Improving Risk Stratification for Transient Ischaemic Attacks and Ischaemic Stroke in Patients with Coronary Artery Disease: A Combined Radiomics Analysis of Multimodal Adipose Tissue
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Cerebral Ischaemic Events
2.3. Clinical Data Evaluation
2.4. CTA Inspection Methods
2.5. Coronary CTA Data Analysis
2.6. Cervical CTA Evaluation
2.7. PVAT Analysis
2.8. Radiomics Feature Extraction
2.9. Statistical Analyses
3. Results
3.1. Baseline Characteristics of Patients
3.2. Characterisation of Coronary and Cervical CTA Parameters
3.3. Plaque Characteristics and Perivascular Adipose Tissue Correlation Analysis
3.4. Risk Analysis of Cerebral Ischaemic Events
3.5. Radiomic Feature Analysis of Perivascular Adipose Tissue
3.6. Assessment of Models for Cerebral Ischaemic Events Using Multimodal Clinical Imaging Lipid Radiomics Metrics
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CCA | common carotid artery |
| FAI | fat attenuation index |
| HRP | high-risk plaque |
| IS | ischaemic strokes |
| LAD | left anterior descending artery |
| LCX | left circumflex artery |
| LM | left main |
| ICA | internal carotid artery |
| PCAT | pericoronary adipose tissue |
| PVAT | perivascular adipose tissue |
| PFD | perivascular fat density |
| RCA | right coronary artery |
| TIA | transient ischaemic attacks |
| VA | vertebral artery |
References
- Petrkova, J.; Gavronova, A.; Sarvasova, K.; Bobek, M.; Dobias, M.; Petrek, M. Coronary heart disease: Leading cause of cardiovascular death from analysis of autopsies in a central european university centre. Eur. Heart J. 2024, 45, ehae666-1344. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The Role of Inflammation in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of Plaque Formation and Rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef]
- Analitis, A.; Katsouyanni, K.; Biggeri, A.; Baccini, M.; Forsberg, B.; Bisanti, L.; Kirchmayer, U.; Ballester, F.; Cadum, E.; Goodman, P.G.; et al. Effects of Cold Weather on Mortality: Results From 15 European Cities Within the PHEWE Project. Am. J. Epidemiol. 2008, 168, 1397–1408. [Google Scholar] [CrossRef]
- Kaltsatou, A.; Foster, J.; Ikäheimo, T.M. Editorial: Climate change and cardiovascular health. Front. Physiol. 2024, 15, 1497232. [Google Scholar] [CrossRef] [PubMed]
- Alahmad, B.; Khraishah, H.; Royé, D.; Vicedo-Cabrera, A.M.; Guo, Y.; Papatheodorou, S.I.; Achilleos, S.; Acquaotta, F.; Armstrong, B.; Bell, M.L.; et al. Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries. Circulation 2023, 147, 35–46. [Google Scholar] [CrossRef]
