Advancing Cervical Cancer Prevention Equity: Innovations in Self-Sampling and Digital Health Technologies Across Healthcare Settings
Abstract
:1. Introduction
1.1. Prevention Strategies
1.1.1. Primary Prevention
1.1.2. Secondary Prevention
1.1.3. Emerging Technologies
2. Understanding HPV and Cervical Carcinogenesis: A Foundation for Prevention
2.1. HPV Vaccination
2.2. Evolution of Cervical Cancer Screening Methods
2.3. Innovative Vaccination and Screening Approaches in High-Income Countries
2.4. Prevention Strategies in Middle- and Low-Income Countries
3. Implementation Barriers and Economic Impact of Cervical Screening in LMICs
Innovative Implementation Strategies in LMICs
4. Enhancing Screening Participation Through Self-Sampling: Evidence and Implementation
5. Evolution and Performance of Self-Sampling Technologies in Cervical Screening
Sampling Approaches and Devices | Other Features for Evaluation | ||||||
---|---|---|---|---|---|---|---|
Device Type | Device Name (Company Name) | Key Features and Materials | Sensitivity and Specificity for HPV DNA | Sensitivity and Specificity for CIN2+ | Concordance Between Self and Conventional Samples | Cost, Ease of Use and Comfort | Innovation and Performance Comparison |
Vaginal Swabs | FLOQSwab® Company: COPAN Group Headquarters: Brescia, Lombardy, Italy US Operations: Murrieta, CA, USA Note: COPAN is a global company with manufacturing in Italy and the USA. Introduced in 2003. | Nylon strands are flocked onto the swab tip using electrostatic force, which allows much greater absorption and release of cells by capillary action. | Sensitivity: 93.8% dry samples, 96.3% wet samples. Specificity: 87.5% dry samples, 97.5% wet samples [112]. | Sensitivity: 89% for CIN2+ [113], 91–93% for CIN3+ [118]. | 94–99% for HPV16/18 [116]. | Easy to use [114,115,117]; not uncomfortable to use [118]. | Innovative flocked surface for efficient cervicovaginal cell collection. VERA study [118] demonstrated its effectiveness for HPV testing and cervical cancer screening. |
Qvintip (Aprovix) Company: Aprovix AB City: Solna Country: Sweden Introduced in the 2000s. Commercialised with distribution in Europe, China and Russia. | Swab device with a 5 cm, 7 mm thick plastic head with grooves for cervicovaginal cell collection. Inserted, removed, and head transferred into a separate tube. | Sensitivity; 83.1% [119]; Specificity 51.3% [119] | 81.8% (HPV test); 77.1% (Cytology) [119] | Easy to use [116,118,120,121]; comfortable to use [116] | Lower sensitivity than dry flocked swabs and wet Dacron swabs [112]. | ||
HerSwab (Eve Medical) Company: Eve Medical Inc. City: Toronto, ON, Country: Canada Introduced 2010–2020, commercialised in Canada. | Curved tip with a soft, flexible design for gentle collection and an ergonomic handle for improved control. | Sensitivity: 75.0% [119]; specificity: 47.7% [119]. | Sensitivity: 87.6% [122]; specificity: 58.1% [122]. | 74.8% (HPV test); 74.5% (cytology) [119]. | 3–8 Canadian dollars per device (if used within screening programmes); easy to use [112,123]; comfortable to use [123]. (Studies were in relation to STI self- sampling, however still relevant to HPV self sampling.) | Lower sensitivity than dry flocked swabs and wet Dacron swabs [112]. Dry samples should be processed as soon as possible (within 5–7 days), which may be a consideration if used in remote areas [124]. | |
Brush | Evalyn® Brush (Rovers Medical Devices) Company: Rovers Medical Devices B.V. City: Oss, North Brabant (NB) Country: The Netherlands Introduced in 2012. Commercialised in the UK, USA, Europe, Asia and Pacific. | Featuring flexible LDPE bristles, an ergonomic inserter with stopper wings for correct depth and a plunger mechanism for bristle extension and retraction. The user performs five rotations, each indicated by audible “clicks,” after which the sample is retracted into a protective casing. | 96–99% for CIN3+ [125]. | 96.8% hrHPV; concordance between self-samples and physician-taken samples [126,127]. | More expensive than Vina Brush; very easy; highly accepted; one study found Evalyn®Brush to be slightly more comfortable than FLOQSwabs™ [118]. | Retractable device for sample preservation. Large clinical study in Dutch population (VERA Study); promising device for remote areas, due to analytical stability at room temperature and humidity for extended periods [118]. | |
US2018078242A1 This is a US patent application number, not a company Invention filed in 2018. Not commercialised. | - A sampling tool connected to a plunger syringe via a flexible tube - Automatic rotation mechanism | Advantages: automatic rotation mechanism. The sampling brush is not exposed to vulva during insertion. Disadvantages: bulky as it is made from two components, which limits its portability compared to the other devices [117]. | |||||
Lavage | Delphi Screener (Rovers Medical Devices) Company: Rovers Medical Devices B.V. City: Oss, North Brabant (NB) Country: The Netherlands Introduced in 2006. Commercialised in the UK, USA, Europe, Asia and Pacific. | The device is pre-filled with 3–5 mL saline solution. After insertion, the user will press the button plunger, compressing the spring while injecting the saline solution into the cervix. After three seconds, the user will release the button plunger, causing the spring to recoil while aspirating the saline solution back into the device. | Most efficient in collecting shed cells as it does not scrape the cervix directly, hence its utility is more towards HPV DNA molecular testing rather than cytology [117,128]. | ||||
Sponge | Kato device Company: Taisei Kako Co., Ltd. City: Ibaraki, Osaka Country: Japan Introduced 2012–2015. Commercialised in Japan. | Soft sponge for gentle cervical sampling and a plastic handle for easy manipulation. | 100% agreement with gynaecologist sampling but only 32.3% agreement for presence of endocervical cells [117,129,130]. | For Pap specimen adequacy, Kato device sampling showed 100% agreement with gynaecologist sampling. Less effective for collecting EC/TZ (endocervical cells/transformation zone) cells than gynaecologist sampling: 68% of samples from Kato device were absent of EC/TZ cells, but present in gynaecologist sampling [117,129,130]. | |||
The Teal Wand™ Company: Teal Health, Inc. City: San Francisco, CA Country: USA Introduced in 2024. Not yet commercialised. Received FDA Breakthrough Device designation in 2024. | Retractable device made with soft material for cell collection. It features a marker to indicate proper insertion depth. | Clinical trial (SELF-CERV) ongoing [131,132]. | Very easy to use [131,132]. | Innovative retractable design for sample preservation. | |||
