The Role of IL-6 and ET-1 in the Diagnosis of Coronary MicroVascular Disease in Women
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ong, P.; Athanasiadis, A.; Borgulya, G.; Vokshi, I.; Bastiaenen, R.; Kubik, S.; Hill, S.; Schäufele, T.; Mahrholdt, H.; Kaski, J.C.; et al. Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation 2014, 129, 1723–1730. [Google Scholar] [CrossRef]
- Lanza, G.A.; Crea, F. Primary coronary microvascular dysfunction: Clinical presentation, pathophysiology, and management. Circulation 2010, 121, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- Cocco, G.; Jerie, P. Angina pectoris in patients without flow-limiting coronary artery disease (cardiac syndrome X). A forest of a variety of trees. Cardiol. J. 2015, 22, 605–612. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Della Rocca, D.G.; Pepine, C.J. Some thoughts on the continuing dilemma of angina pectoris. Eur. Heart J. 2014, 35, 1361–1364. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.J.; Ong, P.; Sechtem, U.; Beltrame, J.; Camici, P.G.; Crea, F.; Kaski, J.-C.; Merz, C.N.B.; Pepine, C.J.; Shimokawa, H.; et al. Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease: Why, How, and When. JACC Cardiovasc. Interv. 2020, 13, 1847–1864. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef]
- Sutton, G.; Pugh, D.; Dhaun, N. Developments in the Role of Endothelin-1 in Atherosclerosis: A Potential Therapeutic Target? Am. J. Hypertens. 2019, 32, 813–815. [Google Scholar] [CrossRef] [PubMed]
- Dhaun, N.; Webb, D.J. Endothelins in cardiovascular biology and therapeutics. Nat. Rev. Cardiol. 2019, 16, 491–502. [Google Scholar] [CrossRef]
- Guddeti, R.R.; Prasad, A.; Matsuzawa, Y.; Aoki, T.; Rihal, C.; Holmes, D.; Best, P.J.; Lennon, R.; Lerman, L.O.; Lerman, A. Role of endothelin in microvascular dysfunction following percutaneous coronary intervention for non-ST elevation acute coronary syndromes: A single-centre randomised controlled trial. Open Heart 2016, 3, e000428. [Google Scholar] [CrossRef][Green Version]
- Davies, R.; Choy, E. Clinical experience of IL-6 blockade in rheumatic diseases—Implications on IL-6 biology and disease pathogenesis. Semin. Immunol. 2014, 26, 97–104. [Google Scholar] [CrossRef]
- Bacchiega, B.C.; Bacchiega, A.B.; Usnayo, M.J.G.; Bedirian, R.; Singh, G.; Pinheiro, G. Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study. J. Am. Heart Assoc. 2017, 6, e005038. [Google Scholar] [CrossRef]
- Su, D.; Li, Z.; Li, X.; Chen, Y.; Zhang, Y.; Ding, D.; Xia, M.; Qiu, J.; Ling, W. Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Med. Inflamm. 2013, 2013, 726178. [Google Scholar] [CrossRef]
