Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Ethics Statement
2.3. Spirometry Examinations
2.4. Definition of Type 2 DM
2.5. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. 10. Cardiovascular disease and risk management: Standards of medical care in diabetes-2020. Diabetes Care 2020, 43, S111–S134. [Google Scholar] [CrossRef] [Green Version]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef]
- van den Borst, B.; Gosker, H.R.; Zeegers, M.P.; Schols, A.M. Pulmonary function in diabetes: A metaanalysis. Chest 2010, 138, 393–406. [Google Scholar] [CrossRef]
- Khateeb, J.; Fuchs, E.; Khamaisi, M. Diabetes and lung disease: A neglected relationship. Rev. Diabetes Stud. 2019, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Han, Y.Y.; Forno, E.; Yan, Q.; Rosser, F.; Chen, W.; Celedon, J.C. Glycated hemoglobin a1c, lung function, and hospitalizations among adults with asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3409–3415.e1. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.J.; Liao, W.I.; Tang, Z.C.; Wang, J.C.; Lee, C.H.; Chang, W.C.; Hsu, C.W.; Tang, S.E.; Tsai, S.H. Glycated hemoglobin a1c-based adjusted glycemic variables in patients with diabetes presenting with acute exacerbation of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1923–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, W.A.; Knuiman, M.; Kendall, P.; Grange, V.; Davis, T.M.; Fremantle Diabetes, S. Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: The fremantle diabetes study. Diabetes Care 2004, 27, 752–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, E.A.; Limsuwat, C.; Nantsupawat, T.; Berdine, G.G.; Nugent, K.M. The association between glucose levels and hospital outcomes in patients with acute exacerbations of chronic obstructive pulmonary disease. Ann. Thorac. Med. 2015, 10, 94–99. [Google Scholar] [PubMed]
- Gutierrez-Carrasquilla, L.; Sanchez, E.; Barbe, F.; Dalmases, M.; Lopez-Cano, C.; Hernandez, M.; Rius, F.; Carmona, P.; Hernandez, C.; Simo, R.; et al. Effect of glucose improvement on spirometric maneuvers in patients with type 2 diabetes: The sweet breath study. Diabetes Care 2019, 42, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.D.; Theurer, W.M. A stepwise approach to the interpretation of pulmonary function tests. Am. Fam. Physician 2014, 89, 359–366. [Google Scholar] [PubMed]
- Kim, J.M.; Kim, M.K.; Joung, K.H.; Lee, J.H.; Kim, H.J.; Ku, B.J. Association between glycemic state and pulmonary function and effect of walking as a protective factor in subjects with diabetes mellitus. Ann. Transl. Med. 2019, 7, 530. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.E.; Beiser, A.; Givelber, R.J.; O’Connor, G.T.; Gottlieb, D.J. Association between glycemic state and lung function: The framingham heart study. Am. J. Respir. Crit. Care Med. 2003, 167, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.L.; Wu, P.Y.; Huang, J.C.; Tu, H.P.; Chen, S.C. Different curve shapes of fasting glucose and various obesity-related indices by diabetes and sex. Int. J. Environ. Res. Public Health 2021, 18, 3096. [Google Scholar] [CrossRef]
- Lin, J.C.; Fan, C.T.; Liao, C.C.; Chen, Y.S. Taiwan biobank: Making cross-database convergence possible in the big data era. Gigascience 2018, 7, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.T.; Guppy, M.; Straus, S.E.; Bell, K.J.L.; Glasziou, P. Rate of normal lung function decline in ageing adults: A systematic review of prospective cohort studies. BMJ Open 2019, 9, e028150. [Google Scholar] [CrossRef]