Non-woven | V-Veil UP2™ Company: V-Veil-Up Production SRL City: Calinesti, Arges Country: Romania Introduced in 2019. Commercialised in Europe. | Includes a 75 mm pocket made of non-woven hydrophilic polyethylene to harvest cells, proteins and DNA/RNA from the cervix, and a 120 mm applicator made of low-density polyethylene (LD-PE). | Sensitivity: 95.9% [132]. Specificity: 88.2% [132] | Good agreement. | Low cost; very easy to use; highly acceptable. | Innovative pocket design pocket design, which effectively retains genital secretions. Studies show it offers 1.67- and 1.57-fold detection rates of cervical HPV DNA and high-risk (HR)-HPV DNA by self-sampling with veil compared to clinician-collected cervical secretions by swab. High acceptability (≥96%), feasibility and satisfaction. Pitched as cost-effective alternative for LMICs [132]. | |
Cannula/ Thin tube | Mia by XytoTest Company: MEL-MONT Medical, Inc. City: Doral, FL Country: USA Introduced 2015–2017. Commercialised (Colombia, Mexico, Europe), CE marked the IVD directive 98/97/EC since 2017. | Features a highly adhesive, hypoallergenic USP medical-grade IV elastomer coating on its cell collection area for immediate cell collection upon insertion. Diameter of less than 8 mm and length of 14 cm. | Sensitivity: 95.7% [133,134]. Specificity: 91.7% [133,134]. | k 0.86 (HPV); k 0.41 (Pap smear) [133,134]. | Easy to use; highly acceptable [133,134]. | Enables both HPV DNA and mRNA E6/E7 testing for triaging positive samples prior to referral for colposcopy (proteins associated with the progression of HPV infection to cervical cancer). Provides risk stratification. Suitable for LMICs. | |
Iune HPV Test Cannula Manufacturer: QUIROSA, S.A. City: Artés, Cataluña Country: Spain Commercialised in Europe. | A “cannula” or thin tube-like device made of soft material. | Sensitivity: 90.9% [140]. Specificity: 84.6% [140] | k 0.73 (HPV) [140]. | Moderate agreement with clinician-collected samples for HPV detection. Lower performance for cytology compared to FLOQSwab and Evalyn Brush [140]. | |||
Tampon | WO2002041785A1 This is a World Intellectual Property Organization (WIPO) patent publication number, not a company. | Cardboard applicator, organic/inorganic tampon. Handle adapted to allow it to serve as a screw-cap lid, once the device is inserted into a conical tube containing fixative or preservative. Overall length of the device is 15 cm. Length of the sheath is 13 cm when fully extended. Maximum width 1.5 cm. | |||||
Daye Diagnostic Tampon Company: Daye (Tampon Innovations Ltd.) City: London (Southwark) Country: UK Introduced in 2024. Commercialised in the US and UK. | The kit includes a tampon made of organic cotton and a Bio LDPE applicator, with the tampon measuring 4.75 cm in length and the applicator extending to 12.5 cm. Users are instructed to leave the tampon in place for at least 20 min to ensure optimal sample collection. | Sensitivity: 82.9 (72.4–89.9) [135]. Specificity: 91.6 (86.4–94.9) [135]. | 69 GBP; very easy; highly accepted [135]. | Non-invasive; easy to use; familiar technology to many women and those assigned female at birth. | |||
Pad | Q-Pad™ Company: Qvin (formerly Qurasense) City: Menlo Park, CA Country: USA Introduced 2022–2024. Commercialised in the USA. | Modified menstrual pad designed for passive high-risk HPV (hrHPV) sample collection. It includes a removable collection strip that processes specimens as dried blood spots. | Sensitivity: 82.8–97.7% [137]. Specificity: 50–98.0% [137]. | 100% [136]. | 29 USD. | Familiar technology to many women and those assigned female at birth. Self-collection only possible during menstruation. | |
Urine Assay | Self UriSponge™ Company: COPAN Group Headquarters: Brescia, Lombardy, Italy US Operations: Murrieta, CA, USA Introduced 2024. Globally commercialised. | Plastic tube with polyurethane sponge, saturated with boric acid and sodium formate as a transportation and storage medium. | Non-invasive; easy to use. Sample can be stored up to 48 h at 25 °C. | ||||
Colli-Pee® Company: DNA Genotek (subsidiary of OraSure Technologies, Inc.) City: Ottawa, ON Country: Canada Note: Novosanis, the original developer, is now part of DNA Genotek. Introduced in 2016. Commercialised in the USA, UK and Europe. | First-Void Urine (FVU) device consisting of a plastic sample tube, with a funnel collector tube attached. | Sensitivity 89% (75–97%) [139]. Specificity: 98% (95–99%) [139]. | Sensitivity: 90.9% (82.4–99.4%) [113]. Specificity: 39.8% (3.0–46.6%) [113]. | Concordance rates between cervical and urine specimens were 90.6% (with k = 0.792) for hr-HPV and 85.7% (with k = 0.715) for lr-HPV [113]. | 2.58–5.18 EUR; easy to use [112]; acceptable [138]. | Non-invasive; easy to use. |
5.1. Device Types and Clinical Performance
5.2. Advancements in DNA Methylation Testing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandra Sekar, P.K.; Thomas, S.M.; Veerabathiran, R. The future of cervical cancer prevention: Advances in research and technology. Explor. Med. 2024, 5, 384–400. [Google Scholar] [CrossRef]
- Ramanujam, N. Accelerating the impact of technology and innovation for global cervical cancer prevention. In Proceedings of the SPIE BIOS, San Francisco, CA, USA, 28 January–3 February 2023; Volume PC12369. [Google Scholar] [CrossRef]
- Cox, J.T. Epidemiology and natural history of HPV. J. Fam. Pract. 2006, 55, 3. [Google Scholar] [PubMed]
- Jensen, J.E.; Becker, G.L.; Jackson, J.B.; Rysavy, M.B. Human Papillomavirus and Associated Cancers: A Review. Viruses 2024, 16, 680. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.K.; Abe, S.K.; Thilagaratnam, S.; Haruyama, R.; Pathak, R.; Jayasekara, H.; Togawa, K.; Bhandari, A.K.C.; Shankar, A.; Nessa, A.; et al. Towards elimination of cervical cancer—human papillomavirus (HPV) vaccination and cervical cancer screening in Asian National Cancer Centers Alliance (ANCCA) member countries. Lancet Reg. Health West. Pac. 2023, 39, 100860. [Google Scholar] [CrossRef]
- Okunade, K.S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 2020, 40, 602–608. [Google Scholar] [CrossRef]
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2022, 11, e197–e206. [Google Scholar] [CrossRef]
- Viveros-Carreño, D.; Fernandes, A.; Pareja, R. Updates on cervical cancer prevention. Int. J. Gynecol. Cancer 2023, 33, 394–402. [Google Scholar] [CrossRef]
- WHO. Cervical Cancer Elimination Initiative. Available online: https://www.who.int/initiatives/cervical-cancer-elimination-initiative (accessed on 11 December 2024).
