Comparison of EWMA, MA, and MQ Under a Unified PBRTQC Framework for Thyroid and Coagulation Tests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Overview
2.2. Analytical Methods and Instruments
2.3. Quality Control
2.3.1. Analytical Quality Assurance
2.3.2. Quality Assurance of Data Processing and Analysis
2.4. Data Analysis
3. Results
3.1. Characteristics of the Simulated Error Data
3.2. Baseline Distributions of Test Parameters
3.3. Optimized PBRTQC Configurations and Comparative Performance of MA, MQ and EWMA
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| APTT | activated partial thromboplastin time |
| Box-Cox | Box-Cox transformation |
| EWMA | exponentially weighted moving average |
| FPR | false-positive rate |
| FT3 | free triiodothyronine |
| FT4 | free thyroxine |
| MA | moving average |
| ME_Score | model evaluation score |
| MNPed | median number of patients before error detection |
| MQ | moving quantile |
| PBRTQC | patient-based real-time quality control |
| PT | prothrombin time |
| SPC | statistical process control |
| TSH | thyroid-stimulating hormone |
| TT | thrombin time |
References
- Loh, T.P.; Bietenbeck, A.; Cervinski, M.A.; van Rossum, H.H.; Katayev, A.; Badrick, T. Recommendation for performance verification of patient-based real-time quality control. Clin. Chem. Lab. Med. 2020, 58, 1205–1213. [Google Scholar] [CrossRef]
- Ma, C.; Wang, X.; Wu, J.; Cheng, X.; Xia, L.; Xue, F.; Qiu, L. Real-world big-data studies in laboratory medicine: Current status, application, and future considerations. Clin. Biochem. 2020, 84, 21–30. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Fan, L.; Wang, X. Integrating Patient-Based Real-Time Quality Control (PBRTQC) in a New Field: Inter-Comparison between Biochemical Instrumentations with LDL-C. Diagnostics 2024, 14, 872. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Q.; Hu, Y.; Ding, W.; Xia, L.; Qiu, L. Application and insights on patient-based real-time quality control: Detecting undetected errors in internal quality control through daily antibody positivity rate analysis. Biochem. Medica 2025, 35, 020801. [Google Scholar] [CrossRef]
- van Rossum, H.H. Technical quality assurance and quality control for medical laboratories: A review and proposal of a new concept to obtain integrated and validated QA/QC plans. Crit. Rev. Clin. Lab. Sci. 2022, 59, 586–600. [Google Scholar] [CrossRef]
- Sewpersad, S.; Chale-Matsau, B.; Pillay, T.S. Real world feasibility of patient-based real time quality control (PBRTQC) using five analytes in a South African laboratory. Clin. Chim. Acta 2025, 565, 120006. [Google Scholar] [CrossRef]
- Loh, T.P.; Cervinski, M.A.; Katayev, A.; Bietenbeck, A.; van Rossum, H.; Badrick, T. Recommendations for laboratory informatics specifications needed for the application of patient-based real time quality control. Clin. Chim. Acta 2019, 495, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zhang, M.; Liu, Y.; Zheng, W.; Lim, C.Y.; Kim, S.; Loh, T.P.; Guo, W.; Zhou, R.; Badrick, T. Next-Generation Patient-Based Real-Time Quality Control Models. Ann. Lab. Med. 2024, 44, 385–391. [Google Scholar] [CrossRef]
- Hatanaka, N.; Yamamoto, Y.; Kuramura, E.; Nagai, N.; Shimada, M.; Kamioka, M. Effective detection of bias and variability using R-value statistics in the even-check method for real-time quality control. Clin. Chim. Acta 2026, 580, 120732. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X.; Zhao, Y. Double-module ratio as a patient-based real-time quality control index for small shift detection and comparative assay. Clin. Chim. Acta 2025, 570, 120214. [Google Scholar] [CrossRef] [PubMed]