- van Oostrom, S.H.; Engelfriet, P.M.; Verschuren, W.M.M.; Schipper, M.; Wouters, I.M.; Boezen, M.; Smit, H.A.; Kerstjens, H.A.M.; Picavet, H.S.J. Aging-related trajectories of lung function in the general population-the doetinchem cohort study. PLoS ONE 2018, 13, e0197250. [Google Scholar] [CrossRef] [PubMed]
- Tantucci, C.; Modina, D. Lung function decline in copd. Int. J. Chronic Obstruct. Pulmon. Dis. 2012, 7, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kwon, D.; Lee, Y.; Jung, I.; Hyun, D.; Lee, H.; Ahn, Y.S. Hypertension is associated with increased risk of diabetic lung. Int. J. Environ. Res. Public Health 2020, 17, 7513. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.D. Lung dysfunction in diabetes. Diabetes Care 2003, 26, 1915–1918. [Google Scholar] [CrossRef] [Green Version]
- Leem, A.Y.; Park, B.; Kim, Y.S.; Chang, J.; Won, S.; Jung, J.Y. Longitudinal decline in lung function: A community-based cohort study in Korea. Sci. Rep. 2019, 9, 13614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, K.M.; Lee, S.Y.; Lee, S.H.; Kim, S.S.; Park, H.W. Lung function decline is associated with serum uric acid in korean health screening individuals. Sci. Rep. 2021, 11, 10183. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.C.; Punjabi, N.M.; Wang, N.Y.; Pankow, J.S.; Duncan, B.B.; Cox, C.E.; Selvin, E.; Brancati, F.L. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: The atherosclerosis risk in communities (aric) study. Diabetes Care 2008, 31, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Nam, S.M. The association between lung function and type 2 diabetes in koreans. Osong Public Health Res. Perspect. 2020, 11, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Diez-Manglano, J.; Asin Samper, U. Pulmonary function tests in type 2 diabetes: A meta-analysis. ERJ Open Res. 2021, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.T.; Ko, H.K.; Lin, C.C.; Shu, J.H.; Hsu, H.C.; Liang, Y.; Hsu, P.F.; Lin, C.C.; Wang, Y.J.; Din, Y.Z.; et al. Spirometric reference values in heathy chinese adults in taiwan: The secular changes and comparison with other asian populations. J. Formos. Med. Assoc. 2020, 119, 290–299. [Google Scholar] [CrossRef]
- Kabeya, Y.; Kato, K.; Tomita, M.; Katsuki, T.; Oikawa, Y.; Shimada, A. Association of glycemic status with impaired lung function among recipients of a health screening program: A cross-sectional study in japanese adults. J. Epidemiol. 2014, 24, 410–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, H.T.; Li, T.C.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Lin, C.C. Visit-to-visit glycemic variability is a strong predictor of chronic obstructive pulmonary disease in patients with type 2 diabetes mellitus: Competing risk analysis using a national cohort from the taiwan diabetes study. PLoS ONE 2017, 12, e0177184. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhou, J.B.; Cai, Y.H.; Shu, L.P.; Simo, R.; Lecube, A. Non-linear association between diabetes mellitus and pulmonary function: A population-based study. Respir. Res. 2020, 21, 292. [Google Scholar] [CrossRef]
- Maan, H.B.; Meo, S.A.; Al Rouq, F.; Meo, I.M.U.; Gacuan, M.E.; Alkhalifah, J.M. Effect of glycated hemoglobin (hba1c) and duration of disease on lung functions in type 2 diabetic patients. Int. J. Environ. Res. Public Health 2021, 18, 6970. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.H.; Park, J.H.; Lee, C.H.; Park, J.S. The association of normal range glycated hemoglobin with restrictive lung pattern in the general population. PLoS ONE 2015, 10, e0117725. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.W.; Ku, C.R.; Noh, J.H.; Ko, K.S.; Rhee, B.D.; Kim, D.J. Association between self-reported smoking and hemoglobin a1c in a korean population without diabetes: The 2011-2012 korean national health and nutrition examination survey. PLoS ONE 2015, 10, e0126746. [Google Scholar] [CrossRef] [Green Version]