- Vaccarella, S.; Laversanne, M.; Ferlay, J.; Bray, F. Cervical cancer in Africa, Latin America and the Caribbean and Asia: Regional inequalities and changing trends. Int. J. Cancer 2017, 141, 1997–2001. [Google Scholar] [CrossRef]
- Hull, R.; Mbele, M.; Makhafola, T.; Hicks, C.; Wang, S.-M.; Reis, R.M.; Mehrotra, R.; Mkhize-Kwitshana, Z.; Kibiki, G.; Bates, D.O.; et al. Cervical cancer in low and middle-income countries. Oncol. Lett. 2020, 20, 2058–2074. [Google Scholar] [CrossRef]
- WHO. Cervical Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (accessed on 11 December 2024).
- Spencer, J.C.; Brewer, N.T.; Coyne-Beasley, T.; Trogdon, J.G.; Weinberger, M.; Wheeler, S.B. Reducing Poverty-related Disparities in Cervical Cancer: The Role of HPV Vaccination. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2021, 30, 1895–1903. [Google Scholar] [CrossRef]
- Falcaro, M.; Soldan, K.; Ndlela, B.; Sasieni, P. Effect of the HPV vaccination programme on incidence of cervical cancer and grade 3 cervical intraepithelial neoplasia by socioeconomic deprivation in England: Population based observational study. BMJ 2024, 385, e077341. [Google Scholar] [CrossRef] [PubMed]
- NHS Cervical Screening Programme Audit of Invasive Cervical Cancer: National Report 1 April 2016 to 31 March 2019. Available online: https://www.gov.uk/government/publications/cervical-screening-invasive-cervical-cancer-audit-2016-to-2019/nhs-cervical-screening-programme-audit-of-invasive-cervical-cancer-national-report-1-april-2016-to-31-march-2019 (accessed on 11 December 2024).
- Choi, S.; Ismail, A.; Pappas-Gogos, G.; Boussios, S. HPV and Cervical Cancer: A Review of Epidemiology and Screening Uptake in the UK. Pathogens 2023, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Hira, R.K.; Akomfrah, G. Ealing.gov.uk Cancer Screening—Uptake, Diagnosis and Inequalities in Ealing. 2024. Available online: https://ealing.moderngov.co.uk/documents/s14383/Appendix+1+Cancer+screening+Uptake+diagnosis+and+inequalities.pdf (accessed on 13 April 2025).
- Cervical Screening Standards Data Report 2022 to 2023. Available online: https://www.gov.uk/government/publications/cervical-screening-standards-data-report-2022-to-2023/cervical-screening-standards-data-report-2022-to-2023 (accessed on 18 December 2024).
- NHS England. NHS England NHS Sets Ambition to Eliminate Cervical Cancer by 2040. Available online: https://www.england.nhs.uk/2023/11/nhs-sets-ambition-to-eliminate-cervical-cancer-by-2040/ (accessed on 11 December 2024).
- Kundrod, K.A.; Jeronimo, J.; Vetter, B.; Maza, M.; Murenzi, G.; Phoolcharoen, N.; Castle, P.E. Toward 70% cervical cancer screening coverage: Technical challenges and opportunities to increase access to human papillomavirus (HPV) testing. PLOS Glob. Public Health 2023, 3, e0001982. [Google Scholar] [CrossRef] [PubMed]
- Gravitt, P.E.; Silver, M.I.; Hussey, H.M.; Arrossi, S.; Huchko, M.; Jeronimo, J.; Kapambwe, S.; Kumar, S.; Meza, G.; Nervi, L.; et al. Achieving equity in cervical cancer screening in low- and middle-income countries (LMICs): Strengthening health systems using a systems thinking approach. Prev. Med. 2021, 144, 106322. [Google Scholar] [CrossRef]
- eClinicalMedicine. Global strategy to eliminate cervical cancer as a public health problem: Are we on track? eClinicalMedicine 2023, 55, 101842. [Google Scholar] [CrossRef]
- Allanson, E.R.; Schmeler, K.M. Preventing Cervical Cancer Globally: Are We Making Progress? Cancer Prev. Res. 2021, 14, 1055–1060. [Google Scholar] [CrossRef]
- Canfell, K. Towards the global elimination of cervical cancer. Papillomavirus Res. 2019, 8, 100170. [Google Scholar] [CrossRef]
- Palmer, T.J.; Kavanagh, K.; Cuschieri, K.; Cameron, R.; Graham, C.; Wilson, A.; Roy, K. Invasive cervical cancer incidence following bivalent human papillomavirus vaccination: A population-based observational study of age at immunization, dose, and deprivation. J. Natl. Cancer Inst. 2024, 116, 857–865. [Google Scholar] [CrossRef]
- Hall, M.T.; Simms, K.T.; Lew, J.-B.; Smith, M.A.; Saville, M.; Canfell, K. Projected future impact of HPV vaccination and primary HPV screening on cervical cancer rates from 2017–2035: Example from Australia. PLoS ONE 2018, 13, e0185332. [Google Scholar] [CrossRef]
- Luckett, R.; Feldman, S. Impact of 2-, 4- and 9-valent HPV vaccines on morbidity and mortality from cervical cancer. Hum. Vaccines Immunother. 2016, 12, 1332–1342. [Google Scholar] [CrossRef]
- Maver, P.J.; Poljak, M. Primary HPV-based cervical cancer screening in Europe: Implementation status, challenges, and future plans. Clin. Microbiol. Infect. 2020, 26, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Wentzensen, N.; Arbyn, M. HPV-based cervical cancer screening- facts, fiction, and misperceptions. Prev. Med. 2017, 98, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef]
