridovich-Keil, J.L. Biochemical characterization of the S135L allele of galactose-1-phosphate uridylyltransferase associated with galactosaemia. J. Inherit. Metab. Dis. 1997, 20, 633–642. [Google Scholar] [CrossRef]
- Lai, K.; Elsas, L.J. Structure-function analyses of a common mutation in blacks with transferase-deficiency galactosemia. Mol. Genet. Metab. 2001, 74, 264–272. [Google Scholar] [CrossRef]
- Lai, K.; Langley, S.D.; Singh, R.H.; Dembure, P.P.; Hjelm, L.N.; Elsas, L.J., II. A prevalent mutation for galactosemia among black Americans. J. Pediatr. 1996, 128, 89–95. [Google Scholar] [CrossRef]
- Holden, H.M.; Thoden, J.B.; Timson, D.J.; Reece, R.J. Galactokinase: Structure, function and role in type II galactosemia. Cell. Mol. Life Sci. CMLS 2004, 61, 2471–2484. [Google Scholar] [CrossRef]
- Timson, D.J.; Reece, R.J.; Thoden, J.B.; Holden, H.M. Galactokinase Deficiency. In Encyclopedia of Molecular Mechanisms of Disease; Lang, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 679–680. [Google Scholar]
- Bosch, A.M.; Bakker, H.D.; van Gennip, A.H.; van Kempen, J.V.; Wanders, R.J.; Wijburg, F.A. Clinical features of galactokinase deficiency: A review of the literature. J. Inherit. Metab. Dis. 2002, 25, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Timson, D.J. The structural and molecular biology of type III galactosemia. IUBMB Life 2006, 58, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Fridovich-Keil, J.; Bean, L.; He, M.; Schroer, R. Epimerase Deficiency Galactosemia. In GeneReviews; Pagon, R.A., Bird, T.D., Dolan, C.R., Stephens, K., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Openo, K.K.; Schulz, J.M.; Vargas, C.A.; Orton, C.S.; Epstein, M.P.; Schnur, R.E.; Scaglia, F.; Berry, G.T.; Gottesman, G.S.; Ficicioglu, C.; et al. Epimerase-deficiency galactosemia is not a binary condition. Am. J. Hum. Genet. 2006, 78, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Daenzer, J.M.; Sanders, R.D.; Hang, D.; Fridovich-Keil, J.L. UDP-galactose 4′-epimerase activities toward UDP-Gal and UDP-GalNAc play different roles in the development of Drosophila melanogaster. PLoS Genet. 2012, 8, e1002721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasawa, S.; Kikuchi, A.; Wada, Y.; Arai-Ichinoi, N.; Sakamoto, O.; Tamiya, G.; Kure, S. The prevalence of GALM mutations that cause galactosemia: A database of functionally evaluated variants. Mol. Genet. Metab. 2019, 126, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Kikuchi, A.; Arai-Ichinoi, N.; Sakamoto, O.; Takezawa, Y.; Iwasawa, S.; Niihori, T.; Nyuzuki, H.; Nakajima, Y.; Ogawa, E.; et al. Biallelic GALM pathogenic variants cause a novel type of galactosemia. Genet. Med. 2019, 21, 1286–1294. [Google Scholar] [CrossRef]
- Timson, D.J. Type IV galactosemia. Genet. Med. 2019, 21, 1283–1285. [Google Scholar] [CrossRef]
- Banford, S.; Timson, D.J. The structural and molecular biology of type IV galactosemia. Biochimie 2020. [Google Scholar] [CrossRef]
- Beutler, E.; Baluda, M.C. A simple spot screening test for galactosemia. J. Lab. Clin. Med. 1966, 68, 137–141. [Google Scholar]
- Ohlsson, A.; Guthenberg, C.; von Döbeln, U. Galactosemia screening with low false-positive recall rate: The Swedish experience. JIMD Rep. 2012, 2, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Gitzelmann, R. Estimation of galactose-I-phosphate in erythrocytes: A rapid and simple enzymatic method. Clin. Chim. Acta 1969, 26, 313–316. [Google Scholar] [CrossRef]