- Simmons, M.S.; Connett, J.E.; Nides, M.A.; Lindgren, P.G.; Kleerup, E.C.; Murray, R.P.; Bjornson, W.M.; Tashkin, D.P. Smoking reduction and the rate of decline in fev(1): Results from the lung health study. Eur. Respir. J. 2005, 25, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Kolahian, S.; Leiss, V.; Nurnberg, B. Diabetic lung disease: Fact or fiction? Rev. Endocr. Metab. Disord. 2019, 20, 303–319. [Google Scholar] [CrossRef]
- Singh, S.; Bodas, M.; Bhatraju, N.K.; Pattnaik, B.; Gheware, A.; Parameswaran, P.K.; Thompson, M.; Freeman, M.; Mabalirajan, U.; Gosens, R.; et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L837–L845. [Google Scholar] [CrossRef] [Green Version]
- Clemmer, J.S.; Xiang, L.; Lu, S.; Mittwede, P.N.; Hester, R.L. Hyperglycemia-mediated oxidative stress increases pulmonary vascular permeability. Microcirculation 2016, 23, 221–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudy, R.; Schranc, A.; Fodor, G.H.; Tolnai, J.; Babik, B.; Petak, F. Lung volume dependence of respiratory function in rodent models of diabetes mellitus. Respir. Res. 2020, 21, 82. [Google Scholar] [CrossRef] [Green Version]
- Cazzola, M.; Calzetta, L.; Rogliani, P.; Lauro, D.; Novelli, L.; Page, C.P.; Kanabar, V.; Matera, M.G. High glucose enhances responsiveness of human airways smooth muscle via the rho/rock pathway. Am. J. Respir. Cell Mol. Biol. 2012, 47, 509–516. [Google Scholar] [CrossRef]
- Hollenbach, J.; Lopez-Rodriguez, E.; Muhlfeld, C.; Schipke, J. Voluntary activity modulates sugar-induced elastic fiber remodeling in the alveolar region of the mouse lung. Int. J. Mol. Sci. 2019, 20, 2438. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.; Schikowski, T.; Carsin, A.E.; Cai, Y.; Jacquemin, B.; Sanchez, M.; Vierkotter, A.; Marcon, A.; Keidel, D.; Sugiri, D.; et al. Adult lung function and long-term air pollution exposure. Escape: A multicentre cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, M.A.; Rossiter, H.B.; Casaburi, R. Exercise, ageing and the lung. Eur. Respir. J. 2016, 48, 1471–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahnert, K.; Lucke, T.; Huber, R.M.; Behr, J.; Biertz, F.; Vogt, A.; Watz, H.; Alter, P.; Fahndrich, S.; Bals, R.; et al. Relationship of hyperlipidemia to comorbidities and lung function in copd: Results of the cosyconet cohort. PLoS ONE 2017, 12, e0177501. [Google Scholar] [CrossRef]
- Lee, Y.B.; Kim, Y.S.; Lee, D.H.; Kim, H.Y.; Lee, J.I.; Ahn, H.S.; Sohn, T.S.; Lee, T.K.; Song, J.Y.; Yeo, C.D.; et al. Association between homa-ir and lung function in korean young adults based on the korea national health and nutrition examination survey. Sci. Rep. 2017, 7, 11726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronson, D.; Roterman, I.; Yigla, M.; Kerner, A.; Avizohar, O.; Sella, R.; Bartha, P.; Levy, Y.; Markiewicz, W. Inverse association between pulmonary function and c-reactive protein in apparently healthy subjects. Am. J. Respir. Crit. Care Med. 2006, 174, 626–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Baseline | Follow-Up | p-Value | Longitudinal Change |
---|---|---|---|---|
Age (year) | 49.5 ± 10.1 | 53.4 ± 10.0 | <0.001 | 3.9 ± 1.3 |