- Orumaa, M.; Lahlum, E.J.; Gulla, M.; Tota, J.E.; Nygård, M.; Nygård, S. Quadrivalent HPV Vaccine Effectiveness Against Cervical Intraepithelial Lesion Grade 2 or Worse in Norway: A Registry-Based Study of 0.9 Million Norwegian Women. J. Infect. Dis. 2024, 203, e1202–e1206. [Google Scholar] [CrossRef] [PubMed]
- Mikalsen, M.P.; Simonsen, G.S.; Sørbye, S.W. Impact of HPV Vaccination on the Incidence of High-Grade Cervical Intraepithelial Neoplasia (CIN2+) in Women Aged 20–25 in the Northern Part of Norway: A 15-Year Study. Vaccines 2024, 12, 421. [Google Scholar] [CrossRef]
- Ellingson, M.K.; Sheikha, H.; Nyhan, K.; Oliveira, C.R.; Niccolai, L.M. Human papillomavirus vaccine effectiveness by age at vaccination: A systematic review. Hum. Vaccines Immunother. 2023, 19, 2239085. [Google Scholar] [CrossRef]
- Tsu, V.D.; LaMontagne, D.S.; Atuhebwe, P.; Bloem, P.N.; Ndiaye, C. National implementation of HPV vaccination programs in low-resource countries: Lessons, challenges, and future prospects. Prev. Med. 2021, 144, 106335. [Google Scholar] [CrossRef]
- Guignard, A.; Praet, N.; Jusot, V.; Bakker, M.; Baril, L. Introducing new vaccines in low- and middle-income countries: Challenges and approaches. Expert Rev. Vaccines 2019, 18, 119–131. [Google Scholar] [CrossRef]
- Kumar, S.; Butler, D. Calls in India for legal action against US charity. Nature 2013. [Google Scholar] [CrossRef]
- Swanson, A.A.; Pantanowitz, L. The evolution of cervical cancer screening. J. Am. Soc. Cytopathol. 2024, 13, 10–15. [Google Scholar] [CrossRef]
- Chatterjee, P.B.; Hingway, S.R.; Hiwale, K.M. Evolution of Pathological Techniques for the Screening of Cervical Cancer: A Comprehensive Review. Cureus 2024, 16, e60769. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Yennapu, M.; Priyanka, Y. Screening Guidelines and Programs for Cervical Cancer Control in Countries of Different Economic Groups: A Narrative Review. Cureus 2023, 15, e41098. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Ronco, G.; Anttila, A.; Meijer, C.J.L.M.; Poljak, M.; Ogilvie, G.; Koliopoulos, G.; Naucler, P.; Sankaranarayanan, R.; Peto, J. Evidence Regarding Human Papillomavirus Testing in Secondary Prevention of Cervical Cancer. Vaccine 2012, 30, F88–F99. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, G.; Nakisige, C.; Huh, W.K.; Mehrotra, R.; Franco, E.L.; Jeronimo, J. Optimizing secondary prevention of cervical cancer: Recent advances and future challenges. Int. J. Gynecol. Obstet. 2017, 138, 15–19. [Google Scholar] [CrossRef]
- WHO Recommends DNA Testing as a First-Choice Screening Method for Cervical Cancer Prevention. Available online: https://www.who.int/europe/news-room/11-09-2021-who-recommends-dna-testing-as-a-first-choice-screening-method-for-cervical-cancer-prevention (accessed on 13 December 2024).
- Murewanhema, G.; Dzobo, M.; Moyo, E.; Moyo, P.; Mhizha, T.; Dzinamarira, T. Implementing HPV-DNA screening as primary cervical cancer screening modality in Zimbabwe: Challenges and recommendations. Sci. Afr. 2023, 21, e01889. [Google Scholar] [CrossRef]
- Lozar, T.; Nagvekar, R.; Rohrer, C.; Dube Mandishora, R.S.; Ivanus, U.; Fitzpatrick, M.B. Cervical Cancer Screening Postpandemic: Self-Sampling Opportunities to Accelerate the Elimination of Cervical Cancer. Int. J. Womens Health 2021, 13, 841–859. [Google Scholar] [CrossRef]
- Serrano, B.; Ibáñez, R.; Robles, C.; Peremiquel-Trillas, P.; De Sanjosé, S.; Bruni, L. Worldwide use of HPV self-sampling for cervical cancer screening. Prev. Med. 2022, 154, 106900. [Google Scholar] [CrossRef]
- Chan, C.K.; Aimagambetova, G.; Ukybassova, T.; Kongrtay, K.; Azizan, A. Human Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination—Review of Current Perspectives. J. Oncol. 2019, 2019, 3257939. [Google Scholar] [CrossRef]
- Eun, T.J.; Perkins, R.B. Screening for Cervical Cancer. Med. Clin. N. Am. 2020, 104, 1063–1078. [Google Scholar] [CrossRef]
- Cervical Cancer Causes, Risk Factors, and Prevention—NCI. Available online: https://www.cancer.gov/types/cervical/causes-risk-prevention (accessed on 13 December 2024).
- Lowy, D.R.; Solomon, D.; Hildesheim, A.; Schiller, J.T.; Schiffman, M. Human papillomavirus infection and the primary and secondary prevention of cervical cancer. Cancer 2008, 113, 1980–1993. [Google Scholar] [CrossRef]
- Bruni, L.; Diaz, M.; Barrionuevo-Rosas, L.; Herrero, R.; Bray, F.; Bosch, F.X.; de Sanjosé, S.; Castellsagué, X. Global estimates of human papillomavirus vaccination coverage by region and income level: A pooled analysis. Lancet Glob. Health 2016, 4, e453–e463. [Google Scholar] [CrossRef] [PubMed]
- References Human Papillomavirus Vaccines: WHO Position Paper, May 2017 (References with Abstracts Cited in the Position Paper in the Order of Appearance). SAGE Guidance for the Development of Evidence-Based Vaccine-Related Recommendations. 2017. Available online: https://www.semanticscholar.org/paper/References-Human-papillomavirus-vaccines%3A-WHO-May/7dc6c6b55657f911c80ea0427208cb1ff5aa913c (accessed on 13 December 2024).
