Limitations and Prospects for Diffusion-Weighted MRI of the Prostate
Abstract
:1. Introduction
2. Multiparametric Magnetic Resonance Imaging (mpMRI)
2.1. mpMRI and Prostate Cancer
2.2. The Role of Diffusion-Weighted Imaging in mpMRI
3. What is DWI Measuring?
3.1. Diffusion-Sensitization of the MRI Signal
3.2. Signal Models
4. Limitations of the Standard ‘Apparent Diffusion Coefficient’ (ADC) Model
4.1. The ‘Apparent Diffusion Coefficient’ (ADC)
4.2. ADC Variations in Prostate Tissue at the Microstructure Scale
4.3. ADC and ‘Cellularity’
5. Improving on ADC—Phenomenological Models
5.1. DTI: A Simple Anisotropic Model
5.2. Higher Order Isotropic Models
6. Model Selection and Performance Testing
6.1. Correlation of Model Parameters and Tissue Pathology
6.2. Model Ranking Based on Information Theory
6.3. The Importance of Imaging Method
6.4. Model-Based Image Synthesis
7. Compartment Models
7.1. Two-Compartment Models
7.2. A Three-Compartment Model: VERDICT
- Model selection results were largely independent of voxel size—indicating that the successful modeling of ‘true’ diffusion in the non-vascular space as one restricted and one unrestricted compartment is not strongly dependent on the amount of subvoxel structure heterogeneity.
- Model selection results were largely independent of maximum b-factor.
- The diffusivity parameters were not fixed during model fitting in the ex vivo study, but still returned average values similar to the fixed diffusivities used in fitting VERDICT to the relatively noisy in vivo data. This provides an independent validation of the fixed values used for the in vivo data fitting.
8. Future Directions
- Diffusion time. The diffusion time dependence of DWI measurements needs to be clarified and diffusion time reported in all published studies to enable controlled meta-analysis. The consensus methods should include a specification of recommended diffusion time. At present only the VERDICT method specifically accounts for and exploits the diffusion time dependence of the signal.
- Membrane permeability. At present, the multi-compartment structural models and multi-component phenomenological models assume no exchange of water between the compartments/components during the DWI measurement. Studies of a range of cell types in suspension found that membrane permeability alterations produced significant effects on DWI model parameters [71,72]. Although technically challenging, incorporation of water exchange may be an important component of DWI model optimization for clinical applications.
- T2 relaxation. Current multi-component models also neglect or implement strategies to minimize potential complications due to the possible presence of multiple water pools with different spin-spin (T2) relaxation rates, despite evidence of their existence in prostate tissue [73,74,75]. There are, as yet, no studies that investigate whether the two main water pools identified in diffusion analyses have a direct one-to-one correspondence with the apparently distinct T2 water pools.
- Diagnostic accuracy. The complex diffusion dynamics of biological tissue means that appropriately developed multi-component models are likely to supersede the current ADC method used in prostate mpMRI. It is essential that assessment of the clinical performance of these models is based on testing of their total information content by using methods that correlate pathology and tissue structure features with the combined model parameters.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
MRI | Magnetic resonance imaging |
DWI | Diffusion-weighted magnetic resonance imaging |
ADC | Apparent diffusion coefficient |
DTI | Diffusion tensor imaging |
FA | Fractional anisotropy |
VERDICT | Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours |
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B. Tumour volume is an independent predictor of prostate-specific antigen recurrence in patients undergoing radical prostatectomy for clinically localized prostate cancer. BJU Int. 2006, 97, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Hong, M. Prostate tumour volume is an independent predictor of early biochemical recurrence in a high risk radical prostatectomy subgroup. Pathology 2011, 43, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Guzzo, T.J.; Vira, M.; Hwang, W.T.; D’Amico, A.; Tomaszewski, J.; Whittington, R.; Wein, A.J.; Vanarsdalen, K.; Malkowicz, S.B. Impact of multiple biopsy cores on predicting final tumor volume in prostate cancer detected by a single microscopic focus of cancer on biopsy. Urology 2005, 66, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Isariyawongse, B.K.; Sun, L.; Bañez, L.L.; Robertson, C.; Polascik, T.J.; Maloney, K.; Donatucci, C.; Albala, D.; Mouraviev, V.; Madden, J.F.; et al. Significant discrepancies between diagnostic and pathologic Gleason sums in prostate cancer: The predictive role of age and prostate-specific antigen. Urology 2008, 72, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Huo, A.S.; Hossack, T.; Symons, J.L.; PeBenito, R.; Delprado, W.J.; Brenner, P.; Stricker, P.D. Accuracy of primary systematic template guided transperineal biopsy of the prostate for locating prostate cancer: A comparison with radical prostatectomy specimens. J. Urol. 2012, 187, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Stackhouse, D.A.; Sun, L.; Schroeck, F.R.; Jayachandran, J.; Caire, A.A.; Acholo, C.O.; Robertson, C.N.; Albala, D.M.; Polascik, T.J.; Donatucci, C.F.; et al. Factors predicting prostatic biopsy Gleason sum under grading. J. Urol. 2009, 182, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Moyer, V.A. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2012, 157, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Thompson, I.M.; Pauler, D.K.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Parnes, H.L.; Minasian, L.M.; Ford, L.G.; Lippman, S.M.; Crawford, E.D.; et al. Prevalence of prostate cancer among men with a prostate-specific antigen level less than or equal to 4.0 ng per milliliter. N. Engl. J. Med. 2004, 350, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Keall, P.; Colvill, E.; O’Brien, R.; Ng, J.; Poulsen, P.; Eade, T.; Kneebone, A.; Booth, J. The first clinical implementation of electromagnetic transponder-guided MLC tracking. Med. Phys. 2014, 41, 020702. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrantz, A.B.; Taneja, S.S. Radiologist, Be Aware: Ten Pitfalls That Confound the Interpretation of Multiparametric Prostate MRI. Am. J. Roentgenol. 2014, 202, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Turkbey, B.; Mani, H.; Aras, O.; Ho, J.; Hoang, A.; Rastinehad, A.R.; Agarwal, H.; Shah, V.; Bernardo, M.; Pang, Y.; et al. Prostate cancer: Can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology 2013, 268, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.E.; Moses, D.; Shnier, R.; Brenner, P.; Delprado, W.; Ponsky, L.; Pulbrook, M.; Böhm, M.; Haynes, A.M.; Hayen, A.; et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: A prospective study. J. Urol. 2014, 192, 67–74. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology PI-RADS. Prostate Imaging—Reporting and Data System 2015 Version 2; Technical Report; American College of Radiology: Reston, VA, USA, 2015. [Google Scholar]
- Kirkham, A.P.; Haslam, P.; Keanie, J.Y.; McCafferty, I.; Padhani, A.R.; Punwani, S.; Richenberg, J.; Rottenberg, G.; Sohaib, A.; Thompson, P.; et al. Prostate MRI: Who, when, and how? Report from a UK consensus meeting. Clin. Radiol. 2013, 68, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, L.; Ahmed, H.U.; Allen, C.; Barentsz, J.O.; Carey, B.; Futterer, J.J.; Heijmink, S.W.; Hoskin, P.J.; Kirkham, A.; Padhani, A.R.; et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: Recommendations from a european consensus meeting. Eur. Urol. 2011, 59, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Isebaert, S.; van den Bergh, L.; Haustermans, K.; Joniau, S.; Lerut, E.; de Wever, L.; de Keyzer, F.; Budiharto, T.; Slagmolen, P.; van Poppel, H.; et al. Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J. Magn. Reson. Imaging 2012, 37, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Selnaes, K.; Heerschap, A.; Jensen, L.R.; Tessem, M.B.; Jarosch-Von Schweder, G.; Goa, P.E.; Viset, T.; Angelsen, A.; Gribbestad, I.S. Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: Unbiased cancer identification by matching to histopathology. Investig. Radiol. 2012, 47, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Metzger, G.J.; Kalavagunta, C.; Spilseth, B.; Bolan, P.J.; Li, X.; Hutter, D.; Nam, J.W.; Johnson, A.D.; Henriksen, J.C.; Moench, L. Detection of prostate cancer: Multiparametric MR imaging models developed by using registered correlative histopathologic results. Radiology 2016, 279. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.K. Diffusion MRI; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Bourne, R. The trouble with apparent diffusion coefficient (ADC) papers (Invited editorial). J. Med. Radiat. Sci. 2015, 62, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Hambrock, T.; Somford, D.M.; Huisman, H.J.; van Oort, I.M.; Witjes, J.A.; Hulsbergen-van de Kaa, C.A.; Scheenen, T.; Barentsz, J.O. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 2011, 259, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Oto, A.; Yang, C.; Kayhan, A.; Tretiakova, M.; Antic, T.; Schmid-Tannwald, C.; Eggener, S.; Karczmar, G.S.; Stadler, W.M. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: Correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. Am. J. Roentgenol. 2011, 197, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, P.; Liney, G.P.; Pickles, M.D.; Zelhof, B.; Rodrigues, G.; Turnbull, L.W. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 tesla. Investig. Radiol. 2009, 44, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.K.; Park, B.K.; Han, J.J.; Kang, T.W.; Lee, H.M. Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: Preliminary results. J. Comput. Assist. Tomogr. 2007, 31, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.M.; Kurniawan, N.; Cowin, G.; Stait-Gardner, T.; Sved, P.; Watson, G.; Price, W.S. Microscopic diffusivity compartmentation in formalin-fixed prostate tissue. Magn. Reson. Med. 2012, 68, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.; Kurniawan, N.; Cowin, G.; Sved, P.; Watson, G. Microscopic diffusion anisotropy in formalin fixed prostate tissue: Preliminary findings. Magn. Reson. Med. 2012, 68, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
- Norddin, N.; Power, C.; Watson, G.; Cowin, G.; Kurniawan, N.; Gluch, L.; Bourne, R. Microscopic diffusion properties of fixed breast tissue: Preliminary findings. Magn. Reson. Med. 2015, 74, 1733–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, I.; Hikishima, K.; Miyasaka, N.; Kawano, T.; Tokairin, Y.; Ito, E.; Kobayashi, D.; Eishi, Y.; Okano, H. Esophageal carcinoma: Ex vivo evaluation with diffusion-tensor MR imaging and tractography at 7 T. Radiology 2014, 272, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; McEntee, M.; Watson, G.; Myint, E.; Bourne, R. Changes in epithelium, stroma, and lumen space correlate more strongly with prostate cancer Gleason grade than cellularity metrics. Radiology 2015, 277, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.; Kurniawan, N.; Cowin, G.; Sved, P.; Watson, G. 16 T diffusion microimaging of fixed prostate tissue. Preliminary findings. Magn. Reson. Med. 2011, 66, 244–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, S.; Sinha, U. In vivo diffusion tensor imaging of the human prostate. Magn. Reson. Med. 2004, 52, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Manenti, G.; Carlani, M.; Mancino, S.; Colangelo, V.; Di Roma, M.; Squillaci, E.; Simonetti, G. Diffusion tensor magnetic resonance imaging of prostate cancer. Investig. Radiol. 2007, 42, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, P.; Pickles, M.D.; Turnbull, L.W. Diffusion imaging of the prostate at 3.0 tesla. Investig. Radiol. 2006, 41, 185–188. [Google Scholar] [CrossRef]
- Haker, S.; Barnes, A.; Maier, S.; Tempany, C.; Mulkern, R. Diffusion tensor imaging for prostate cancer detection: Preliminary results from a biopsy-based assessment. In Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, FL, USA, 7–13 May 2005; p. 2126.
- Gurses, B.; Kabakci, N.; Kovanlikaya, A.; Firat, Z.; Bayram, A.; Ulug, A.M.; Kovanlikaya, I. Diffusion tensor imaging of the normal prostate at 3 Tesla. Eur. Radiol. 2008, 18, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Quentin, M.; Blondin, D.; Klasen, J.; Lanzman, R.S.; Miese, F.R.; Arsov, C.; Albers, P.; Antoch, G.; Wittsack, H.J. Comparison of different mathematical models of diffusion-weighted prostate MR imaging. Magn. Reson. Imaging 2012, 30, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- Uribe, C.F.; Jones, E.C.; Chang, S.D.; Goldenberg, S.L.; Reinsberg, S.A.; Kozlowski, P. In vivo 3 T and ex vivo 7 T diffusion tensor imaging of prostate cancer: Correlation with histology. Magn. Reson. Imaging 2015, 33, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Reinsberg, S.; Brewster, J.; Payne, G.; Leach, M.; Desouza, N. Anisotropic diffusion in prostate cancer: Fact or artefact. In Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, FL, USA, 7–13 May 2005; p. 269.