- Lazzerini, P.E.; Laghi-Pasini, F.; Acampa, M.; Srivastava, U.; Bertolozzi, I.; Giabbani, B.; Finizola, F.; Vanni, F.; Dokollari, A.; Natale, M.; et al. Systemic Inflammation Rapidly Induces Reversible Atrial Electrical Remodeling: The Role of Interleukin-6-Mediated Changes in Connexin Expression. J. Am. Heart Assoc. 2019, 8, e011006. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. ESC Scientific Document Group, 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Chen, A.Y.; Peterson, E.D.; Newby, L.K.; Pollack Jr, V.C.; Brindis, R.G.; Gibson, C.M.; Kleiman, N.S.; Saucedo, J.F.; Bhatt, D.L.; et al. Prevalence, predictors, and outcomes of patients with non-ST-segment elevation myocardial infarction and insignificant coronary artery disease: Results from the Can Rapid risk stratification of Unstable angina patients Suppress Adverse outcomes with Early implementation of the ACC/AHA Guidelines (CRUSADE) initiative. Am. Heart J. 2006, 152, 641–647. [Google Scholar] [PubMed]
- Lanza, G.A.; Crea, F. Acute coronary syndromes without obstructive coronary atherosclerosis: The tiles of a complex puzzle. Circ. Cardiovasc. Interv. 2014, 7, 278–281. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Recio-Mayoral, A.; Rimoldi, O.E.; Camici, P.G.; Kaski, J.C. Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease. JACC Cardiovasc. Imaging 2013, 6, 660–667. [Google Scholar] [CrossRef]
- Kei, A.; Koutsouka, F.; Makri, A.; Elisaf, M. Uric acid and cardiovascular risk: What genes can say. Int. J. Clin. Pract. 2018, 72, e13048. [Google Scholar] [CrossRef]
- Wainstein, M.V.; Mossmann, M.; Araujo, G.N.; Gonçalves, S.C.; Gravina, G.L.; Sangalli, M.; Veadrigo, F.; Matte, R.; Reich, R.; Costa, F.G.; et al. Elevated serum interleukin-6 is predictive of coronary artery disease in intermediate risk overweight patients referred for coronary angiography. Diabetol. Metab. Syndr. 2017, 9, 67. [Google Scholar] [CrossRef]
- Schroder, J.; Mygind, N.D.; Frestad, D.; Michelsen, M.; Suhrs, H.E.; Bove, K.B.; Gustafsson, I.; Kastrup, J.; Prescott, E. Pro-inflammatory biomarkers in women with non-obstructive angina pectoris and coronary microvascular dysfunction. Int. J. Cardiol. Heart Vasc. 2019, 24, 100370. [Google Scholar] [CrossRef]
- Shrivastava, A.K.; Singh, H.V.; Raizada, A.; Singh, S.K. C-reactive protein, inflammation and coronary heart disease. Egypt. Heart J. 2015, 67, 89–97. [Google Scholar] [CrossRef]
- Tong, D.C.; Whitbourn, R.; MacIsaac, A.; Wilson, A.; Burns, A.; Palmer, S.; Layland, J. High-Sensitivity C-Reactive Protein Is a Predictor of Coronary Microvascular Dysfunction in Patients with Ischemic Heart Disease. Front. Cardiovasc. Med. 2018, 4, 81. [Google Scholar] [CrossRef]
- Tomai, F. C reactive protein and microvascular function. Heart 2004, 90, 727–728. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, J.; Jiang, L.; Xu, L.; Liu, J.; Zhao, X.; Feng, X.; Wang, D.; Zhang, Y.; Sun, K.; et al. Prognostic Value of Plasma Big Endothelin-1 Level among Patients with Three-Vessel Disease: A Cohort Study. J. Atheroscler. Thromb. 2019, 26, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Donato, A.J.; Gano, L.B.; Eskurza, I.; Silver, A.E.; Gates, P.E.; Jablonski, K.; Seals, D.R. Vascular endothelial dysfunction with aging: Endothelin-1 and endothelial nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H425–H432. [Google Scholar] [CrossRef]