- Çam, E.; Topcu, D.I.; Kural, A. Evaluation of current patient-based real-time quality control in clinical chemistry testing. Clin. Chim. Acta 2025, 567, 120115. [Google Scholar] [CrossRef]
- van Rossum, H.H. Moving average quality control: Principles, practical application and future perspectives. Clin. Chem. Lab. Med. 2019, 57, 773–782. [Google Scholar] [CrossRef]
- Leng, D.; Lyu, M.; Wei, L.; Shang, X.; Lou, X.; Zhang, M.; Zhou, Y.; Badrick, T.; Zhou, R. A large-scale survey on the knowledge, attitude, and practice of patient-based real-time quality control in China. Clin. Biochem. 2025, 141, 111044. [Google Scholar] [CrossRef]
- Dong, X.; Meng, X.; Li, B.; Wen, D.; Zeng, X. Comparative study on the quality control effectiveness of AI-PBRTQC and traditional PBRTQC model in identifying quality risks. Biochem. Medica 2024, 34, 020707. [Google Scholar] [CrossRef] [PubMed]
- Lorde, N.; Mahapatra, S.; Kalaria, T. Machine Learning for Patient-Based Real-Time Quality Control (PBRTQC), Analytical and Preanalytical Error Detection in Clinical Laboratory. Diagnostics 2024, 14, 1808. [Google Scholar] [CrossRef]
- Duan, X.; Wang, B.; Zhu, J.; Zhang, C.; Jiang, W.; Zhou, J.; Shao, W.; Zhao, Y.; Yu, Q.; Lei, L.; et al. Regression-Adjusted Real-Time Quality Control. Clin. Chem. 2021, 67, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wang, W.; Padoan, A.; Wang, Z.; Feng, X.; Han, Z.; Chen, C.; Liang, Y.; Wang, T.; Cui, W.; et al. Traceable machine learning real-time quality control based on patient data. Clin. Chem. Lab. Med. 2022, 60, 1998–2004. [Google Scholar] [CrossRef]
- Man, D.; Mu, R.; Zhang, K.; Zhou, Z.; Kang, H. Patient-based pre-classified real-time quality control (PCRTQC). Clin. Chim. Acta 2023, 549, 117562. [Google Scholar] [CrossRef]
- van Andel, E.; Henricks, L.M.; Giliams, A.P.M.; Noordervliet, R.M.; Mensink, W.J.; Filippo, D.; van Rossum, H.H.; Cobbaert, C.M.; Gillis, J.; Schenk, P.W.; et al. Moving average quality control of routine chemistry and hematology parameters-a toolbox for implementation. Clin. Chem. Lab. Med. 2022, 60, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Loh, T.P.; Badrick, T.; Lim, C.Y. Impact of combining data from multiple instruments on performance of patient-based real-time quality control. Biochem. Medica 2021, 31, 020705. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Zhao, Y. The effect of ratios upon improving patient-based real-time quality control (PBRTQC) performance. Clin. Chem. Lab. Med. 2024, 62, 646–656. [Google Scholar] [CrossRef]
- Ichihara, K.; Yamashita, T.; Kataoka, H.; Sato, S. Critical appraisal of two Box-Cox formulae for their utility in determining reference intervals by realistic simulation and extensive real-world data analyses. Comput. Methods Programs Biomed. 2023, 242, 107820. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zheng, W.; Xue, H.; Feng, M.; Zhang, Q.; Li, B.; Li, X.; Qi, H.; Liu, Y.; Badrick, T.; et al. Patient-based real-time quality control integrating neural networks and joint probability analysis. Clin. Chim. Acta 2025, 567, 120112. [Google Scholar] [CrossRef]
- İlhan Topcu, D.; Can Çubukçu, H. Optimization of patient-based real-time quality control based on the Youden index. Clin. Chim. Acta 2022, 534, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zhang, C.; Tan, X.; Pan, B.; Guo, W.; Wang, B. Exploring optimization algorithms for establishing patient-based real-time quality control models. Clin. Chim. Acta 2024, 554, 117774. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 2 December 2025).
- Wickham, H.; Bryan, J. readxl: Read Excel Files; R Package Version 1.4.5; CRAN: Stamford, CT, USA, 2025; Available online: https://CRAN.R-project.org/package=readxl (accessed on 2 December 2025).