- Bourne, R.M.; Bongers, A.; Chatterjee, A.; Sved, P.; Watson, G. Diffusion anisotropy in fresh and fixed prostate tissue ex vivo. Magn. Resona. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Panagiotaki, E.; Bongers, A.; Shi, P.; Sved, P.; Watson, G.; Bourne, R. Information based ranking of ten compartment models of diffusion weighted signal attenuation in fixed prostate tissue. NMR Biomed. 2016, 29, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.H.; Helpern, J.A.; Ramani, A.; Lu, H.; Kaczynski, K. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 2005, 53, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrantz, A.B.; Prabhu, V.; Sigmund, E.E.; Babb, J.S.; Deng, F.M.; Taneja, S.S. Utility of diffusional kurtosis imaging as a marker of adverse pathologic outcomes among prostate cancer active surveillance candidates undergoing radical prostatectomy. Am. J. Roentgenol. 2013, 201, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrantz, A.B.; Sigmund, E.E.; Johnson, G.; Babb, J.S.; Mussi, T.C.; Melamed, J.; Taneja, S.S.; Lee, V.S.; Jensen, J.H. Prostate cancer: Feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 2012, 264, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.M.; Panagiotaki, E.; Bongers, A.; Sved, P.; Watson, G.; Alexander, D.C. Information theoretic ranking of four models of diffusion attenuation in fresh and fixed prostate tissue ex vivo. Magn. Reson. Med. 2014, 72, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Aubin, M.; Vignaud, J.; Laval-Jeantet, M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988, 168, W497–W505. [Google Scholar] [CrossRef] [PubMed]
- Dopfert, J.; Lemke, A.; Weidner, A.; Schad, L.R. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn. Reson. Imaging 2011, 29, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Kuru, T.H.; Roethke, M.C.; Stieltjes, B.; Maier-Hein, K.; Schlemmer, H.P.; Hadaschik, B.A.; Fenchel, M. Intravoxel incoherent motion (IVIM) diffusion imaging in prostate cancer-what does it add? J. Comput. Assist. Tomogr. 2014, 38, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Riches, S.F.; Hawtin, K.; Charles-Edwards, E.M.; de Souza, N.M. Diffusion-weighted imaging of the prostate and rectal wall: Comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients. NMR Biomed. 2009, 22, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Valerio, M.; Zini, C.; Fierro, D.; Giura, F.; Colarieti, A.; Giuliani, A.; Laghi, A.; Catalano, C.; Panebianco, V. 3 T multiparametric MRI of the prostate: Does intravoxel incoherent motion diffusion imaging have a role in the detection and stratification of prostate cancer in the peripheral zone? Eur. J. Radiol. 2016, 85, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Shinmoto, H.; Tamura, C.; Soga, S.; Shiomi, E.; Yoshihara, N.; Kaji, T.; Mulkern, R.V. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. Am. J. Roentgenol. 2012, 199, W496–W500. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Turkbey, B.; Bernardo, M.; Kruecker, J.; Kadoury, S.; Merino, M.J.; Wood, B.J.; Pinto, P.A.; Choyke, P.L. Intravoxel incoherent motion MR imaging for prostate cancer: An evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn. Reson. Med. 2013, 69, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Kopf, M.; Corinth, C.; Haferkamp, O.; Nonnenmacher, T. Anomalous diffusion of water in biological tissues. Biophys. J. 1996, 70, 2950–2958. [Google Scholar] [CrossRef]
- Merisaari, H.; Movahedi, P.; Perez, I.M.; Toivonen, J.; Pesola, M.; Taimen, P.; Boström, P.J.; Pahikkala, T.; Kiviniemi, A.; Aronen, H.J.; et al. Fitting methods for intravoxel incoherent motion imaging of prostate cancer on region of interest level: Repeatability and gleason score prediction. Magn. Reson. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Burnham, K.; Anderson, D. Model Selection and Inference: A Practical Information Theoretical Approach; Springer-Verlag: New York, NY, USA, 1998. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Panagiotaki, E.; Chan, R.; Dikaios, H.; Ahmed, H.; O’Callaghan, J.; Freeman, A.; Atkinson, D.; Punwani, S.; Hawkes, D.; Alexander, D. Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging. Investig. Radiol. 