Real-World Integration of an Automated Tool for Intracranial Hemorrhage Detection in an Unselected Cohort of Emergency Department Patients—An External Validation Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of ICH
2.3. Image Acquisition
2.4. AI Software—RAPID ICH
2.5. Data Collection
2.6. Radiological Assessment
2.7. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Ground-Truth Labeling
3.3. Analysis of RAPID ICH Identifications and First-Year Radiology Resident ICH Identifications
3.4. Discrepancies Between RAPID ICH Identifications and Ground-Truth Labeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| NCCT | Non-contrast head computed tomography |
| ICH | Intracranial hemorrhage |
| AI | Artificial intelligence |
| FDA | Food and Drug Administration |
| CE | Conformité Européene |
| DL | Deep learning |
| ML | Machine learning |
| ED | Emergency Department |
| FN | False negative |
| FP | False positive |
| PPV | Positive predictive value |
| NPV | Negative predictive value |
| CI | Confidence interval |
| AUC | Area under the curve |
References
- Greenberg, S.M.; Ziai, W.C.; Cordonnier, C.; Dowlatshahi, D.; Francis, B.; Goldstein, J.N.; Hemphill, J.C., 3rd; Johnson, R.; Keigher, K.M.; Mack, W.J.; et al. 2022 Guideline for the Management of Patients with Spontaneous Intracerebral Hemorrhage: A Guideline from the American Heart Association/American Stroke Association. Stroke 2022, 53, e282–e361. [Google Scholar] [CrossRef]
- Puy, L.; Parry-Jones, A.R.; Sandset, E.C.; Dowlatshahi, D.; Ziai, W.; Cordonnier, C. Intracerebral haemorrhage. Nat. Rev. Dis. Primers 2023, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Scott, J.N.; Romano, C.C. On-call services provided by radiology residents in a university hospital environment. Can. Assoc. Radiol. J. 2003, 54, 104–108. [Google Scholar]
- Walls, J.; Hunter, N.; Brasher, P.M.; Ho, S.G. The DePICTORS Study: Discrepancies in preliminary interpretation of CT scans between on-call residents and staff. Emerg. Radiol. 2009, 16, 303–308. [Google Scholar] [CrossRef]
- Psychogios, M.N.; Maier, I.L.; Tsogkas, I.; Hesse, A.C.; Brehm, A.; Behme, D.; Schnieder, M.; Schregel, K.; Papageorgiou, I.; Liebeskind, D.S.; et al. One-Stop Management of 230 Consecutive Acute Stroke Patients: Report of Procedural Times and Clinical Outcome. J. Clin. Med. 2019, 8, 2185. [Google Scholar] [CrossRef]
- Strub, W.M.; Leach, J.L.; Tomsick, T.; Vagal, A. Overnight preliminary head CT interpretations provided by residents: Locations of misidentified intracranial hemorrhage. AJNR Am. J. Neuroradiol. 2007, 28, 1679–1682. [Google Scholar] [CrossRef]
- Fathi, M.; Eshraghi, R.; Behzad, S.; Tavasol, A.; Bahrami, A.; Tafazolimoghadam, A.; Bhatt, V.; Ghadimi, D.; Gholamrezanezhad, A. Potential strength and weakness of artificial intelligence integration in emergency radiology: A review of diagnostic utilizations and applications in patient care optimization. Emerg. Radiol. 2024, 31, 887–901. [Google Scholar] [CrossRef]
- Agarwal, S.; Wood, D.; Grzeda, M.; Suresh, C.; Din, M.; Cole, J.; Modat, M.; Booth, T.C. Systematic Review of Artificial Intelligence for Abnormality Detection in High-volume Neuroimaging and Subgroup Meta-analysis for Intracranial Hemorrhage Detection. Clin. Neuroradiol. 2023, 33, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Karamian, A.; Seifi, A. Diagnostic Accuracy of Deep Learning for Intracranial Hemorrhage Detection in Non-Contrast Brain CT Scans: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 2377. [Google Scholar] [CrossRef] [PubMed]
- Yeo, M.; Tahayori, B.; Kok, H.K.; Maingard, J.; Kutaiba, N.; Russell, J.; Thijs, V.; Jhamb, A.; Chandra, R.V.; Brooks, M.; et al. Review of deep learning algorithms for the automatic detection of intracranial hemorrhages on computed tomography head imaging. J. Neurointerv. Surg. 2021, 13, 369–378. [Google Scholar] [CrossRef]
- Heit, J.J.; Coelho, H.; Lima, F.O.; Granja, M.; Aghaebrahim, A.; Hanel, R.; Kwok, K.; Haerian, H.; Cereda, C.W.; Venkatasubramanian, C.; et al. Automated Cerebral Hemorrhage Detection Using RAPID. AJNR Am. J. Neuroradiol. 2021, 42, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Sreekrishnan, A.; Giurgiutiu, D.V.; Kitamura, F.; Martinelli, C.; Abdala, N.; Haerian, H.; Dehkharghani, S.; Kwok, K.; Yedavalli, V.; Heit, J.J. Decreasing false-positive detection of intracranial hemorrhage (ICH) using RAPID ICH 3. J. Stroke Cerebrovasc. Dis. 2023, 32, 107396. [Google Scholar] [CrossRef]
- Parizel, P.M.; Makkat, S.; Van Miert, E.; Van Goethem, J.W.; van den Hauwe, L.; De Schepper, A.M. Intracranial hemorrhage: Principles of CT and MRI interpretation. Eur. Radiol. 2001, 11, 1770–1783. [Google Scholar] [CrossRef] [PubMed]
- Suspected Intracranial Hemorrhage Identification: A Technical Overview of Rapid ICH and the Role of Machine Learning. Available online: https://www.rapidai.com/white-papers/intracranial-hemorrhage-identification-lp (accessed on 3 December 2025).