Systolic blood pressure (mmHg) | 114 ± 16 | 121 ± 18 | <0.001 | 8 ± 14 |
Body mass index (kg/m2) | 23.7 ± 3.4 | 24.0 ± 3.5 | <0.001 | 0.3 ± 1.3 |
Fasting blood glucose (g/dL) | 91.8 ± 7.8 | 93.1 ± 11.5 | <0.001 | 1.2 ± 10.3 |
HbA1c (%) | 5.56 ± 0.34 | 5.70 ± 0.44 | <0.001 | 0.14 ± 0.36 |
Creatinine (mg/dL) | 0.72 ± 0.28 | 0.71 ± 0.31 | 0.262 | 0.00 ± 0.13 |
GPT (u/L) | 22.8 ± 18.0 | 22.9 ± 19.3 | 0.608 | 0.1 ± 20.9 |
Total cholesterol (mg/dL) | 195.6 ± 34.5 | 198.1 ± 35.2 | <0.001 | 2.5 ± 29.1 |
Triglyceride (mg/dL) | 109.8 ± 81.3 | 114.9 ± 82.2 | <0.001 | 5.1 ± 70.9 |
Pulmonary function test | ||||
FVC (L) | 2.89 ± 0.78 | 2.68 ± 0.76 | <0.001 | −0.21 ± 0.33 |
FVC-predicted (%) | 108.1 ± 20.0 | 114.6 ± 22.8 | <0.001 | 6.5 ± 17.3 |
FEV1 (L) | 2.42 ± 0.67 | 2.33 ± 0.68 | <0.001 | −0.09 ± 0.37 |
FEV1-predicted (%) | 111.8 ± 21.6 | 112.1 ± 29.7 | <0.001 | 0.3 ± 27.8 |
FEV1/FVC (%) | 83.8 ± 6.2 | 87.4 ± 9.9 | <0.001 | 3.6 ± 10.9 |
Baseline HbA1c | ||||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
Baseline Parameters | Unstandardized Coefficient β (95% CI) | p-Value | Unstandardized Coefficient β (95% CI) | p-Value |
Age (year) | 0.010 (0.009, 0.011) | <0.001 | 0.005 (0.005, 0.006) | <0.001 |
Male (%) | 0.036 (0.019, 0.052) | <0.001 | - | |
Smoking (%) | 0.016 (−0.002, 0.034) | 0.088 | ||
Systolic blood pressure (mmHg) | 0.004 (0.003, 0.004) | <0.001 | - | |
Body mass index (kg/m2) | 0.019 (0.017, 0.022) | <0.001 | 0.011 (0.009, 0.013) | <0.001 |
Fasting blood glucose (g/dL) | 0.017 (0.016, 0.018) | <0.001 | 0.014 (0.013, 0.015) | <0.001 |
Creatinine (mg/dL) | 0.023 (−0.004, 0.051) | 0.100 | ||
GPT (u/L) | 0.002 (0.002, 0.003) | <0.001 | 0.001 (<0.001, 0.001) | <0.001 |
Total cholesterol (mg/dL) | 0.002 (0.002, 0.003) | <0.001 | 0.001 (<0.001, 0.001) | <0.001 |
Triglyceride (mg/dL) | 0.001 (<0.001, <0.001) | <0.001 | <0.001 (<0.001, <0.001) | 0.008 |
Pulmonary function test | ||||
FVC (L) | −0.046 (−0.056, −0.036) | <0.001 | −0.033 (−0.043, −0.024) | <0.001 |
FEV1 (L) | −0.053 (−0.065, −0.042) | <0.001 | - | |
FEV1/FVC (%) | −0.001 (−0.002, 0.001) | 0.334 | - |
Longitudinal Change of HbA1C | ||||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
Longitudinal Changes of Parameters | Unstandardized Coefficient β (95% CI) | p-Value | Unstandardized Coefficient β (95% CI) | p-Value |
Age (year) | 0.011 (0.004, 0.017) | 0.001 | - | |
Systolic blood pressure (mmHg) | <0.001 (−0.001, 0.001) | 0.972 | ||
Body mass index (kg/m2) | 0.037 (0.030, 0.043) | <0.001 | 0.027 (0.022, 0.033) | <0.001 |
Fasting blood glucose (g/dL) | 0.017 (0.016, 0.017) | <0.001 | 0.016 (0.016, 0.017) | <0.001 |
Creatinine (mg/dL) | −0.142 (−0.207, −0.076) | <0.001 | −0.173 (−0.231, −0.116) | <0.001 |
GPT (u/L) | 0.001 (<0.001, 0.001) | <0.001 | - | |
Total cholesterol (mg/dL) | 0.001 (<0.001, 0.001) | <0.001 | <0.001 (<0.001, 0.001) | 0.023 |
Triglyceride (mg/dL) | <0.001 (<0.001, <0.001) | <0.001 | <0.001 (<0.001, 0.001) | 0.042 |
Pulmonary function test | ||||
FVC (L) | −0.032 (−0.058, −0.007) | 0.013 | −0.025 (−0.048, −0.003) | 0.026 |
FEV1 (L) | −0.031 (−0.053, −0.008) | 0.008 | - | |
FEV1/FVC (%) | <0.001 (−0.001, 0.001) | 0.764 | - |
Longitudinal Change of FVC | ||||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
Longitudinal Changes of Parameters | Unstandardized Coefficient β (95% CI) | p-Value | Unstandardized Coefficient β (95% CI) | p-Value |
Age (year) | −0.017 (−0.023, −0.011) | <0.001 | −0.017 (−0.023, −0.011) | <0.001 |
Smoking (baseline) | −0.059 (−0.077, −0.042) | <0.001 | −0.059 (−0.077, −0.042) | <0.001 |