- Cohen, A.S.; Baurek, M.; Lund, A.M.; Dunø, M.; Hougaard, D.M. Including Classical Galactosaemia in the Expanded Newborn Screening Panel Using Tandem Mass Spectrometry for Galactose-1-Phosphate. Int. J. Neonatal Screen. 2019, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ptolemy, A.S.; Harmonay, L.; Kellogg, M.; Berry, G.T. Quantification of galactose-1-phosphate uridyltransferase enzyme activity by liquid chromatography-tandem mass spectrometry. Clin. Chem. 2010, 56, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotb, M.A.; Mansour, L.; Shamma, R.A. Screening for galactosemia: Is there a place for it? Int. J. Gen. Med. 2019, 12, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Okano, Y.; Asada, M.; Fujimoto, A.; Ohtake, A.; Murayama, K.; Hsiao, K.J.; Choeh, K.; Yang, Y.; Cao, Q.; Reichardt, J.K.; et al. A genetic factor for age-related cataract: Identification and characterization of a novel galactokinase variant, “Osaka” in Asians. Am. J. Hum. Genet. 2001, 68, 1036–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.T.; Holton, J.B.; Lennox, A.C.; Hodges, I.C. Early morning urine galactitol levels in relation to galactose intake: A possible method of monitoring the diet in galactokinase deficiency. J. Inherit. Metab. Dis. 1988, 11 (Suppl. S2), 243–245. [Google Scholar] [CrossRef] [PubMed]
- Wells, L.; Fridovich-Keil, J.L. The yeast, Saccharomyces cerevisiae, as a model system for the study of human genetic disease. SAAS Bull. Biochem. Biotechnol. 1996, 9, 83–88. [Google Scholar]
- Riehman, K.; Crews, C.; Fridovich-Keil, J.L. Relationship between genotype, activity, and galactose sensitivity in yeast expressing patient alleles of human galactose-1-phosphate uridylyltransferase. J. Biol. Chem. 2001, 276, 10634–10640. [Google Scholar] [CrossRef] [Green Version]
- Ross, K.L.; Davis, C.N.; Fridovich-Keil, J.L. Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Mol. Genet. Metab. 2004, 83, 103–116. [Google Scholar] [CrossRef]
- Wasilenko, J.; Fridovich-Keil, J.L. Relationship between UDP-galactose 4′-epimerase activity and galactose sensitivity in yeast. J. Biol. Chem. 2006, 281, 8443–8449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mumma, J.O.; Chhay, J.S.; Ross, K.L.; Eaton, J.S.; Newell-Litwa, K.A.; Fridovich-Keil, J.L. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4′-epimerase (GALE). Mol. Genet. Metab. 2008, 93, 160–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushner, R.F.; Ryan, E.L.; Sefton, J.M.; Sanders, R.D.; Lucioni, P.J.; Moberg, K.H.; Fridovich-Keil, J.L. A Drosophila melanogaster model of classic galactosemia. Dis. Model. Mech. 2010, 3, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.D.; Sefton, J.M.; Moberg, K.H.; Fridovich-Keil, J.L. UDP-galactose 4′ epimerase (GALE) is essential for development of Drosophila melanogaster. Dis. Model. Mech. 2010, 3, 628–638. [Google Scholar] [CrossRef] [Green Version]