- Charalambos, A.; Dimitrios, T.; Marija, V.; Ingrid, F.; Dirk, J.D.; Etto, C.E.; Olivia, M.; Alexios, S.A.; Evangelos, O.; Teresa, P.; et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur. Heart J. 2023, 44, 3827–3844. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Antonopoulos, A.S.; Schottlander, D.; Marwan, M.; Mathers, C.; Tomlins, P.; Siddique, M.; Klüner, L.V.; Shirodaria, C.; Mavrogiannis, M.C.; et al. Standardized measurement of coronary inflammation using cardiovascular computed tomography: Integration in clinical care as a prognostic medical device. Cardiovasc. Res. 2021, 117, 2677–2690. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.T.; Dadaeva, V.A.; Korolev, A.I.; Drapkina, O.M. Perivascular adipose tissue in the pathogenesis of cardiovascular disease. Russ. J. Cardiol. 2021, 26, 4567. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.; Kampoli, A.-M.; Akoumianakis, I.; et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017, 9, eaal2658. [Google Scholar] [CrossRef]
- Kajetan, G.; Jolien, G.; Jacek, K.; Andrew, L.; Leandro, S.; Piotr, J.S.; Marc, R.D.; Nitesh, N.; Michelle, C.W.; Daniel, B.; et al. Phenotyping atherosclerotic plaque and perivascular adipose tissue: Signalling pathways and clinical biomarkers in atherosclerosis. Nat. Rev. Cardiol. 2025, 22, 443–455. [Google Scholar] [CrossRef]
- Kenneth, C.; Elizabeth, W.; Alexios, S.A.; Edward, N.; Lucrezia della, V.; Henry, W.W.; Parijat, P.; Peter, H.T.; Stefan, N.; Keith, M.C.; et al. Abstract 18320: Vessel-Specific Coronary Inflammation Quantified Using Perivascular Fat Attenuation Index Score on CCTA Detects the Vulnerable Coronary Artery and Predicts Acute Plaque Events. Circulation 2023, 148, A18320. [Google Scholar] [CrossRef]
- Tomoyo, S.; Masahiro, H.; Yoshihisa, K.; Tomoki, H.; Ik–Kyung, J.; Hirohiko, H.; Yoshinori, K.; Masahiro, H.; Hiroaki, O.; Yohei, S.; et al. P6393Differences in coronary inflammation between the culprit and non-culprit vessels assessed by fat attenuation index on computed tomography in patients with acute coronary syndromes. Eur. Heart J. 2019, 40, ehz746-0989. [Google Scholar] [CrossRef]
- Shang, J.; Ma, S.; Guo, Y.; Yang, L.; Zhang, Q.; Xie, F.; Ma, Y.; Ma, Q.; Dang, Y.; Zhou, K.; et al. Prediction of acute coronary syndrome within 3 years using radiomics signature of pericoronary adipose tissue based on coronary computed tomography angiography. Eur. Radiol. 2021, 32, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Huo, R.; Qiao, H.; Ning, Z.; Xu, H.; Yang, D.; Shen, R.; Xu, N.; Han, H.; Chen, S.; et al. Carotid artery perivascular adipose tissue on magnetic resonance imaging: A potential indicator for carotid vulnerable atherosclerotic plaque. Quant. Imaging Med. Surg. 2023, 13, 7695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, X.; Gu, H.; Kang, B.; Guo, N.; Wang, X. Identification of high-risk carotid plaque by using carotid perivascular fat density on computed tomography angiography. Eur. J. Radiol. 2022, 150, 110269. [Google Scholar] [CrossRef]
- Mendelson, S.J.; Prabhakaran, S. Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic Stroke: A Review. Jama 2021, 325, 1088–1098. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Ito, M.K.; Maki, K.C.; Orringer, C.E.; Bays, H.E.; Jones, P.H.; McKenney, J.M.; Grundy, S.M.; Gill, E.A.; Wild, R.A.; et al. National lipid association recommendations for patient-centered management of dyslipidemia: Part 1—Full report. J. Clin. Lipidol. 2015, 9, 129–169. [Google Scholar] [CrossRef]