- iSchemaView’s-Traditional 510(k) RAPID ICH K221456. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf22/K221456.pdf (accessed on 3 December 2025).
- iSchemaView’s-Traditional 510(k) RAPID ICH K193087. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193087.pdf (accessed on 3 December 2025).
- Rapid ICH Receives New FDA Clearance with Highest Sensitivity and Specificity on the Market. Available online: https://www.rapidai.com/press-release/rapid-ich-fda-clearance (accessed on 3 December 2025).
- Eldaya, R.W.; Kansagra, A.P.; Zei, M.; Mason, E.; Holder, D.; Heitsch, L.; Vo, K.D.; Goyal, M.S. Performance of Automated RAPID Intracranial Hemorrhage Detection in Real-World Practice: A Single-Institution Experience. J. Comput. Assist. Tomogr. 2022, 46, 770–774. [Google Scholar] [CrossRef]
- Yedavalli, V.; Heit, J.J.; Dehkharghani, S.; Haerian, H.; McMenamy, J.; Honce, J.; Timpone, V.M.; Harnain, C.; Kesselman, A.; Filly, A.; et al. Performance of RAPID noncontrast CT stroke platform in large vessel occlusion and intracranial hemorrhage detection. Front. Neurol. 2023, 14, 1324088. [Google Scholar] [CrossRef]
- Bonney, P.A.; Briggs, A.; Briggs, R.G.; Jarvis, C.A.; Attenello, F.; Giannotta, S.L. Rate of Intracranial Hemorrhage After Minor Head Injury. Cureus 2020, 12, e10653. [Google Scholar] [CrossRef]
- Kau, T.; Ziurlys, M.; Taschwer, M.; Kloss-Brandstatter, A.; Grabner, G.; Deutschmann, H. FDA-approved deep learning software application versus radiologists with different levels of expertise: Detection of intracranial hemorrhage in a retrospective single-center study. Neuroradiology 2022, 64, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, J.; Kopp, M.; Ruettinger, T.; Heiss, R.; Wuest, W.; Amarteifio, P.; Stroebel, A.; Uder, M.; May, M.S. Diagnostic Accuracy and Performance Analysis of a Scanner-Integrated Artificial Intelligence Model for the Detection of Intracranial Hemorrhages in a Traumatology Emergency Department. Bioengineering 2023, 10, 1362. [Google Scholar] [CrossRef] [PubMed]
- Voter, A.F.; Meram, E.; Garrett, J.W.; Yu, J.J. Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Intracranial Hemorrhage. J. Am. Coll. Radiol. 2021, 18, 1143–1152. [Google Scholar] [CrossRef]
- Pettet, G.; West, J.; Robert, D.; Khetani, A.; Kumar, S.; Golla, S.; Lavis, R. A retrospective audit of an artificial intelligence software for the detection of intracranial haemorrhage used by a teleradiology company in the United Kingdom. BJR Open 2024, 6, tzae033. [Google Scholar] [CrossRef]
- Yalcin, A.; Ceylan, M.; Bayraktutan, O.F.; Sonkaya, A.R.; Yuce, I. Age and gender related prevalence of intracranial calcifications in CT imaging; data from 12,000 healthy subjects. J. Chem. Neuroanat. 2016, 78, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Zia, A.; Fletcher, C.; Bigwood, S.; Ratnakanthan, P.; Seah, J.; Lee, R.; Kavnoudias, H.; Law, M. Retrospective analysis and prospective validation of an AI-based software for intracranial haemorrhage detection at a high-volume trauma centre. Sci. Rep. 2022, 12, 19885. [Google Scholar] [CrossRef] [PubMed]