- Barton, M. Aging and endothelin: Determinants of disease. Life Sci. 2014, 118, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Marcus, G.M.; Whooley, M.A.; Glidden, D.V.; Pawlikowska, L.; Zaroff, J.G.; Olgin, J.E. Interleukin-6 and atrial fibrillation in patients with coronary artery disease: Data from the Heart and Soul Study. Am. Heart J. 2008, 155, 303–309. [Google Scholar] [CrossRef]
- Mayyas, F.; Niebauer, M.; Zurick, A.; Barnard, J.; Gillinov, A.M.; Chung, M.K.; Wagoner, D.R.V. Association of left atrial endothelin-1 with atrial rhythm, size, and fibrosis in patients with structural heart disease. Circ. Arrhythm. Electrophysiol. 2010, 3, 369–379. [Google Scholar] [CrossRef]
- Sindhu, S.; Thomas, R.; Shihab, P.; Sriraman, D.; Behbehani, K.; Ahmad, R. Obesity Is a Positive Modulator of IL-6R and IL-6 Expression in the Subcutaneous Adipose Tissue: Significance for Metabolic Inflammation. PLoS ONE 2015, 10, e0133494. [Google Scholar] [CrossRef]
- El-Mikkawy, D.M.E.; EL-Sadek, M.A.; EL-Badawy, M.A.; Samaha, D. Circulating level of interleukin-6 in relation to body mass indices and lipid profile in Egyptian adults with overweight and obesity. Egypt. Rheumatol. Rehabil. 2020, 47, 7. [Google Scholar] [CrossRef]
- Solarz, D.E.; Mullington, J.M.; Meier-Ewert, H.K. Sleep, Inflammation and cardiovascular disease. Front. Biosci. 2012, 4, 2490–2501. [Google Scholar] [CrossRef]
- Kosacka, M.; Brzecka, A. Endothelin-1 and LOX-1 as Markers of Endothelial Dysfunction in Obstructive Sleep Apnea Patients. Int. J. Environ. Res. Public Health 2021, 18, 1319. [Google Scholar] [CrossRef]
- Shaafi, S.; Sharifipour, E.; Rahmanifar, R.; Hejazi, S.; Andalib, S.; Nikanfar, M.; Baradarn, B.; Mehdizadeh, R. Interleukin-6, a reliable prognostic factor for ischemic stroke. Iran. J. Neurol. 2014, 13, 70–76. [Google Scholar] [PubMed]
- Gunnoo, T.; Hasan, N.; Khan, M.S.; Slark, J.; Bentley, P.; Sharma, P. Quantifying the risk of heart disease following acute ischaemic stroke: A meta-analysis of over 50,000 participants. BMJ Open 2016, 6, e009535. [Google Scholar] [CrossRef]
- Putaala, J.; Nieminen, T. Stroke Risk Period After Acute Myocardial Infarction Revised. J. Am. Heart Assoc. 2018, 7, e011200. [Google Scholar] [CrossRef] [PubMed]
- Koton, S.; Schneider, A.L.C.; Windham, B.G.; Mosley, T.H.; Gottesman, R.F.; Coresh, J. Microvascular Brain Disease Progression and Risk of Stroke: The ARIC Study. Stroke 2020, 51, 3264–3270. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.T.; Yan, R.T.; Cushman, M.; Redheuil, A.; Tracy, R.P.; Arnett, D.K.; Rosen, B.D.; McClelland, R.L.; Bluemke, D.A.; Lima, J.A.C. Relationship of interleukin-6 with regional and global left-ventricular function in asymptomatic individuals without clinical cardiovascular disease: Insights from the Multi-Ethnic Study of Atherosclerosis. Eur. Heart J. 2010, 31, 875–882. [Google Scholar] [CrossRef]