- Aravindakshan, P.T.; Worthy, C.C.; Huefner, E.A.; Sayed, M.S.; Hurston, J.S.; DuBose, C.W.; Jagannathan, R.; Sumner, A.E. Abstract P188: The Triglyceride-Glucose Index in Africans is an Important Marker of Both an Atherogenic Lipid Profile and Insulin Resistance. Circulation 2024, 149, AP188. [Google Scholar] [CrossRef]
- Baradaran, H.; Gupta, A. Carotid Vessel Wall Imaging on CTA. AJNR Am. J. Neuroradiol. 2020, 41, 380–386. [Google Scholar] [CrossRef]
- Lan, Y.; Shang, J.; Ma, Y.; Zhen, Y.; Dang, Y.; Ren, D.; Liu, T.; Ju, R.; Guo, N.; Wang, X.; et al. A new predictor of coronary artery disease in acute ischemic stroke or transient ischemic attack patients: Pericarotid fat density. Eur. Radiol. 2024, 34, 1667–1676. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Marwan, M.; Desai, M.Y.; Mancio, J.; Alashi, A.; Hutt Centeno, E.; Thomas, S.; Herdman, L.; Kotanidis, C.P.; Thomas, K.E.; et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018, 392, 929–939. [Google Scholar] [CrossRef]
- Sun, J.T.; Sheng, X.C.; Feng, Q.; Yin, Y.; Li, Z.; Ding, S.; Pu, J. Pericoronary Fat Attenuation Index Is Associated With Vulnerable Plaque Components and Local Immune-Inflammatory Activation in Patients With Non-ST Elevation Acute Coronary Syndrome. J. Am. Heart Assoc. 2022, 11, e022879. [Google Scholar] [CrossRef]
- Baradaran, H.; Myneni, P.K.; Patel, P.; Askin, G.; Gialdini, G.; Al-Dasuqi, K.; Kamel, H.; Gupta, A. Association Between Carotid Artery Perivascular Fat Density and Cerebrovascular Ischemic Events. J. Am. Heart Assoc. 2018, 7, e010383. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Kinoshita, D.; Yuki, H.; Niida, T.; Sugiyama, T.; Yonetsu, T.; Araki, M.; Nakajima, A.; Seegers, L.M.; Dey, D.; et al. Higher Noncalcified Plaque Volume Is Associated With Increased Plaque Vulnerability and Vascular Inflammation. Circ. Cardiovasc. Imaging 2024, 17, e015769. [Google Scholar] [CrossRef]
- Yi, T.; Huang, S.; Li, D.; She, Y.; Tan, K.; Wang, Y. The association of coronary non-calcified plaque loading based on coronary computed tomography angiogram and adverse cardiovascular events in patients with unstable coronary heart disease-a retrospective cohort study. J. Thorac. Dis. 2022, 14, 3438–3444. [Google Scholar] [CrossRef] [PubMed]
- Gargani, L.; Masini, G.; Baldini, M.; Napoli, V.; Orlandi, G.; Lucchi, G.; Totaro, P.; D’amelio, C.; Galeotti, G.G.; Ghicopulos, I.; et al. Imaging signs of vulnerability, neurological events and cognitive impairment in asymptomatic carotid artery stenosis: Results from the Carotid Artery Multi-modality imaging Prognostic (CAMP) study. Eur. Heart J. 2023, 44, ehad655-2066. [Google Scholar] [CrossRef]