- Daenzer, J.M.; Fridovich-Keil, J.L. Drosophila melanogaster Models of Galactosemia. Curr. Top. Dev. Biol. 2017, 121, 377–395. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Siddiqi, A.; Witt, B.; Yuzyuk, T.; Johnson, B.; Fraser, N.; Chen, W.; Rascon, R.; Yin, X.; Goli, H.; et al. Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT)-deficient mouse model. Eur. J. Hum. Genet. EJHG 2014, 22, 1172–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brokate-Llanos, A.M.; Monje, J.M.; Murdoch Pdel, S.; Muñoz, M.J. Developmental defects in a Caenorhabditis elegans model for type III galactosemia. Genetics 2014, 198, 1559–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanoevelen, J.M.; van Erven, B.; Bierau, J.; Huang, X.; Berry, G.T.; Vos, R.; Coelho, A.I.; Rubio-Gozalbo, M.E. Impaired fertility and motor function in a zebrafish model for classic galactosemia. J. Inherit. Metab. Dis. 2018, 41, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Haskovic, M.; Coelho, A.I.; Lindhout, M.; Zijlstra, F.; Veizaj, R.; Vos, R.; Vanoevelen, J.M.; Bierau, J.; Lefeber, D.J.; Rubio-Gozalbo, M.E. Nucleotide sugar profiles throughout development in wildtype and galt knockout zebrafish. J. Inherit. Metab. Dis. 2020, 43, 994–1001. [Google Scholar] [CrossRef]
- Rasmussen, S.A.; Daenzer, J.M.I.; MacWilliams, J.A.; Head, S.T.; Williams, M.B.; Geurts, A.M.; Schroeder, J.P.; Weinshenker, D.; Fridovich-Keil, J.L. A galactose-1-phosphate uridylyltransferase-null rat model of classic galactosemia mimics relevant patient outcomes and reveals tissue-specific and longitudinal differences in galactose metabolism. J. Inherit. Metab. Dis. 2020, 43, 518–528. [Google Scholar] [CrossRef]
- Lai, K.; Elsas, L.J.; Wierenga, K.J. Galactose toxicity in animals. IUBMB Life 2009, 61, 1063–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schadewaldt, P.; Kamalanathan, L.; Hammen, H.-W.; Kotzka, J.; Wendel, U. Endogenous galactose formation in galactose-1-phosphate uridyltransferase deficiency. Arch. Physiol. Biochem. 2014, 120, 228–239. [Google Scholar] [CrossRef]
- Berry, G.T.; Nissim, I.; Lin, Z.; Mazur, A.T.; Gibson, J.B.; Segal, S. Endogenous synthesis of galactose in normal men and patients with hereditary galactosaemia. Lancet 1995, 346, 1073–1074. [Google Scholar] [CrossRef]
- Berry, G.T.; Moate, P.J.; Reynolds, R.A.; Yager, C.T.; Ning, C.; Boston, R.C.; Segal, S. The rate of de novo galactose synthesis in patients with galactose-1-phosphate uridyltransferase deficiency. Mol. Genet. Metab. 2004, 81, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Timson, D.J. Repurposing drugs for the treatment of galactosemia. Expert Opin. Orphan Drugs 2019, 7, 443–451. [Google Scholar] [CrossRef]
- McCorvie, T.J.; Timson, D.J. Galactosemia: Opportunities for novel therapies. In Protein Homeostasis Diseases: Mechanisms and Novel Therapies; Pey, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Timson, D.J. Therapies for galactosemia: A patent landscape. Pharm. Pat. Anal. 2020, 9, 45–51. [Google Scholar] [CrossRef]
- Lai, K.; Boxer, M.B.; Marabotti, A. GALK inhibitors for classic galactosemia. Future Med. Chem. 2014, 6, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Delnoy, B.; Coelho, A.I.; Rubio-Gozalbo, M.E. Current and Future Treatments for Classic Galactosemia. J. Pers. Med. 2021, 11, 75. [Google Scholar] [CrossRef]
- Brandvold, K.R.; Morimoto, R.I. The Chemical Biology of Molecular Chaperones-Implications for Modulation of Proteostasis. J. Mol. Biol. 2015, 427, 2931–2947. [Google Scholar] [CrossRef] [Green Version]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef]