- Gullestad, L.; Ueland, T.; Vinge, L.E.; Finsen, A.; Yndestad, A.; Aukrust, P. Inflammatory cytokines in heart failure: Mediators and markers. Cardiology 2012, 122, 23–35. [Google Scholar] [CrossRef]




| Parameters | Details | Global | Group 1 Microvascular Disease (Non-Obstructive Coronary Artery Disease) | Group 2 Macrovascular Disease (Obstructive Coronary Artery Disease) | p Value |
|---|---|---|---|---|---|
| Number of patients | 45 (50%) | 45 (50%) | |||
| Age (Mean ± SD) | 69.02 ± 9.34 | 67.37 ± 9.03 | 70.66 ± 9.46 | p = ns | |
| Smoking (%) | Yes | 30 (33.3) | 13 (28.88) | 17 (37.77) | p = ns |
| No | 60 (67.6) | 32 (71.11) | 28 (62.22) | ||
| Symptoms (%-yes) | Typical angina | 54 (60) | 23 (51.11) | 31 (68.88) | p = ns |
| Atypical pain | 19 (21.1%) | 13 (28.88) | 6 (13.33) | p = ns | |
| Palpitations | 37 (41.1%) | 25 (55.55) | 12 (26.66) | p = 0.0101 | |
| Dyspnea | 67 (74.4%) | 33 (73.33) | 34 (75.55) | p = ns | |
| Decreased exercise tolerance | 74 (82.2%) | 35 (77.77) | 39 (86.66) | p = ns | |
| No of macrovascular coronary lesions (%) | One-vessel | 15 (33.3) | - | 15 (33.3) | p = ns |
| Two-vessel | 15 (33.3) | - | 15 (33.3) | ||
| Three-vessel | 15 (33.3) | - | 15 (33.3) | ||
| Total cholesterol (mg/dL) Mean ± SD | 171.9 ±46.55 | 174.24 ±50.18 | 169.55 ± 43.05 | p = ns | |
| LDL cholesterol (mg/dL) Mean ± SD | 101.18 ±42.15 | 105.80 ±43.15 | 96.57 ±41.09 | p = ns | |
| HDL cholesterol (mg/dL) Mean ± SD | 43.46 ±10.48 | 43.60 ± 11.85 | 43.33 ± 9.04 | p = ns | |
| Triglycerides (mg/dL) Mean ± SD | 140.14 ±69.56 (119.5) | 125.55 ± 50.88 (117) | 154.73 ±82.23 (137) | p = ns | |
| Uric acid (mg/dL) Mean ± SD | 6.76 ±2.08 | 6.61 ±1.96 | 6.91 ± 2.2 | p = ns | |
| CRP (mg/dL) Mean ± SD | 1.13 ± 1.26 | 1.24 ± 1.67 | 1.01 ± 0.65 | p = ns | |
| IL-6 * (pg/mL) Mean ± SD | 19.66 ± 55.09 (7.7) | 12.36 ± 16.36 (7.5) | 26.95± 75.9 (8) | p = ns | |
| Log IL-6 Mean ± SD | 0.8528 ± 0.5809 | 0.7760 ± 0.5664 | 0.9297 ± 0.5913 | p = ns | |
| ET-1 * (pmol/L) Mean ± SD | 1.67 ± 0.5 (1.7) | 1.63 ± 0.42 (1.7) | 1.7 ± 0.57 (1.7) | p = ns | |
| Log ET-1 Mean ± SD | 0.20 ± 0.12 () | 0.19 ± 0.11 (0.23) | 0.21 ± 0.13 (0.23) | p = ns | |
| Diabetes mellitus (%) | Yes | 41 (45.6%) | 18 (40) | 23 (51.11) | p = ns |
| No | 49 (54.4%) | 27 (60) | 22 (48.88) | ||
| Obesity (%) | Yes | 64 (71.1%) | 32 (71.11) | 32 (71.11) | p = ns |
| No | 26 (28.9%) | 13 (28.88) | 13 (28.88) | ||
| PPH of ACS (%) | Yes | 33 (36.7%) | 5 (11.11) | 28 (62.22) | p < 0.0001 |
| No | 57 (63.3%) | 40 (88.88) | 17 (37.77) | ||
| STEMI | 15 (45.5%) | 2 (4.44) | 13(28.88) | p < 0.0001 | |
| NSTEMI | 14 (42.4%) | 2(4.44) | 12 (26.66) | ||
| UA | 4 (12.1%) | 1 (2.22) | 3 (6.66) | ||