- Bos, D.; Arshi, B.; van den Bouwhuijsen, Q.J.A.; Ikram, M.K.; Selwaness, M.; Vernooij, M.W.; Kavousi, M.; van der Lugt, A. Atherosclerotic Carotid Plaque Composition and Incident Stroke and Coronary Events. J. Am. Coll. Cardiol. 2021, 77, 1426–1435. [Google Scholar] [CrossRef]
- Murgia, A.; Erta, M.; Suri, J.S.; Gupta, A.; Wintermark, M.; Saba, L. CT imaging features of carotid artery plaque vulnerability. Ann. Transl. Med. 2020, 8, 1261. [Google Scholar] [CrossRef] [PubMed]
- Saba, L.; Francone, M.; Bassareo, P.P.; Lai, L.; Sanfilippo, R.; Montisci, R.; Suri, J.S.; De Cecco, C.N.; Faa, G. CT Attenuation Analysis of Carotid Intraplaque Hemorrhage. AJNR Am. J. Neuroradiol. 2018, 39, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Carella, M.C.; Carulli, E.; Loizzi, F.; Quarta, S.; Freda, A.; Basile, P.; Amati, F.; Dicorato, M.M.; Latorre, M.D.; Naccarati, M.L.; et al. Intersections and Challenges in the Management of Acute Coronary Syndrome and Stroke: Pathophysiology, Treatment Dilemmas, and Integrated Prevention Strategies. J. Clin. Med. 2025, 14, 2354. [Google Scholar] [CrossRef]
- Zhao, T.; Lin, G.; Chen, W.; Wu, J.; Hu, W.; Xu, L.; Chen, Y.; Jing, Y.; Shen, L.; Xia, S. Predicting symptomatic carotid artery plaques with radiomics-based carotid perivascular adipose tissue characteristics: A multicenter, multiclassifier study. BMC Med. Imaging 2025, 25, 337. [Google Scholar] [CrossRef]
- Nie, J.Y.; Chen, W.X.; Zhu, Z.; Zhang, M.Y.; Zheng, Y.J.; Wu, Q.D. Initial experience with radiomics of carotid perivascular adipose tissue in identifying symptomatic plaque. Front. Neurol. 2024, 15, 1340202. [Google Scholar] [CrossRef] [PubMed]
- Le, E.P.; Wong, M.Y.; Rundo, L.; Tarkin, J.M.; Evans, N.R.; Weir-McCall, J.R.; Chowdhury, M.M.; Coughlin, P.A.; Pavey, H.; Zaccagna, F.; et al. Using machine learning to predict carotid artery symptoms from CT angiography: A radiomics and deep learning approach. Eur. J. Radiol. Open 2024, 13, 100594. [Google Scholar] [CrossRef] [PubMed]






| Patients | Training Set (n = 241) | Validation Set (n = 85) | ||||
|---|---|---|---|---|---|---|
| Cerebral Ischaemic Events (n = 107) | No Cerebral Ischaemic Events (n = 134) | p | Cerebral Ischaemic Events (n = 33) | No Cerebral Ischaemic Events (n = 52) | p | |
| Age (years) | 63.10 (9.14) | 63.50 (9.73) | 0.695 | 63.00 (7.88) | 63.50 (8.72) | 0.773 |
| Male | 72 (67.3%) | 77 (57.5%) | 0.497 | 23 (69.7%) | 31 (59.6%) | 0.478 |
| BMI (kg/m2) | 25.00 (3.40) | 24.80 (3.18) | 0.683 | 25.00 (3.51) | 24.50 (3.11) | 0.517 |
| Hypertension | 78 (72.9%) | 80 (59.7%) | 0.045 | 24 (72.7%) | 32 (61.5%) | 0.409 |
| Diabetes mellitus | 41 (38.3%) | 41 (30.6%) | 0.263 | 15 (45.5%) | 17 (32.7%) | 0.340 |
| Smoking | 26 (24.3%) | 38 (28.4%) | 0.574 | 11 (33.3%) | 14 (26.9%) | 0.698 |
| Hyperlipidaemia | 65 (60.7%) | 74 (55.2%) | 0.465 | 17 (51.5%) | 30 (57.7%) | 0.738 |
| Heart rate (times/minute) | 80.00 [70.00;86.00] | 78.00 [68.20;85.00] | 0.221 | 74.70 (12.40) | 77.40 (10.90) | 0.296 |
| Blood glucose (mmol/L) | 6.55 (2.12) | 6.20 (2.15) | 0.208 | 6.33 (1.38) | 6.50 (2.54) | 0.691 |