- Schauberger, P.; Walker, A. openxlsx: Read, Write and Edit xlsx Files; R Package Version 4.2.8.1; CRAN: Stamford, CT, USA, 2025; Available online: https://CRAN.R-project.org/package=openxlsx (accessed on 2 December 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 2 December 2025).
- Grothendieck, G.; Zeileis, A. zoo: S3 Infrastructure for Regular and Irregular Time Series. J. Stat. Softw. 2005, 14, 1–27. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The forecast Package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef]
- Lim, C.Y.; Badrick, T.; Loh, T.P. Patient-based quality control for glucometers: Using the moving sum of positive patient results and moving average. Biochem. Medica 2020, 30, 020709. [Google Scholar] [CrossRef]
- Mi, M.; Gong, J.; Sun, W.; Xu, T.; Jiang, Q.; Zhang, D.; Han, A.; Liang, W. A new optimization combination used in the exponentially weighted moving average quality control of electrolyte programs. Clin. Chim. Acta 2025, 572, 120280. [Google Scholar] [CrossRef]
- Song, C.; Zhou, J.; Xia, J.; Ye, D.; Chen, Q.; Li, W. Optimization and validation of patient-based real-time quality control procedure using moving average and average of normals with multi-rules for TT3, TT4, FT3, FT3, and TSH on three analyzers. J. Clin. Lab. Anal. 2020, 34, e23314. [Google Scholar] [CrossRef]
- Cervinski, M.A.; Bietenbeck, A.; Katayev, A.; Loh, T.P.; van Rossum, H.H.; Badrick, T. Chapter Six-Advances in clinical chemistry patient-based real-time quality control (PBRTQC). In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 117, pp. 223–261. [Google Scholar]
- Çubukçu, H.C. Performance evaluation of internal quality control rules, EWMA, CUSUM, and the novel machine learning model. Turk. J. Biochem. 2021, 46, 661–670. [Google Scholar] [CrossRef]










| Data | Error Type | Gap-1 | Segment 1 Count | Gap 1–2 | Segment 2 Count | Gap 2–3 | Segment 3 Count | Gap 3–4 | Segment 4 Count | Gap 4–5 | Segment 5 Count | Gap 5- |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Training Set | error_decrease_10 | 64 | 114 | 438 | 111 | 451 | 140 | 431 | 183 | 386 | 185 | 997 |
| error_increase_10 | 64 | 114 | 438 | 111 | 451 | 140 | 431 | 183 | 386 | 185 | 997 | |
| error_decrease_30 | 86 | 216 | 348 | 213 | 354 | 104 | 483 | 146 | 409 | 207 | 934 | |
| error_increase_30 | 86 | 216 | 348 | 213 | 354 | 104 | 483 | 146 | 409 | 207 | 934 | |
| error_decrease_50 | 92 | 221 | 379 | 275 | 278 | 221 | 354 | 256 | 319 | 153 | 952 | |
| error_increase_50 | 92 | 221 | 379 | 275 | 278 | 221 | 354 | 256 | 319 | 153 | 952 | |
| error_decrease_70 | 11 | 261 | 319 | 126 | 443 | 148 | 436 | 223 | 361 | 205 | 967 | |
| error_increase_70 | 11 | 261 | 319 | 126 | 443 | 148 | 436 | 223 | 361 | 205 | 967 | |
| error_decrease_90 | 9 | 259 | 318 | 207 | 361 | 236 | 319 | 172 | 427 | 292 | 900 | |
| error_increase_90 | 9 | 259 | 318 | 207 | 361 | 236 | 319 | 172 | 427 | 292 | 900 | |