- Chen, J.J. Genomic instability induced by human papillomavirus oncogenes. N. Am. J. Med. Sci. 2010, 3, 43. [Google Scholar] [CrossRef] [PubMed]
- Korzeniewski, N.; Spardy, N.; Duensing, A.; Duensing, S. Genomic instability and cancer: Lessons learned from human papillomaviruses. Cancer Lett. 2011, 305, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, S.D.; Balakrishnan, V.; Oon, C.E.; Kaur, G. Key Molecular Events in Cervical Cancer Development. Medicina 2019, 55, 384. [Google Scholar] [CrossRef]
- Mello, V.; Sundstrom, R.K. Cervical Intraepithelial Neoplasia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. Available online: http://www.ncbi.nlm.nih.gov/books/NBK544371/ (accessed on 13 December 2024).
- Cooper, D.B.; Dunton, C.J. Colposcopy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: http://www.ncbi.nlm.nih.gov/books/NBK564514/ (accessed on 13 December 2024).
- Arbyn, M.; Xu, L. Efficacy and safety of prophylactic HPV vaccines. A Cochrane review of randomized trials. Expert Rev. Vaccines 2018, 17, 1085–1091. [Google Scholar] [CrossRef]
- Giorgi Rossi, P.; Carozzi, F.; Federici, A.; Ronco, G.; Zappa, M.; Franceschi, S.; Barca, A.; Barzon, L.; Baussano, I.; Berliri, C.; et al. Cervical cancer screening in women vaccinated against human papillomavirus infection: Recommendations from a consensus conference. Prev. Med. 2017, 98, 21–30. [Google Scholar] [CrossRef]
- Zhai, L.; Tumban, E. Gardasil-9: A global survey of projected efficacy. Antiviral Res. 2016, 130, 101–109. [Google Scholar] [CrossRef]
- Signorelli, C.; Odone, A.; Ciorba, V.; Cella, P.; Audisio, R.A.; Lombardi, A.; Mariani, L.; Mennini, F.S.; Pecorelli, S.; Rezza, G.; et al. Human papillomavirus 9-valent vaccine for cancer prevention: A systematic review of the available evidence. Epidemiol. Infect. 2017, 145, 1962–1982. [Google Scholar] [CrossRef]
- Silver, M.I.; Kobrin, S. Exacerbating disparities?: Cervical cancer screening and HPV vaccination. Prev. Med. 2020, 130, 105902. [Google Scholar] [CrossRef]
- Staley, H.; Shiraz, A.; Shreeve, N.; Bryant, A.; Martin-Hirsch, P.P.; Gajjar, K. Interventions targeted at women to encourage the uptake of cervical screening. Cochrane Database Syst. Rev. 2021, 2021, CD002834. [Google Scholar] [CrossRef]
- Stanley, M.; Schuind, A.; Muralidharan, K.K.; Guillaume, D.; Willens, V.; Borda, H.; Jurgensmeyer, M.; Limaye, R. Evidence for an HPV one-dose schedule. Vaccine 2024, 42, S16–S21. [Google Scholar] [CrossRef] [PubMed]
- NCI. PRIMAVERA Immunobridging Trial. Available online: https://dceg.cancer.gov/research/cancer-types/cervix/primavera (accessed on 15 December 2024).
- D’Amato, S.; Nunnari, G.; Trimarchi, G.; Squeri, A.; Cancellieri, A.; Squeri, R.; Pellicanò, G.F. Impact of the COVID-19 pandemic on HPV vaccination coverage in the general population and in PLWHs. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7285–7289. [Google Scholar] [CrossRef] [PubMed]
- Castanon, A.; Rebolj, M.; Pesola, F.; Pearmain, P.; Stubbs, R. COVID-19 disruption to cervical cancer screening in England. J. Med. Screen. 2022, 29, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.T.; Valls, J.; Baena, A.; Rojas, F.D.; Ramírez, K.; Álvarez, R.; Cristaldo, C.; Henríquez, O.; Moreno, A.; Reynaga, D.C.; et al. Performance of cervical cytology and HPV testing for primary cervical cancer screening in Latin America: An analysis within the ESTAMPA study. Lancet Reg. Health Am. 2023, 26, 100593. [Google Scholar] [CrossRef]
- Cuschieri, K.; Wentzensen, N. Human Papillomavirus mRNA and p16 Detection as Biomarkers for the Improved Diagnosis of Cervical Neoplasia. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 2536–2545. [Google Scholar] [CrossRef]
- Cuschieri, K.; Ronco, G.; Lorincz, A.; Smith, L.; Ogilvie, G.; Mirabello, L.; Carozzi, F.; Cubie, H.; Wentzensen, N.; Snijders, P.; et al. Eurogin roadmap 2017: Triage strategies for the management of HPV-positive women in cervical screening programs. Int. J. Cancer 2018, 143, 735–745. [Google Scholar] [CrossRef]
- Hall, M.T.; Simms, K.T.; Lew, J.-B.; Smith, M.A.; Brotherton, J.M.; Saville, M.; Frazer, I.H.; Canfell, K. The projected timeframe until cervical cancer elimination in Australia: A modelling study. Lancet Public Health 2019, 4, e19–e27. [Google Scholar] [CrossRef]
- Bryant, E. The impact of policy and screening on cervical cancer in England. Br. J. Nurs. 2012, 21, S4–S10. [Google Scholar] [CrossRef]
- Arbyn, M.; Costa, S.; Latsuzbaia, A.; Kellen, E.; Girogi Rossi, P.; Cocuzza, C.E.; Basu, P.; Castle, P.E. HPV-based Cervical Cancer Screening on Self-samples in the Netherlands: Challenges to Reach Women and Test Performance Questions. Cancer Epidemiol. Biomarkers Prev. 2023, 32, 159–163. [Google Scholar] [CrossRef]
- Elfström, M.; Gray, P.G.; Dillner, J. Cervical cancer screening improvements with self-sampling during the COVID-19 pandemic. eLife 2023, 12, e80905. [Google Scholar] [CrossRef]
- Wirtz, C.; Mohamed, Y.; Engel, D.; Sidibe, A.; Holloway, M.; Bloem, P.; Kumar, S.; Brotherton, J.; Reis, V.; Morgan, C. Integrating HPV vaccination programs with enhanced cervical cancer screening and treatment, a systematic review. Vaccine 2022, 40 (Suppl. S1), A116–A123. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, N.; Yousefi, Z.; Khosravi, G.; Malayeri, F.E.; Golabi, M.; Askarzadeh, M.; Shams, M.H.; Ghezelbash, B.; Eskandari, N. Human papillomavirus vaccination in low- and middle-income countries: Progression, barriers, and future prospective. Front. Immunol. 2023, 14, 1150238. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Qiao, Y.; Keita, N. The Next Steps in Cervical Screening. Womens Health 2015, 11, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Binagwaho, A.; Wagner, C.; Gatera, M.; Karema, C.; Nutt, C.; Ngaboa, F. Achieving high coverage in Rwanda’s national human papillomavirus vaccination programme. Bull. World Health Organ. 2012, 90, 623–628. [Google Scholar] [CrossRef]
- Poli, U.R.; Muwonge, R.; Bhoopal, T.; Lucas, E.; Basu, P. Feasibility, Acceptability, and Efficacy of a Community Health Worker–Driven Approach to Screen Hard-to-Reach Periurban Women Using Self-Sampled HPV Detection Test in India. JCO Glob. Oncol. 2020, 6, 658–666. [Google Scholar] [CrossRef]
- WHO. Tracking Universal Health Coverage in the WHO African Region. 2022. Available online: https://www.afro.who.int/publications/tracking-universal-health-coverage-who-african-region-2022 (accessed on 13 December 2024).