| Total cholesterol (mmol/L) | 4.60 (1.23) | 4.77 (1.24) | 0.288 | 4.35 (1.03) | 4.65 (1.29) | 0.226 |
| Triglycerides (mmol/L) | 1.42 [1.08;1.91] | 1.43 [1.11;2.03] | 0.637 | 1.62 [0.98;1.94] | 1.38 [0.99;2.01] | 0.878 |
| TyG Index | 8.87 [8.47;9.18] | 8.81 [8.48;9.18] | 0.687 | 8.87 (0.63) | 8.85 (0.61) | 0.837 |
| Pharmacotherapy (Hypertension) | 52 (48.6%) | 55 (41.0%) | 0.297 | 17 (51.5%) | 20 (38.5%) | 0.338 |
| No Cerebral Ischaemic Events (n = 134) | Cerebral Ischaemic Events (n = 107) | p | |
|---|---|---|---|
| LM + LAD total plaques | 52.6 [11.6;122] | 71.8 [25.5;146] | 0.107 |
| LM + LAD calcified plaque | 14.6 [0.29;75.1] | 17.0 [1.33;76.2] | 0.561 |
| LM + LAD non-calcified plaque | 19.6 [3.51;54.5] | 32.6 [11.8;62.9] | 0.025 |
| LM + LAD lipid | 0.92 [0.00;5.77] | 2.48 [0.32;8.04] | 0.007 |
| LM + LAD fibrous | 9.16 [2.78;22.5] | 13.5 [4.69;28.1] | 0.092 |
| LM + LAD fibro-lipid | 6.08 [0.20;21.4] | 12.7 [1.34;27.1] | 0.013 |
| LCX total plaques | 0.00 [0.00;24.8] | 0.00 [0.00;21.4] | 0.609 |
| LCX calcified plaque | 0.00 [0.00;10.3] | 0.00 [0.00;12.3] | 0.506 |
| LCX non-calcified plaque | 0.00 [0.00;8.14] | 0.00 [0.00;9.78] | 0.708 |
| LCX lipid | 0.00 [0.00;0.09] | 0.00 [0.00;0.00] | 0.762 |
| LCX fibrous | 0.00 [0.00;5.00] | 0.00 [0.00;4.75] | 0.677 |
| LCX fibro-lipid | 0.00 [0.00;0.88] | 0.00 [0.00;0.72] | 0.240 |
| RCA total plaques | 23.7 [0.00;156] | 38.5 [0.00;151] | 0.493 |
| RCA calcified plaque | 5.06 [0.00;58.9] | 8.12 [0.00;60.1] | 0.711 |
| RCA non-calcified plaque | 10.4 [0.00;67.0] | 16.1 [0.00;85.1] | 0.471 |
| RCA lipid | 0.40 [0.00;6.56] | 0.30 [0.00;8.98] | 0.738 |
| RCA fibrous | 5.86 [0.00;37.3] | 6.68 [0.00;33.7] | 0.447 |
| RCA fibro-lipid | 3.39 [0.00;20.9] | 3.59 [0.00;35.1] | 0.511 |
| LAD FAI (HU) | −80.73 (9.10) | −78.80 (8.11) | 0.084 |
| LCX FAI (HU) | −75.98 (9.05) | −73.85 (10.0) | 0.088 |
| RCA FAI (HU) | −83.34 (10.3) | −79.70 (10.6) | 0.008 |
| No Cerebral Ischaemic Events (n = 134) | Cerebral Ischaemic Events (n = 107) | p | |
|---|---|---|---|
| L.CCA calcified plaque | 3.00 [0.00;53.3] | 6.69 [0.00;58.4] | 0.411 |
| L.CCA non-calcified plaque | 105 [0.00;349] | 95.4 [0.00;396] | 0.590 |
| L.CCA fibrous | 36.2 [0.00;112] | 43.5 [0.00;125] | 0.504 |
| L.CCA fibro-lipid | 42.6 [0.00;163] | 32.7 [0.00;193] | 0.604 |
| L.CCA lipid | 1.48 [0.00;25.3] | 0.46 [0.00;23.7] | 0.680 |
| L.CCA total plaques | 129 [0.00;403] | 143 [0.00;457] | 0.521 |
| L.ICA calcified plaque | 22.3 [0.37;110] | 44.0 [2.08;158] | 0.153 |
| L.ICA non-calcified plaque | 10.2 [0.40;76.4] | 19.2 [4.03;157] | 0.069 |
| L.ICA fibrous | 10.1 [0.38;43.1] | 16.8 [4.03;98.2] | 0.064 |
| L.ICA fibro-lipid | 0.06 [0.00;24.0] | 0.54 [0.00;47.0] | 0.174 |
| L.ICA total plaques | 65.7 [4.11;312] | 92.5 [8.43;439] | 0.167 |
| R.CCA calcified plaque | 0.00 [0.00;14.8] | 3.72 [0.00;86.6] | 0.007 |
| R.CCA non-calcified plaque | 4.65 [0.00;147] | 60.8 [0.00;189] | 0.048 |
| R.CCA fibrous | 3.20 [0.00;54.1] | 33.0 [0.00;78.8] | 0.016 |