- Muntau, A.C.; Leandro, J.; Staudigl, M.; Mayer, F.; Gersting, S.W. Innovative strategies to treat protein misfolding in inborn errors of metabolism: Pharmacological chaperones and proteostasis regulators. J. Inherit. Metab. Dis. 2014, 37, 505–523. [Google Scholar] [CrossRef]
- Ringe, D.; Petsko, G.A. What are pharmacological chaperones and why are they interesting? J. Biol. 2009, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.-X.; Conn, P.M. Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol. Rev. 2018, 98, 697–725. [Google Scholar] [CrossRef] [PubMed]
- Leidenheimer, N.J.; Ryder, K.G. Pharmacological chaperoning: A primer on mechanism and pharmacology. Pharmacol. Res. 2014, 83, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, F.E.; Kelly, J.W. Therapeutic approaches to protein-misfolding diseases. Nature 2003, 426, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Porto, C.; Cardone, M.; Fontana, F.; Rossi, B.; Tuzzi, M.R.; Tarallo, A.; Barone, M.V.; Andria, G.; Parenti, G. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol. Ther. 2009, 17, 964–971. [Google Scholar] [CrossRef]
- Fan, J.-Q. A counterintuitive approach to treat enzyme deficiencies: Use of enzyme inhibitors for restoring mutant enzyme activity. Biol. Chem. 2008, 389, 1–11. [Google Scholar] [CrossRef]
- Platt, F.M. Sphingolipid lysosomal storage disorders. Nature 2014, 510, 68–75. [Google Scholar] [CrossRef]
- Orwig, S.D.; Tan, Y.L.; Grimster, N.P.; Yu, Z.; Powers, E.T.; Kelly, J.W.; Lieberman, R.L. Binding of 3,4,5,6-tetrahydroxyazepanes to the acid-β-glucosidase active site: Implications for pharmacological chaperone design for Gaucher disease. Biochemistry 2011, 50, 10647–10657. [Google Scholar] [CrossRef] [Green Version]
- Fraser-Pitt, D.; O’Neil, D. Cystic fibrosis—A multiorgan protein misfolding disease. Future Sci. OA 2015, 1, FSO57. [Google Scholar] [CrossRef]
- Rowe, S.M.; Verkman, A.S. Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb. Perspect. Med. 2013, 3, a009761. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Cousar, J.L.; Munck, A.; McKone, E.F.; van der Ent, C.K.; Moeller, A.; Simard, C.; Wang, L.T.; Ingenito, E.P.; McKee, C.; Lu, Y.; et al. Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del. N. Engl. J. Med. 2017, 377, 2013–2023. [Google Scholar] [CrossRef]
- Ruberg, F.L.; Berk, J.L. Transthyretin (TTR) cardiac amyloidosis. Circulation 2012, 126, 1286–1300. [Google Scholar] [CrossRef] [Green Version]
- Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018, 379, 1007–1016. [Google Scholar] [CrossRef]
- Bulawa, C.E.; Connelly, S.; Devit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA 2012, 109, 9629–9634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCorvie, T.J.; Gleason, T.J.; Fridovich-Keil, J.L.; Timson, D.J. Misfolding of galactose 1-phosphate uridylyltransferase can result in type I galactosemia. Biochim. Biophys. Acta 2013, 1832, 1279–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCorvie, T.J.; Kopec, J.; Pey, A.L.; Fitzpatrick, F.; Patel, D.; Chalk, R.; Shrestha, L.; Yue, W.W. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase. Hum. Mol. Genet. 2016, 25, 2234–2244. [Google Scholar] [CrossRef]
- Coelho, A.I.; Trabuco, M.; Ramos, R.; Silva, M.J.; Tavares de Almeida, I.; Leandro, P.; Rivera, I.; Vicente, J.B. Functional and structural impact of the most prevalent missense mutations in classic galactosemia. Mol. Genet. Genom. Med. 2014, 2, 484–496. [Google Scholar] [CrossRef]