- Angkurawaranon, S.; Sanorsieng, N.; Unsrisong, K.; Inkeaw, P.; Sripan, P.; Khumrin, P.; Angkurawaranon, C.; Vaniyapong, T.; Chitapanarux, I. A comparison of performance between a deep learning model with residents for localization and classification of intracranial hemorrhage. Sci. Rep. 2023, 13, 9975. [Google Scholar] [CrossRef]
- Yun, T.J.; Choi, J.W.; Han, M.; Jung, W.S.; Choi, S.H.; Yoo, R.E.; Hwang, I.P. Deep learning based automatic detection algorithm for acute intracranial haemorrhage: A pivotal randomized clinical trial. npj Digit. Med. 2023, 6, 61. [Google Scholar] [CrossRef]
- Krag, C.H.; Muller, F.C.; Gandrup, K.L.; Plesner, L.L.; Sagar, M.V.; Andersen, M.B.; Nielsen, M.; Kruuse, C.; Boesen, M. Impact of spectrum bias on deep learning-based stroke MRI analysis. Eur. J. Radiol. 2025, 188, 112161. [Google Scholar] [CrossRef] [PubMed]


| RAPID ICH | First-Year Radiology Resident | |
|---|---|---|
| Sensitivity | 87.3% [95% CI: 76.5–94.4%] | 95.2% [95% CI: 86.7–99%] |
| Specificity | 74% [95% CI: 70.8–77.1%] | 90.8% [95% CI: 88.5–92.7%] |
| PPV | 21.3% [95% CI: 16.5–26.8%] | 45.5% [95% CI: 36.8–54.3%] |
| NPV | 98.6% [95% CI: 97.3–99.4%] | 99.6% [95% CI: 98.8–99.9%] |
| AUC | 0.81 [95% CI: 0.76–0.85] | 0.93 [95% CI: 0.90–0.96] |
| F1 score | 0.34 | 0.62 |
| Discrepancy Type | Suspected Cause of False-Positive RAPID ICH Identification (n, %) |
|---|---|
| False positive (n = 203) | Dural thickening—thick falx cerebri or/and thick tentorium cerebelli (74, 34.9%) |
| Choroid plexus calcifications (58, 28.6%) | |
| Post-surgical/tumor (24, 11.8%) | |
| Other calcified intracranial structures—basal ganglia or/and pineal gland (18, 8.9%) | |
| Streak or beam hardening artifacts (14, 6.9%) | |
| Basilar artery or/and middle cerebral artery (12, 5.9%) | |
| Venous sinus (6, 2.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Antulov, R.; Kusk, M.W.; Højrup Knudsen, G.; Eisner Lynggaard, S.; Lysdahlgaard, S.; Antonov, V. Real-World Integration of an Automated Tool for Intracranial Hemorrhage Detection in an Unselected Cohort of Emergency Department Patients—An External Validation Study. Diagnostics 2026, 16, 282. https://doi.org/10.3390/diagnostics16020282
Antulov R, Kusk MW, Højrup Knudsen G, Eisner Lynggaard S, Lysdahlgaard S, Antonov V. Real-World Integration of an Automated Tool for Intracranial Hemorrhage Detection in an Unselected Cohort of Emergency Department Patients—An External Validation Study. Diagnostics. 2026; 16(2):282. https://doi.org/10.3390/diagnostics16020282
Chicago/Turabian StyleAntulov, Ronald, Martin Weber Kusk, Gustav Højrup Knudsen, Sune Eisner Lynggaard, Simon Lysdahlgaard, and Vladimir Antonov. 2026. "Real-World Integration of an Automated Tool for Intracranial Hemorrhage Detection in an Unselected Cohort of Emergency Department Patients—An External Validation Study" Diagnostics 16, no. 2: 282. https://doi.org/10.3390/diagnostics16020282
APA StyleAntulov, R., Kusk, M. W., Højrup Knudsen, G., Eisner Lynggaard, S., Lysdahlgaard, S., & Antonov, V. (2026). Real-World Integration of an Automated Tool for Intracranial Hemorrhage Detection in an Unselected Cohort of Emergency Department Patients—An External Validation Study. Diagnostics, 16(2), 282. https://doi.org/10.3390/diagnostics16020282