Systolic blood pressure (mmHg) | −0.001 (−0.001, <0.001) | 0.228 | ||
Fasting blood glucose (g/dL) | 0.001 (−0.001, 0.001) | 0.637 | ||
HbA1C (%) | −0.027 (−0.049, −0.006) | 0.013 | −0.022 (−0.044, −0.001) | 0.041 |
Creatinine (mg/dL) | 0.006 (−0.054, 0.060) | 0.842 | ||
GPT (u/L) | −0.001 (−0.001, <0.000) | 0.048 | −0.001 (−0.001, <0.000) | 0.035 |
Total cholesterol (mg/dL) | 0.001 (<−0.001, 0.001) | 0.950 | ||
Triglyceride (mg/dL) | −0.001 (<−0.001, 0.001) | 0.051 |
Longitudinal Changes of Parameters | With Newly Diagnosed Type 2 Diabetes Mellitus n = 271 (3.8%) | Without Newly Diagnosed Type 2 Diabetes Mellitus N = 6784 (96.2%) | p-Value |
---|---|---|---|
Age (year) | 4.1 ± 1.3 | 3.9 ± 1.3 | 0.086 |
Systolic blood pressure (mmHg) | 9 ± 15 | 8 ± 14 | 0.193 |
Body mass index (kg/m2) | 0.4 ± 1.3 | 0.3 ± 1.3 | 0.159 |
Fasting blood glucose (g/dL) | 16.6 ± 34.8 | 0.6 ± 7.1 | <0.001 |
HbA1c (%) | 0.92 ± 0.95 | 0.11 ± 0.27 | <0.001 |
Creatinine (mg/dL) | 0.0 ± 0.1 | 0.0 ± 0.1 | 0.167 |
GPT (u/L) | 1.8 ± 21.4 | 0.0 ± 20.1 | 0.187 |
Total cholesterol (mg/dL) | −5.7 ± 40.1 | 2.8 ± 28.6 | <0.001 |
Triglyceride (mg/dL) | −0.2 ± 120.7 | 5.3 ± 68.1 | 0.211 |
Pulmonary function test | |||
FVC (L) | −0.25 ± 0.29 | −0.21 ± 0.33 | 0.028 |
FVC-predicted (%) | 8.3 ± 14.8 | 6.4 ± 17.4 | 0.071 |
FEV1 (L) | −0.12 ± 0.31 | −0.09 ± 0.37 | 0.136 |
FEV1-predicted (%) | 0.0 ± 17.8 | 0.3 ± 28.1 | 0.949 |
FEV1/FVC (%) | 3.9 ± 9.0 | 3.6 ± 10.9 | 0.613 |
Newly Diagnosed Type 2 Diabetes Mellitus | ||||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
Longitudinal Changes of Parameters | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value |
Age (per 1 year) | 1.084 (0.989, 1.118) | 0.086 | ||
Systolic blood pressure (per 1 mmHg) | 1.006 (0.997, 1.015) | 0.193 | ||
Body mass index (per 1 kg/m2) | 1.068 (0.976, 1.169) | 0.155 | ||
Fasting blood glucose (per 1 g/dL) | 1.102 (1.089, 1.115) | <0.001 | 1.103 (1.090, 1.117) | <0.001 |
Creatinine (per 1 mg/dL) | 0.379 (0.114, 1.261) | 0.114 | ||
GPT (per 1 u/L) | 1.003 (0.999, 1.007) | 0.180 | ||
Total cholesterol (per 1 mg/dL) | 0.991 (0.987, 0.994) | <0.001 | 0.989 (0.985, 0.993) | <0.001 |
Triglyceride (per 1 mg/dL) | 0.999 (0.997, 1.001) | 0.204 | ||
Pulmonary function test | ||||
FVC (per 1 L) | 0.669 (0.467, 0.957) | 0.028 | 0.625 (0.424, 0.922) | 0.018 |
FEV1 (L) (per 1 L) | 0.791 (0.581, 1.076) | 0.136 | ||
FEV1/FVC (per 1%) | 1.003 (0.992, 1.014) | 0.612 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-H.; Wu, D.-W.; Chen, Y.-C.; Liu, Y.-H.; Liao, W.-S.; Chen, S.-C.; Hung, C.-H.; Kuo, C.-H.; Su, H.-M. Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus. J. Pers. Med. 2021, 11, 994. https://doi.org/10.3390/jpm11100994
Lee W-H, Wu D-W, Chen Y-C, Liu Y-H, Liao W-S, Chen S-C, Hung C-H, Kuo C-H, Su H-M. Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus. Journal of Personalized Medicine. 2021; 11(10):994. https://doi.org/10.3390/jpm11100994
Chicago/Turabian StyleLee, Wen-Hsien, Da-Wei Wu, Ying-Chih Chen, Yi-Hsueh Liu, Wei-Sheng Liao, Szu-Chia Chen, Chih-Hsing Hung, Chao-Hung Kuo, and Ho-Ming Su. 2021. "Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus" Journal of Personalized Medicine 11, no. 10: 994. https://doi.org/10.3390/jpm11100994
APA StyleLee, W.-H., Wu, D.-W., Chen, Y.-C., Liu, Y.-H., Liao, W.-S., Chen, S.-C., Hung, C.-H., Kuo, C.-H., & Su, H.-M. (2021). Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus. Journal of Personalized Medicine, 11(10), 994. https://doi.org/10.3390/jpm11100994