- D’acierno, A.; Facchiano, A.; Marabotti, A. GALT protein database, a bioinformatics resource for the management and analysis of structural features of a galactosemia-related protein and its mutants. Genom. Proteom. Bioinform. Beijing Genom. Inst. 2009, 7, 71–76. [Google Scholar] [CrossRef] [Green Version]
- D’Acierno, A.; Facchiano, A.; Marabotti, A. GALT protein database: Querying structural and functional features of GALT enzyme. Hum. Mutat. 2014, 35, 1060–1067. [Google Scholar] [CrossRef]
- Timson, D.J.; Reece, R.J. Functional analysis of disease-causing mutations in human galactokinase. Eur. J. Biochem. FEBS 2003, 270, 1767–1774. [Google Scholar] [CrossRef] [Green Version]
- Sangiuolo, F.; Magnani, M.; Stambolian, D.; Novelli, G. Biochemical characterization of two GALK1 mutations in patients with galactokinase deficiency. Hum. Mutat. 2004, 23, 396. [Google Scholar] [CrossRef] [PubMed]
- Park, H.D.; Bang, Y.L.; Park, K.U.; Kim, J.Q.; Jeong, B.H.; Kim, Y.S.; Song, Y.H.; Song, J. Molecular and biochemical characterization of the GALK1 gene in Korean patients with galactokinase deficiency. Mol. Genet. Metab 2007, 91, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Sneha, P.; Ebrahimi, E.A.; Ghazala, S.A.; Thirumal Kumar, D.; Siva, R.; George, P.D.C.; Zayed, H. Structural analysis of missense mutations in galactokinase 1 (GALK1) leading to galactosemia type-2. J. Cell. Biochem. 2018, 119, 7585–7598. [Google Scholar] [CrossRef]
- Jojart, B.; Szori, M.; Izsak, R.; Marsi, I.; Laszlo, A.; Csizmadia, I.G.; Viskolcz, B. The effect of a Pro(28)Thr point mutation on the local structure and stability of human galactokinase enzyme-a theoretical study. J. Mol. Model. 2011, 17, 2639–2649. [Google Scholar] [CrossRef]
- Chhay, J.S.; Vargas, C.A.; McCorvie, T.J.; Fridovich-Keil, J.L.; Timson, D.J. Analysis of UDP-galactose 4′-epimerase mutations associated with the intermediate form of type III galactosemia. J. Inherit. Metab. Dis. 2008, 31, 108–116. [Google Scholar] [CrossRef]
- Timson, D.J. Functional analysis of disease-causing mutations in human UDP-galactose 4-epimerase. FEBS J. 2005, 272, 6170–6177. [Google Scholar] [CrossRef] [PubMed]
- McCorvie, T.J.; Wasilenko, J.; Liu, Y.; Fridovich-Keil, J.L.; Timson, D.J. In vivo and in vitro function of human UDP-galactose 4′-epimerase variants. Biochimie 2011, 93, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- McCorvie, T.J.; Liu, Y.; Frazer, A.; Gleason, T.J.; Fridovich-Keil, J.L.; Timson, D.J. Altered cofactor binding affects stability and activity of human UDP-galactose 4′-epimerase: Implications for type III galactosemia. Biochim. Biophys. Acta 2012, 1822, 1516–1526. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; McCorvie, T.J.; Zschocke, J.; Timson, D.J. Disturbed cofactor binding by a novel mutation in UDP-galactose 4′-epimerase results in a type III galactosemia phenotype at birth. RSC Adv. 2016, 6, 17297–17301. [Google Scholar] [CrossRef] [Green Version]
- Bang, Y.L.; Nguyen, T.T.; Trinh, T.T.; Kim, Y.J.; Song, J.; Song, Y.H. Functional analysis of mutations in UDP-galactose-4-epimerase (GALE) associated with galactosemia in Korean patients using mammalian GALE-null cells. FEBS J. 2009, 276, 1952–1961. [Google Scholar] [CrossRef]