- Okolie, E.A.; Aluga, D.; Anjorin, S.; Ike, F.N.; Ani, E.M.; Nwadike, B.I. Addressing missed opportunities for cervical cancer screening in Nigeria: A nursing workforce approach. Ecancermedicalscience 2022, 16, 1373. [Google Scholar] [CrossRef]
- WHO. WHO Cervical Cancer Elimination Initiative: From Call to Action to Global Movement. Available online: https://www.who.int/publications/m/item/who-cervical-cancer-elimination-initiative--from-call-to-action-to-global-movement (accessed on 13 December 2024).
- Goldhaber-Fiebert, J.D.; Stout, N.K.; Salomon, J.A.; Kuntz, K.M.; Goldie, S.J. Cost-Effectiveness of Cervical Cancer Screening With Human Papillomavirus DNA Testing and HPV-16,18 Vaccination. JNCI J. Natl. Cancer Inst. 2008, 100, 308–320. [Google Scholar] [CrossRef]
- WHO. Zambia Steps up Cervical Cancer Screening with HPV Testing WHO Regional Office for Africa. Available online: https://www.afro.who.int/countries/zambia/news/zambia-steps-cervical-cancer-screening-hpv-testing (accessed on 19 December 2024).
- Desta, A.A.; Alemu, F.T.; Gudeta, M.B.; Dirirsa, D.E.; Kebede, A.G. Willingness to utilize cervical cancer screening among Ethiopian women aged 30–65 years. Front. Glob. Womens Health 2022, 3, 939639. [Google Scholar] [CrossRef]
- Clinton Health Access Initiative. Scaling Up an Effective Model of Care to Prevent and Treat Cervical Cancer in Rwanda. Available online: https://www.clintonhealthaccess.org/blog/scaling-up-an-effective-model-of-care-to-prevent-and-treat-cervical-cancer-in-rwanda/ (accessed on 19 December 2024).
- Wave of New Commitments Marks Historic Step Towards the Elimination of Cervical Cancer. Available online: https://www.gavi.org/news/media-room/wave-new-commitments-marks-historic-step-towards-elimination-cervical-cancer (accessed on 19 December 2024).
- Toliman, P.J.; Kaldor, J.M.; Tabrizi, S.N.; Vallely, A.J. Innovative approaches to cervical cancer screening in low- and middle-income countries. Climacteric 2018, 21, 235–238. [Google Scholar] [CrossRef]
- Davies-Oliveira, J.C.; Smith, M.A.; Grover, S.; Canfell, K.; Crosbie, E.J. Eliminating Cervical Cancer: Progress and Challenges for High-income Countries. Clin. Oncol. 2021, 33, 550–559. [Google Scholar] [CrossRef]
- Ibrahim, A.; Simeen, N. 32P Cervical cancer: Barriers and smears to prevention. ESMO Open 2024, 9, 103532. [Google Scholar] [CrossRef]
- Waller, J.; Bartoszek, M.; Marlow, L.; Wardle, J. Barriers to cervical cancer screening attendance in England: A population-based survey. J. Med. Screen. 2009, 16, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Marlow, L.; McBride, E.; Varnes, L.; Waller, J. Barriers to cervical screening among older women from hard-to-reach groups: A qualitative study in England. BMC Womens Health 2019, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Cadman, L.; Waller, J.; Ashdown-Barr, L.; Szarewski, A. Barriers to cervical screening in women who have experienced sexual abuse: An exploratory study: Table 1. J. Fam. Plann. Reprod. Health Care 2012, 38, 214–220. [Google Scholar] [CrossRef]
- Berner, A.M.; Connolly, D.J.; Pinnell, I.; Wolton, A.; MacNaughton, A.; Challen, C.; Nambiar, K.; Bayliss, J.; Barrett, J.; Richards, C. Attitudes of transgender men and non-binary people to cervical screening: A cross-sectional mixed-methods study in the UK. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2021, 71, e614–e625. [Google Scholar] [CrossRef]
- Dhillon, N.; Oliffe, J.L.; Kelly, M.T.; Krist, J. Bridging Barriers to Cervical Cancer Screening in Transgender Men: A Scoping Review. Am. J. Men’s Health 2020, 14, 1557988320925691. [Google Scholar] [CrossRef]
- Lim, A.W.; Deats, K.; Gambell, J.; Lawrence, A.; Lei, J.; Lyons, M.; North, B.; Parmar, D.; Patel, H.; Waller, J.; et al. Opportunistic offering of self-sampling to non-attenders within the English cervical screening programme: A pragmatic, multicentre, implementation feasibility trial with randomly allocated cluster intervention start dates (YouScreen). eClinicalMedicine 2024, 73, 102672. [Google Scholar] [CrossRef]
- Mathews, C.; Brentnall, A.; Rebolj, M.; Sargent, A.; Cuschieri, K.; Denton, K. HPValidate: Clinical Validation of hrHPV Test System Using Self-Collected Vaginal Samples in NHS England Commissioned Laboratories Providing Cervical Screening Services Core Reporting Group. 2024. Available online: https://www.qmul.ac.uk/fmd/media/smd/documents/research/hpv-self-collection-test-accuracy-report-hpvalidate-lot1.pdf (accessed on 19 December 2024).