| Test Set | error_decrease_10 | 64 | 114 | 438 | 111 | 451 | 140 | 431 | 183 | 386 | 185 | 997 |
| error_increase_10 | 64 | 114 | 438 | 111 | 451 | 140 | 431 | 183 | 386 | 185 | 997 | |
| error_decrease_30 | 86 | 216 | 348 | 213 | 354 | 104 | 483 | 146 | 409 | 207 | 934 | |
| error_increase_30 | 86 | 216 | 348 | 213 | 354 | 104 | 483 | 146 | 409 | 207 | 934 | |
| error_decrease_50 | 92 | 221 | 379 | 275 | 278 | 221 | 354 | 256 | 319 | 153 | 952 | |
| error_increase_50 | 92 | 221 | 379 | 275 | 278 | 221 | 354 | 256 | 319 | 153 | 952 | |
| error_decrease_70 | 11 | 261 | 319 | 126 | 443 | 148 | 436 | 223 | 361 | 205 | 967 | |
| error_increase_70 | 11 | 261 | 319 | 126 | 443 | 148 | 436 | 223 | 361 | 205 | 967 | |
| error_decrease_90 | 9 | 259 | 318 | 207 | 361 | 236 | 319 | 172 | 427 | 292 | 900 | |
| error_increase_90 | 9 | 259 | 318 | 207 | 361 | 236 | 319 | 172 | 427 | 292 | 900 |
| Analytes | Lambda | Upper limit Multiplier (a) | Lower limit Multiplier (b) | Truncation Factor | Consecutive Alarm Points | Data | ME_Score | Sensitivity | False-Positive Rate | MNPed |
|---|---|---|---|---|---|---|---|---|---|---|
| TSH | 0.4 | 1.64 | 1.96 | 0 | 5 | Training Set | 0.9922 | 0.7677 | 0.0016 | 5 |
| Test Set | 0.9919 | 0.7673 | 0.0019 | 7 | ||||||
| FT3 | 0.9 | 1.96 | 3 | 0 | 5 | Training Set | 0.9940 | 0.9623 | 0.0008 | 0 |
| Test Set | 0.9941 | 0.9631 | 0.0007 | 0 | ||||||
| FT4 | 0.9 | 1.96 | 1.64 | 0.02 | 5 | Training Set | 0.9936 | 0.8622 | 0.0007 | 3 |
| Test Set | 0.9936 | 0.8559 | 0.0006 | 7 | ||||||
| PT | 0.9 | 3 | 3 | 0 | 5 | Training Set | 0.9933 | 1.0000 | 0.0017 | 0 |
| Test Set | 0.9933 | 1.0000 | 0.0017 | 0 | ||||||
| APTT | 0.9 | 3 | 3 | 0 | 5 | Training Set | 0.9932 | 1.0000 | 0.0018 | 0 |
| Test Set | 0.9932 | 1.0000 | 0.0018 | 0 | ||||||
| TT | 0.9 | 3 | 3 | 0 | 5 | Training Set | 0.9932 | 1.0000 | 0.0018 | 0 |
| Test Set | 0.9932 | 1.0000 | 0.0018 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhaxi, B.; Ma, C.; Chen, Q.; Hu, Y.; Ding, W.; Li, X.; Qiu, L. Comparison of EWMA, MA, and MQ Under a Unified PBRTQC Framework for Thyroid and Coagulation Tests. Diagnostics 2026, 16, 288. https://doi.org/10.3390/diagnostics16020288
Zhaxi B, Ma C, Chen Q, Hu Y, Ding W, Li X, Qiu L. Comparison of EWMA, MA, and MQ Under a Unified PBRTQC Framework for Thyroid and Coagulation Tests. Diagnostics. 2026; 16(2):288. https://doi.org/10.3390/diagnostics16020288
Chicago/Turabian StyleZhaxi, Banjiu, Chaochao Ma, Qian Chen, Yingying Hu, Wenyi Ding, Xiaoqi Li, and Ling Qiu. 2026. "Comparison of EWMA, MA, and MQ Under a Unified PBRTQC Framework for Thyroid and Coagulation Tests" Diagnostics 16, no. 2: 288. https://doi.org/10.3390/diagnostics16020288
APA StyleZhaxi, B., Ma, C., Chen, Q., Hu, Y., Ding, W., Li, X., & Qiu, L. (2026). Comparison of EWMA, MA, and MQ Under a Unified PBRTQC Framework for Thyroid and Coagulation Tests. Diagnostics, 16(2), 288. https://doi.org/10.3390/diagnostics16020288