2015, 50, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Shinmoto, H.; Oshio, K.; Tanimoto, A.; Higuchi, N.; Okuda, S.; Kuribayashi, S.; Mulkern, R.V. Biexponential apparent diffusion coefficients in prostate cancer. Magn. Reson. Imaging 2009, 27, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Bongers, A.; Sved, P.; Watson, G.; Bourne, R. Assessment of non-Gaussian diffusion with singly and doubly stretched biexponential models of DWI signal attenuation in prostate tissue. NMR Biomed. 2015, 28, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Maas, M.C.; Fütterer, J.J.; Scheenen, T.W. Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate. Investig. Radiol. 2013, 48, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.B.; Agarwal, H.K.; Shih, J.H.; Bernardo, M.; Pang, Y.; Daar, D.; Merino, M.J.; Wood, B.J.; Pinto, P.A.; Choyke, P.L.; et al. Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom. Imaging 2015, 40, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Feuerlein, S.; Davenport, M.; Krishnaraj, A.; Merkle, E.; Gupta, R.T. Computed high b-value diffusion-weighted imaging improves lesion contrast and conspicuity in prostate cancer. Prostate Cancer Prostatic Dis. 2015, 18, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, M.J.; Haider, S.A.; Wong, A.; Lui, D.; Cameron, A.; Modhafar, A.; Fieguth, P.; Haider, M.A. Apparent ultra-high-value diffusion-weighted image reconstruction via hidden conditional random fields. IEEE Trans. Med. Imaging 2015, 34, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.C.; Hubbard, P.L.; Hall, M.G.; Moore, E.A.; Ptito, M.; Parker, G.J.M.; Dyrby, T.B. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 2010, 52, 1374–1389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012, 61, 1000–1016. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Does, M.D.; Gore, J.C. Sensitivity of MR diffusion measurements to variations in intracellular structure: Effects of nuclear size. Magn. Reson. Med. 2009, 61, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Panagiotaki, E.; Walker-Samuel, S.; Siow, B.; Johnson, P.; Rajkumarc, V.; Pedley, R.; Lythgoe, M.F.; Alexander, D. Non-invasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 2014, 74, 1902–1912. [Google Scholar] [CrossRef] [PubMed]
- Panagiotaki, E.; Andrada, I.; Johnston, E.; Chan, R.; Stevens, N.; Atkinson, D.; Punwani, S.; Hawkes, D.; Alexander, D. Optimised VERDICT MRI protocol for prostate cancer characterisation. In Proceedings of the 23rd Annual Meeting of the International Society for Magnetic Resonance in Medicine, Milan, Italy, 10–16 May 2014; p. 2872.
- Alexander, D.C. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 2008, 60, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, X.; Xie, J.; McIntyre, J.O.; Gore, J.C.; Xu, J. Time-dependent influence of cell membrane permeability on mr diffusion measurements. Magn. Reson. Med. 2016, 75, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Thelwall, P.E.; Grant, S.C.; Stanisz, G.J.; Blackband, S.J. Human erythrocyte ghosts: Exploring the origins of multiexponential water diffusion in a model biological tissue with magnetic resonance. Magn. Reson. Med. 2002, 48, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Storas, T.; Bongers, A.; Power, C.; Bourne, R. Effect of formalin fixation on biexponential modeling of T1 and T2 Decay in prostate tissue. In Proceedings of the 21st Annual Meeting of the International Society for Magnetic Resonance in Medicine, Salt Lake City, UT, USA, 20–26 April 2013; p. 1792.
- Storas, T.H.; Gjesdal, K.I.; Gadmar, O.B.; Geitung, J.T.; Klow, N.E. Prostate magnetic resonance imaging: Multiexponential T2 decay in prostate tissue. J. Magn. Reson. Imaging 2008, 28, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Storas, T.H.; Gjesdal, K.I.; Gadmar, O.B.; Geitung, J.T.; Klow, N.E. Three-dimensional balanced steady state free precession imaging of the prostate: Flip angle dependency of the signal based on a two component T2-decay model. J. Magn. Reson. Imaging 2010, 31, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourne, R.; Panagiotaki, E. Limitations and Prospects for Diffusion-Weighted MRI of the Prostate. Diagnostics 2016, 6, 21. https://doi.org/10.3390/diagnostics6020021
Bourne R, Panagiotaki E. Limitations and Prospects for Diffusion-Weighted MRI of the Prostate. Diagnostics. 2016; 6(2):21. https://doi.org/10.3390/diagnostics6020021
Chicago/Turabian StyleBourne, Roger, and Eleftheria Panagiotaki. 2016. "Limitations and Prospects for Diffusion-Weighted MRI of the Prostate" Diagnostics 6, no. 2: 21. https://doi.org/10.3390/diagnostics6020021