- Hariprasad, R.; John, A.; Abdulkader, R.S. Challenges in the Implementation of Human Papillomavirus Self-Sampling for Cervical Cancer Screening in India: A Systematic Review. JCO Glob. Oncol. 2023, 9, e2200401. [Google Scholar] [CrossRef]
- Woo, Y.L.; Gravitt, P.; Khor, S.K.; Ng, C.W.; Saville, M. Accelerating action on cervical screening in lower- and middle-income countries (LMICs) post COVID-19 era. Prev. Med. 2021, 144, 106294. [Google Scholar] [CrossRef]
- WHO. Feasibility of the WHO Strategy to Eliminate Cervical Cancer as a Public Health Problem, Lessons Learned from the PRESCRIP-TEC Project Knowledge Action Portal on NCDs. Available online: https://www.knowledge-action-portal.com/en/content/feasibility-who-strategy-eliminate-cervical-cancer-public-health-problem-lessons-learned (accessed on 19 December 2024).
- Gupta, S.; Palmer, C.; Bik, E.M.; Cardenas, J.P.; Nuñez, H.; Kraal, L.; Bird, S.W.; Bowers, J.; Smith, A.; Walton, N.A.; et al. Self-Sampling for Human Papillomavirus Testing: Increased Cervical Cancer Screening Participation and Incorporation in International Screening Programs. Front. Public Health 2018, 6, 77. [Google Scholar] [CrossRef]
- Arbyn, M.; Smith, S.B.; Temin, S.; Sultana, F.; Castle, P. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: Updated meta-analyses. BMJ 2018, 363, k4823. [Google Scholar] [CrossRef] [PubMed]
- Viñals, R.; Jonnalagedda, M.; Petignat, P.; Thiran, J.-P.; Vassilakos, P. Artificial Intelligence-Based Cervical Cancer Screening on Images Taken during Visual Inspection with Acetic Acid: A Systematic Review. Diagnostics 2023, 13, 836. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sarwar, A.; Sharma, V. Screening of Cervical Cancer by Artificial Intelligence based Analysis of Digitized Papani-colaou-Smear Images. 2017. Available online: https://www.semanticscholar.org/paper/Screening-of-Cervical-Cancer-by-Artificial-based-of-Gupta-Sarwar/44acfd2e0a27500a100cf31ad9c9f5d018997bac (accessed on 19 December 2024).
- Wu, T.; Lucas, E.; Zhao, F.; Basu, P.; Qiao, Y. Artificial intelligence strengthenes cervical cancer screening—Present and future. Cancer Biol. Med. 2024, 21, 864–879. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Gupta, S. Point-of-care tests for human papillomavirus detection in uterine cervical samples: A review of advances in resource-constrained settings. Indian J. Med Res. 2023, 158, 509–521. [Google Scholar] [CrossRef]
- Seely, S.; Zingg, J.-M.; Joshi, P.; Slomovitz, B.; Schlumbrecht, M.; Kobetz, E.; Deo, S.; Daunert, S. Point-of-Care Molecular Test for the Detection of 14 High-Risk Genotypes of Human Papillomavirus in a Single Tube. Anal. Chem. 2023, 95, 13488–13496. [Google Scholar] [CrossRef]
- Kelly, H.; Mayaud, P.; Segondy, M.; Pai, N.P.; Peeling, R.W. A systematic review and meta-analysis of studies evaluating the performance of point-of-care tests for human papillomavirus screening. Sex. Transm. Infect. 2017, 93, S36–S45. [Google Scholar] [CrossRef]
- Kuhn, L.; Denny, L. The time is now to implement HPV testing for primary screening in low resource settings. Prev. Med. 2017, 98, 42–44. [Google Scholar] [CrossRef]
- Vallely, A.J.B.; Saville, M.; Badman, S.G.; Gabuzzi, J.; Bolnga, J.; Mola, G.D.L.; Kuk, J.; Wai, M.; Munnull, G.; Garland, S.M.; et al. Point-of-care HPV DNA testing of self-collected specimens and same-day thermal ablation for the early detection and treatment of cervical pre-cancer in women in Papua New Guinea: A prospective, single-arm intervention trial (HPV-STAT). Lancet Glob. Health 2022, 10, e1336–e1346. [Google Scholar] [CrossRef]
- Shrivas, S.; Patel, M.; Kumar, R.; Gwal, A.; Uikey, R.; Tiwari, S.K.; Verma, A.K.; Thota, P.; Das, A.; Bharti, P.K.; et al. Evaluation of Microchip-Based Point-Of-Care Device “Gazelle” for Diagnosis of Sickle Cell Disease in India. Front. Med. 2021, 8, 639208. [Google Scholar] [CrossRef]
- WHO. Target Product Profiles for Human Papillomavirus Screening Tests to Detect Cervical Pre-Cancer and Cancer. Available online: https://www.who.int/publications/i/item/9789240100275 (accessed on 19 December 2024).