| Without | 57 (63.3%) | 40 (88.88) | 17 (37.77) | ||
| PAD (%) | Yes | 14 (15.6%) | 5 (11.11) | 9 (20) | p = ns |
| No | 76 (84.4%) | 40 (88.88) | 36 (80) | ||
| CHF/LVF (%) | Yes | 68 (75.6%) | 28 (62.22) | 40(88.88) | p = 0.0070 |
| No | 22 (24.4%) | 17 (37.77) | 5(11.11) | ||
| AFi (%) | Yes | 48 (53.3%) | 30 (66.66) | 18 (40) | p = 0.0201 |
| No | 42 (46.7%) | 15 (33.33) | 27 (60) | ||
| Permanent | 14 (15.6%) | 9 (20) | 5 (11.11) | p = ns | |
| Persistent | 10 (11.1%) | 6 (13.33) | 4 (8.88) | ||
| Paroxysmal | 24 (26.7%) | 15 (33.33) | 9 (20) | ||
| Without | 42 (46.7%) | 15(33.33) | 27(60) | ||
| Ischemic stroke (%) | Yes | 26 (28.9%) | 11 (24.44) | 15 (33.33) | p = ns |
| No | 64 (71.1%) | 34 (75.55) | 30(66.66) | ||
| CKD (%) | Yes | 22 (24.4%) | 9 (25) | 13 (28.88) | p = ns |
| No | 68 (75.6%) | 36 (75) | 32 (71.11) | ||
| Anxiety-depressive disorder (%) | Yes | 34 (37.8%) | 18 (40) | 16 (35.55) | p = ns |
| No | 56 (62.2%) | 27(60) | 29 (64.44) |
| Parameter | Number of Coronary Lesions | p Value | |||
|---|---|---|---|---|---|
| without | One-Vessel | Two-Vessel | Three-Vessel | ||
| IL-6 (pg/mL) Mean ± SD | 12.36 ± 16.36 (7.5) | 10.06 ± 10.41 (7.7) | 12.71 ± 19.17 (6.6) | 58.08 ± 126.76 (12.10) | p = 0.030 |
| Log IL-6 Mean ± SD | 0.7760 ± 0.5664 | 0.7752 ± 0.4852 | 0.8335 ±0.4597 | 1.1803 ± 0.7412 | p = 0.018 |
| SD-standard deviation, p value obtained in the Kruskal–Wallis test and Mann–Whitney tests. | |||||
| ET-1 (pmol/L) Mean ± SD | 1.63 ± 0.42 (1.7) | 1.78 ± 0.7 (1.7) | 1.57 ± 0.41 (1.6) | 1.76 ± 0.58 (1.7) | p = 0.7316 |
| Log ET-1 Mean ± SD | 0.19 ± 0.11 (0.23) | 0.22 ± 0.14 (0.23) | 0.18 ± 0.12 (0.20) | 0.22 ± 0.14 (0.23) | p = 0.7316 |
| Global | Group 1—Microvascular Disease | Group 2—Macrovascular Disease | |
|---|---|---|---|
| IL-6–age | Rho 0.283 p = 0.0075 | Rho 0.301 p = 0.0459 | Rho 0.230 p = 0.1277 |
| Mean Age | 67.37 ± 9.03 | 70.66 ± 9.46 | |
| ET-1–age | Rho 0.0963 p = 0.3635 | Rho 0.0827 p = 0.5835 | Rho 0.0944 p = 0.5313 |
| Global | Group 1—Microvascular Disease | Group 2—Macrovascular Disease | |
|---|---|---|---|
| IL-6-LVEF% | Rho −0.186 p = 0.0789 | Rho −0.263 p = 0.0813 | Rho −0.121 p = 0.4225 |
| ET-1-LVEF% | Rho −0.203 p = 0.0561 | Rho −0.440 p = 0.0035 | Rho 0.0261 p = 0.8625 |
| IL-6–diastolic dysfunction | Rho 0.128 p = 0.2255 | Rho 0.0637 p = 0.6728 | Rho 0.197 p = 0.1905 |
| ET-1–diastolic dysfunction | Rho 0.0915 p = 0.3881 | Rho 0.265 p = 0.0783 | Rho −0.123 p = 0.4159 |
| Group 1-Microvascular Disease | Group 2-Macrovascular Disease | |||
|---|---|---|---|---|
| with AFi | without AFi | with AFi | without AFi | |
| IL-6-ET-1 | 30 patients- rho 0.193 p = 0.2980 | 15 patients- rho 0.418 p = 0.1181 | 18 patients- rho 0.161 p = 0.505 | 27 patients- rho 0.147 p = 0.4542 |
| Spearman correlation coefficient (R), and p > 0.05 was considered statistically significant. | ||||