- McCorvie, T.J.; Timson, D.J. In silico prediction of the effects of mutations in the human UDP-galactose 4′-epimerase gene: Towards a predictive framework for type III galactosemia. Gene 2013, 524, 95–104. [Google Scholar] [CrossRef]
- Timson, D.J.; Lindert, S. Comparison of dynamics of wildtype and V94M human UDP-galactose 4-epimerase-A computational perspective on severe epimerase-deficiency galactosemia. Gene 2013, 526, 318–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marabotti, A.; Facchiano, A.M. Homology modeling studies on human galactose-1-phosphate uridylyltransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo- and heterodimers. J. Med. Chem. 2005, 48, 773–779. [Google Scholar] [CrossRef]
- Coelho, A.I.; Trabuco, M.; Silva, M.J.; de Almeida, I.T.; Leandro, P.; Rivera, I.; Vicente, J.B. Arginine Functionally Improves Clinically Relevant Human Galactose-1-Phosphate Uridylyltransferase (GALT) Variants Expressed in a Prokaryotic Model. JIMD Rep. 2015, 23, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskovic, M.; Derks, B.; van der Ploeg, L.; Trommelen, J.; Nyakayiru, J.; van Loon, L.J.C.; Mackinnon, S.; Yue, W.W.; Peake, R.W.A.; Zha, L.; et al. Arginine does not rescue p.Q188R mutation deleterious effect in classic galactosemia. Orphanet J. Rare Dis. 2018, 13, 212. [Google Scholar] [CrossRef] [Green Version]
- Strandback, E.; Lienhart, W.D.; Hromic-Jahjefendic, A.; Bourgeois, B.; Högler, A.; Waltenstorfer, D.; Winkler, A.; Zangger, K.; Madl, T.; Gruber, K.; et al. A small molecule chaperone rescues the stability and activity of a cancer-associated variant of NAD(P)H:quinone oxidoreductase 1 in vitro. FEBS Lett. 2020, 594, 424–438. [Google Scholar] [CrossRef] [Green Version]
- McCorvie, T.J.; Yue, W.W. Structure-guided discovery of pharmacological chaperones targeting protein conformational and misfolding diseases. In Protein Homeostasis Diseases; Pey, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 281–308. [Google Scholar]
- Rizzuti, B.; Grande, F. Virtual screening in drug discovery: A precious tool for a still-demanding challenge. In Protein Homeostasis Diseases; Pey, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 309–328. [Google Scholar]
- Støve, S.I.; Flydal, M.I.; Hausvik, E.; Underhaug, J.; Martinez, A. Differential scanning fluorimetry in the screening and validation of pharmacological chaperones for soluble and membrane proteins. In Protein Homeostasis Diseases; Pey, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 329–342. [Google Scholar]
- Janovick, J.A.; Ulloa-Aguirre, A. Cellular high-throughput screening. In Protein Homeostasis Diseases; Pey, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 343–358. [Google Scholar]
- Abian, O.; Vega, S.; Neira, J.L.; Velazquez-Campoy, A. High-throughput screening for intrinsically disordered proteins by using biophysical methods. In Protein Homeostasis Diseases; Pey, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 359–388. [Google Scholar]
- Pey, A.L. Protein homeostasis disorders of key enzymes of amino acids metabolism: Mutation-induced protein kinetic destabilization and new therapeutic strategies. Amino Acids 2013, 45, 1331–1341. [Google Scholar] [CrossRef]