| R.CCA fibro-lipid | 0.20 [0.00;77.4] | 13.8 [0.00;104] | 0.054 |
| R.CCA lipid | 0.00 [0.00;4.97] | 0.01 [0.00;9.66] | 0.168 |
| R.CCA total plaques | 8.12 [0.00;185] | 104 [0.00;254] | 0.035 |
| R.ICA calcified plaque | 30.2 [0.00;124] | 40.0 [2.70;203] | 0.079 |
| R.ICA non-calcified plaque | 8.98 [0.00;110] | 17.6 [3.28;200] | 0.068 |
| R.ICA fibrous | 8.34 [0.00;72.8] | 16.8 [3.28;85.8] | 0.053 |
| R.ICA fibro lipid | 0.00 [0.00;32.9] | 0.29 [0.00;72.4] | 0.073 |
| R.ICA total plaques | 70.5 [0.00;325] | 106 [13.4;350] | 0.124 |
| PFD (HU) | −70.77 [−79.38;−64.94] | −68.11 [−74.33;−61.13] | 0.017 |
| Model | AUC (95% CI) | SEN (95% CI) | SPE (95% CI) | PLR (95% CI) | NLR (95% CI) | PPV (95% CI) | NPV (95% CI) |
|---|---|---|---|---|---|---|---|
| Model 1 | 0.556 (0.454–0.658) | 0.727 (0.539–0.879) | 0.385 (0.208–0.538) | 1.182 (0.876–1.595) | 0.709 (0.584–0.857) | 0.429 (0.255–0.608) | 0.690 (0.549–0.813) |
| Model 2 | 0.754 (0.652–0.857) | 0.909 (0.606–1.000) | 0.519 (0.288–0.654) | 1.891 (1.398–2.559) | 0.175 (0.000–0.602) | 0.545 (0.364–0.719) | 0.900 (0.790–0.968) |
| Model 3 | 0.734 (0.624–0.843) | 0.606 (0.333–0.788) | 0.808 (0.481–0.923) | 3.152 (1.693–5.866) | 0.488 (0.441–0.722) | 0.667 (0.482–0.820) | 0.764 (0.632–0.875) |
| Model 4 | 0.759 (0.657–0.861) | 0.848 (0.545–0.970) | 0.615 (0.308–0.750) | 2.206 (1.520–3.203) | 0.246 (0.098–0.606) | 0.583 (0.392–0.745) | 0.865 (0.742–0.944) |
| Model 5 | 0.831 (0.741–0.921) | 0.788 (0.485–0.909) | 0.827 (0.385–0.923) | 4.552 (2.449–8.462) | 0.257 (0.236–0.558) | 0.743 (0.577–0.889) | 0.860 (0.742–0.944) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, N.; Wang, S.; Pan, H.; Zhao, M.; Sun, J.; Wang, W.; Zhang, T. Improving Risk Stratification for Transient Ischaemic Attacks and Ischaemic Stroke in Patients with Coronary Artery Disease: A Combined Radiomics Analysis of Multimodal Adipose Tissue. Diagnostics 2026, 16, 118. https://doi.org/10.3390/diagnostics16010118
Li N, Wang S, Pan H, Zhao M, Sun J, Wang W, Zhang T. Improving Risk Stratification for Transient Ischaemic Attacks and Ischaemic Stroke in Patients with Coronary Artery Disease: A Combined Radiomics Analysis of Multimodal Adipose Tissue. Diagnostics. 2026; 16(1):118. https://doi.org/10.3390/diagnostics16010118
Chicago/Turabian StyleLi, Na, Shuting Wang, Hong Pan, Min Zhao, Jiali Sun, Wei Wang, and Tong Zhang. 2026. "Improving Risk Stratification for Transient Ischaemic Attacks and Ischaemic Stroke in Patients with Coronary Artery Disease: A Combined Radiomics Analysis of Multimodal Adipose Tissue" Diagnostics 16, no. 1: 118. https://doi.org/10.3390/diagnostics16010118
APA StyleLi, N., Wang, S., Pan, H., Zhao, M., Sun, J., Wang, W., & Zhang, T. (2026). Improving Risk Stratification for Transient Ischaemic Attacks and Ischaemic Stroke in Patients with Coronary Artery Disease: A Combined Radiomics Analysis of Multimodal Adipose Tissue. Diagnostics, 16(1), 118. https://doi.org/10.3390/diagnostics16010118