| IL-6 | Log IL-6 | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Standard Deviation | Median | Mean | Standard Deviation | Median | ||||
| Diabetes mellitus | yes | 14.61 | 22.94 | 8.00 | p = 0.8174 | 0.8216 | 0.5667 | 0.9031 | p = 0.64 |
| no | 23.88 | 71.77 | 7.50 | 0.8790 | 0.5970 | 0.8751 | |||
| Obesity | yes | 24.51 | 64.66 | 8.10 | p = 0.0353 | 0.9377 | 0.5886 | 0.9085 | p = 0.0288 |
| no | 7.72 | 7.90 | 6.35 | 0.6439 | 0.5140 | 0.8024 | |||
| PAD | yes | 20.82 | 34.63 | 7.55 | p = 0.6047 | 0.7749 | 0.7610 | 0.8779 | p = 0.58 |
| no | 19.45 | 58.26 | 7.75 | 0.8672 | 0.5465 | 0.8893 | |||
| CKD | yes | 14.30 | 22.53 | 7.35 | p = 0.3312 | 0.7832 | 0.5703 | 0.8662 | p = 0.52 |
| no | 21.39 | 62.14 | 8.10 | 0.8754 | 0.5866 | 0.9085 | |||
| Ischemic stroke | yes | 39.69 | 97.12 | 9.55 | p = 0.0497 | 1.0791 | 0.6541 | 0.9793 | p = 0.0176 |
| no | 11.52 | 17.68 | 7.55 | ||||||
| ET-1 | Log ET-1 | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Standard Deviation | Median | Mean | Standard Deviation | Median | ||||
| Diabetes mellitus | yes | 1.61 | 0.29 | 1.60 | p = 0.3190 | 0.20 | 0.08 | 0.20 | p = 0.31 |
| no | 1.72 | 0.63 | 1.70 | 0.20 | 0.15 | 0.23 | |||
| Obesity | yes | 1.71 | 0.54 | 1.70 | p = 0.5658 | 0.21 | 0.12 | 0.23 | p = 0.56 |
| no | 1.59 | 0.41 | 1.67 | 0.18 | 0.11 | 0.22 | |||
| PAD | yes | 1.85 | 0.53 | 1.75 | p = 0.0994 | 0.25 | 0.11 | 0.24 | p = 0.09 |
| no | 1.64 | 0.50 | 1.60 | 0.19 | 0.12 | 0.20 | |||
| CKD | yes | 1.76 | 0.62 | 1.70 | p = 0.4442 | 0.22 | 0.13 | 0.23 | p = 0.44 |
| no | 1.64 | 0.46 | 1.67 | 0.19 | 0.12 | 0.22 | |||
| Ischemic stroke | yes | 1.71 | 0.55 | 1.70 | p = 0.3319 | 0.21 | 0.14 | 0.23 | p = 0.33 |
| no | 1.66 | 0.49 | 1.60 | 0.20 | 0.11 | 0.20 | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurzău, D.; Sitar-Tăut, A.; Caloian, B.; Guşetu, G.; Comşa, H.; Frîngu, F.; Zdrenghea, D.; Pop, D. The Role of IL-6 and ET-1 in the Diagnosis of Coronary MicroVascular Disease in Women. J. Pers. Med. 2021, 11, 965. https://doi.org/10.3390/jpm11100965
Gurzău D, Sitar-Tăut A, Caloian B, Guşetu G, Comşa H, Frîngu F, Zdrenghea D, Pop D. The Role of IL-6 and ET-1 in the Diagnosis of Coronary MicroVascular Disease in Women. Journal of Personalized Medicine. 2021; 11(10):965. https://doi.org/10.3390/jpm11100965
Chicago/Turabian StyleGurzău, Diana, Adela Sitar-Tăut, Bogdan Caloian, Gabriel Guşetu, Horaţiu Comşa, Florina Frîngu, Dumitru Zdrenghea, and Dana Pop. 2021. "The Role of IL-6 and ET-1 in the Diagnosis of Coronary MicroVascular Disease in Women" Journal of Personalized Medicine 11, no. 10: 965. https://doi.org/10.3390/jpm11100965
APA StyleGurzău, D., Sitar-Tăut, A., Caloian, B., Guşetu, G., Comşa, H., Frîngu, F., Zdrenghea, D., & Pop, D. (2021). The Role of IL-6 and ET-1 in the Diagnosis of Coronary MicroVascular Disease in Women. Journal of Personalized Medicine, 11(10), 965. https://doi.org/10.3390/jpm11100965