- Pey, A.L.; Majtan, T.; Sanchez-Ruiz, J.M.; Kraus, J.P. Human cystathionine beta-synthase (CBS) contains two classes of binding sites for S-adenosylmethionine (SAM): Complex regulation of CBS activity and stability by SAM. Biochem. J. 2013, 449, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Ruiz, J.M. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys. J. 1992, 61, 921–935. [Google Scholar] [CrossRef] [Green Version]
- Santofimia-Castano, P.; Xia, Y.; Lan, W.; Zhou, Z.; Huang, C.; Peng, L.; Soubeyran, P.; Velazquez-Campoy, A.; Abian, O.; Rizzuti, B.; et al. Ligand-based design identifies a potent NUPR1 inhibitor exerting anticancer activity via necroptosis. J. Clin. Investig. 2019, 129, 2500–2513. [Google Scholar] [CrossRef]
- Pey, A.L.; Ying, M.; Cremades, N.; Velazquez-Campoy, A.; Scherer, T.; Thony, B.; Sancho, J.; Martinez, A. Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria. J. Clin. Investig. 2008, 118, 2858–2867. [Google Scholar] [CrossRef] [Green Version]
- Jorge-Finnigan, A.; Brasil, S.; Underhaug, J.; Ruiz-Sala, P.; Merinero, B.; Banerjee, R.; Desviat, L.R.; Ugarte, M.; Martinez, A.; Perez, B. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type. Hum. Mol. Genet. 2013, 22, 3680–3689. [Google Scholar] [CrossRef]
- Pey, A.L.; Stricher, F.; Serrano, L.; Martinez, A. Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases. Am. J. Hum. Genet. 2007, 81, 1006–1024. [Google Scholar] [CrossRef] [Green Version]
- Abildgaard, A.B.; Stein, A.; Nielsen, S.V.; Schultz-Knudsen, K.; Papaleo, E.; Shrikhande, A.; Hoffmann, E.R.; Bernstein, I.; Gerdes, A.M.; Takahashi, M.; et al. Computational and cellular studies reveal structural destabilization and degradation of MLH1 variants in Lynch syndrome. eLife 2019, 8. [Google Scholar] [CrossRef]
- Nielsen, S.V.; Stein, A.; Dinitzen, A.B.; Papaleo, E.; Tatham, M.H.; Poulsen, E.G.; Kassem, M.M.; Rasmussen, L.J.; Lindorff-Larsen, K.; Hartmann-Petersen, R. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations. PLoS Genet. 2017, 13, e1006739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheller, R.; Stein, A.; Nielsen, S.V.; Marin, F.I.; Gerdes, A.M.; Marco, M.D.; Papaleo, E.; Lindorff-Larsen, K.; Hartmann-Petersen, R. Towards mechanistic models for genotype-phenotype correlations in phenylketonuria using protein stability calculations. Hum. Mutat. 2019, 40, 444–457. [Google Scholar] [CrossRef]
- Stein, A.; Fowler, D.M.; Hartmann-Petersen, R.; Lindorff-Larsen, K. Biophysical and Mechanistic Models for Disease-Causing Protein Variants. Trends Biochem. Sci. 2019, 44, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Blouin, J.M.; Bernardo-Seisdedos, G.; Sasso, E.; Esteve, J.; Ged, C.; Lalanne, M.; Sanz-Parra, A.; Urquiza, P.; de Verneuil, H.; Millet, O.; et al. Missense UROS mutations causing congenital erythropoietic porphyria reduce UROS homeostasis that can be rescued by proteasome inhibition. Hum. Mol. Genet. 2017, 26, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Inobe, T.; Matouschek, A. Paradigms of protein degradation by the proteasome. Curr. Opin. Struct. Biol. 2014, 24, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Guharoy, M.; Bhowmick, P.; Sallam, M.; Tompa, P. Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. Nat. Commun. 2016, 7, 10239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gersing, S.K.; Wang, Y.; Grønbæk-Thygesen, M.; Kampmeyer, C.; Clausen, L.; Andréasson, C.; Stein, A.; Lindorff-Larsen, K.; Hartmann-Petersen, R. Evolutionarily conserved chaperone-mediated proteasomal degradation of a disease-linked aspartoacylase variant. bioRxiv 2020. [Google Scholar] [CrossRef]
- Medina-Carmona, E.; Palomino-Morales, R.J.; Fuchs, J.E.; Padin-Gonzalez, E.; Mesa-Torres, N.; Salido, E.; Timson, D.J.; Pey, A.L. Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands. Sci. Rep. 2016, 6, 20331. [Google Scholar] [CrossRef] [Green Version]
- Pey, A.L.; Megarity, C.F.; Timson, D.J. FAD binding overcomes defects in activity and stability displayed by cancer-associated variants of human NQO1. Biochim. Biophys. Acta 2014, 1842, 2163–2173. [Google Scholar] [CrossRef] [Green Version]
- Pey, A.L.; Padin-Gonzalez, E.; Mesa-Torres, N.; Timson, D.J. The metastability of human UDP-galactose 4′-epimerase (GALE) is increased by variants associated with type III galactosemia but decreased by substrate and cofactor binding. Arch. Biochem. Biophys. 2014, 562, 103–114. [Google Scholar] [CrossRef]
- Fuchs, J.E.; Muñoz, I.G.; Timson, D.J.; Pey, A.L. Experimental and computational evidence on conformational fluctuations as a source of catalytic defects in genetic diseases. RSC Adv. 2016, 6, 58604. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.W.; Burns, J.; Audette, J.; Carroll, A.; Dow-Hygelund, C.; Hay, M. Clinical Development Success Rates 2006–2015. BIO (Biotechnology Innovation Organization). Ind. Anal. 2016, 1, 16. [Google Scholar]
- Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 2010, 9, 203–214. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.; Cleasby, A.; Davies, T.G.; Hall, R.J.; Ludlow, R.F.; Murray, C.W.; Tisi, D.; Jhoti, H. Crystallographic screening using ultra-low-molecular-weight ligands to guide drug design. Drug Discov. Today 2019, 24, 1081–1086. [Google Scholar] [CrossRef]
- Hall, R.J.; Mortenson, P.N.; Murray, C.W. Efficient exploration of chemical space by fragment-based screening. Prog. Biophys. Mol. Biol. 2014, 116, 82–91. [Google Scholar] [CrossRef]
- Holton, J.B. Effects of galactosemia in utero. Eur. J. Pediatr. 1995, 154, S77–S81. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.T.; Gillett, M.; Holton, J.B.; King, G.S.; Pettit, B.R. Evidence for galactosaemia in utero. Lancet 1980, 1, 603. [Google Scholar] [CrossRef]
- Holton, J.B.; Allen, J.T.; Gillett, M.G. Prenatal diagnosis of disorders of galactose metabolism. J. Inherit. Metab. Dis. 1989, 12 (Suppl. S1), 202–206. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banford, S.; McCorvie, T.J.; Pey, A.L.; Timson, D.J. Galactosemia: Towards Pharmacological Chaperones. J. Pers. Med. 2021, 11, 106. https://doi.org/10.3390/jpm11020106
Banford S, McCorvie TJ, Pey AL, Timson DJ. Galactosemia: Towards Pharmacological Chaperones. Journal of Personalized Medicine. 2021; 11(2):106. https://doi.org/10.3390/jpm11020106
Chicago/Turabian StyleBanford, Samantha, Thomas J. McCorvie, Angel L. Pey, and David J. Timson. 2021. "Galactosemia: Towards Pharmacological Chaperones" Journal of Personalized Medicine 11, no. 2: 106. https://doi.org/10.3390/jpm11020106
APA StyleBanford, S., McCorvie, T. J., Pey, A. L., & Timson, D. J. (2021). Galactosemia: Towards Pharmacological Chaperones. Journal of Personalized Medicine, 11(2), 106. https://doi.org/10.3390/jpm11020106