- Cadman, L.; Reuter, C.; Jitlal, M.; Kleeman, M.; Austin, J.; Hollingworth, T.; Parberry, A.L.; Ashdown-Barr, L.; Patel, D.; Nedjai, B.; et al. A Randomized Comparison of Different Vaginal Self-sampling Devices and Urine for Human Papillomavirus Testing—Predictors 5.1. Cancer Epidemiol. Biomark. Prev. 2021, 30, 661–668. [Google Scholar] [CrossRef]
- Martinelli, M.; Giubbi, C.; Di Meo, M.L.; Perdoni, F.; Musumeci, R.; Leone, B.E.; Fruscio, R.; Landoni, F.; Cocuzza, C.E. Accuracy of Human Papillomavirus (HPV) Testing on Urine and Vaginal Self-Samples Compared to Clinician-Collected Cervical Sample in Women Referred to Colposcopy. Viruses 2023, 15, 1889. [Google Scholar] [CrossRef] [PubMed]
- Ertik, F.C.; Kampers, J.; Hülse, F.; Stolte, C.; Böhmer, G.; Hillemanns, P.; Jentschke, M. CoCoss-Trial: Concurrent Comparison of Self-Sampling Devices for HPV-Detection. Int. J. Environ. Res. Public Health 2021, 18, 10388. [Google Scholar] [CrossRef] [PubMed]
- Sechi, I.; Muresu, N.; Puci, M.V.; Saderi, L.; Del Rio, A.; Cossu, A.; Muroni, M.R.; Castriciano, S.; Martinelli, M.; Cocuzza, C.E.; et al. Preliminary Results of Feasibility and Acceptability of Self-Collection for Cervical Screening in Italian Women. Pathogens 2023, 12, 1169. [Google Scholar] [CrossRef] [PubMed]
- Saville, M.; Hawkes, D.; Keung, M.; Ip, E.; Silvers, J.; Sultana, F.; Malloy, M.J.; Velentzis, L.S.; Canfel, L.K.; Wrede, C.D.; et al. Analytical performance of HPV assays on vaginal self-collected vs practitioner-collected cervical samples: The SCoPE study. J. Clin. Virol. 2020, 127, 104375. [Google Scholar] [CrossRef]
- Hon, H.J.; Chong, P.P.; Choo, H.L.; Khine, P.P. A Comprehensive Review of Cervical Cancer Screening Devices: The Pros and the Cons. Asian Pac. J. Cancer Prev. 2023, 24, 2207–2215. [Google Scholar] [CrossRef]
- Leinonen, M.K.; Schee, K.; Jonassen, C.M.; Lie, A.K.; Nystrand, C.F.; Rangberg, A.; Furre, I.E.; Johansson, M.J.; Tropé, A.; Sjøborg, K.D.; et al. Safety and acceptability of human papillo-mavirus testing of self-collected specimens: A methodologic study of the impact of collection devices and HPV assays on sensitivity for cervical cancer and high-grade lesions. J. Clin Virol. 2018, 99–100, 22–30. [Google Scholar] [CrossRef]
- Bokan, T.; Ivanus, U.; Jerman, T.; Takac, I.; Arko, D. Long term results of follow-up after HPV self-sampling with devices Qvintip and HerSwab in women non-attending cervical screening programme. Radiol. Oncol. 2021, 55, 187–195. [Google Scholar] [CrossRef]
- Latsuzbaia, A.; Van Keer, S.; Broeck, D.V.; Weyers, S.; Donders, G.; De Sutter, P.; Tjalma, W.; Doyen, J.; Vorsters, A.; Arbyn, M. Clinical Accuracy of Alinity m HR HPV Assay on Self- versus Clinician-Taken Samples Using the VALHUDES Protocol. J. Mol. Diagn. 2023, 25, 957–966. [Google Scholar] [CrossRef]
- Jentschke, M.; Chen, K.; Arbyn, M.; Hertel, B.; Noskowicz, M.; Soergel, P.; Hillemanns, P. Direct comparison of two vaginal self-sampling devices for the detection of human papillomavirus infections. J. Clin. Virol. 2016, 82, 46–50. [Google Scholar] [CrossRef]
- El-Zein, M.; Bouten, S.; Louvanto, K.; Gilbert, L.; Gotlieb, W.; Hemmings, R.; Behr, M.A.; Franco, E.L. Validation of a new HPV self-sampling device for cervical cancer screening: The Cervical and Self-Sample In Screening (CASSIS) study. Gynecol. Oncol. 2018, 149, 491–497. [Google Scholar] [CrossRef]
- Chernesky, M.; Hook, E.W.; Martin, D.H.; Lane, J.; Johnson, R.; Jordan, J.A.; Fuller, D.; Willis, D.E.; Fine, P.M.; Janda, W.M.; et al. Women find it easy and prefer to collect their own vaginal swabs to diagnose Chlamydia trachomatis or Neisseria gonorrhoeae infections. Sex. Transm. Dis. 2005, 32, 729–733. [Google Scholar] [CrossRef] [PubMed]
- CADTH (Agency for Drugs and Technologies in Health). Health Technology Update: Issue 18. 2017. Available online: https://www.cda-amc.ca/sites/default/files/pdf/Health_Technology_Update_Issue_18.pdf (accessed on 13 April 2025).
- Polman, N.J.; Ebisch, R.M.F.; Heideman, D.A.M.; Melchers, W.J.G.; Bekkers, R.L.M.; Molijn, A.C.; Meijer, C.J.L.M.; Quint, W.G.V.; Snijders, P.J.F.; Massuger, L.F.A.G.; et al. Performance of human papillomavirus testing on self-collected versus clinician-collected samples for the detection of cervical intraepithelial neoplasia of grade 2 or worse: A randomised, paired screen-positive, non-inferiority trial. Lancet Oncol. 2019, 20, 229–238. [Google Scholar] [CrossRef] [PubMed]
- van Baars, R.; Bosgraaf, R.P.; ter Harmsel, B.W.A.; Melchers, W.J.G.; Quint, W.G.V.; Bekkers, R.L.M. Dry storage and transport of a cer-vicovaginal self-sample by use of the Evalyn Brush, providing reliable human papillomavirus detection combined with comfort for women. J. Clin. Microbiol. 2012, 50, 3937–3943. [Google Scholar] [CrossRef] [PubMed]
- Ketelaars, P.J.W.; Bosgraaf, R.P.; Siebers, A.G.; Massuger, L.F.A.G.; van der Linden, J.C.; Wauters, C.A.P.; Rahamat-Langendoen, J.C.; van den Brule, A.J.C.; IntHout, J.; Melchers, W.J.G.; et al. High-risk human papillomavirus detection in self-sampling compared to physician-taken smear in a responder population of the Dutch cervical screening: Results of the VERA study. Prev. Med. 2017, 101, 96–101. [Google Scholar] [CrossRef]
- Bosgraaf, R.P.; Verhoef, V.M.J.; Massuger, L.F.A.G.; Siebers, A.G.; Bulten, J.; de Kuyper-de Ridder, G.M.; Meijer, C.J.M.; Snijders, P.J.F.; Heideman, D.A.M.; IntHout, J.; et al. Comparative performance of novel self-sampling methods in detecting high-risk human papillomavirus in 30,130 women not attending cervical screening. Int. J. Cancer 2015, 136, 646–655. [Google Scholar] [CrossRef]
- Okayama, K.; Okodo, M.; Fujii, M.; Kumagai, T.; Yabusaki, H.; Shiina, Y.; Iwami, F.; Teruya, K.; Hatta, K. Improved accuracy of cytodiagnosis using the Kato self-collection devise: The usefulness of smear preparation in liquid-based cytology methods. Asian Pac. J. Cancer Prev. 2012, 13, 4521–4524. [Google Scholar] [CrossRef]
- Latiff, L.A.; Ibrahim, Z.; Pei, C.P.; Rahman, S.A.; Akhtari-Zavare, M. Comparative Assessment of a Self-sampling Device and Gynecologist Sampling for Cytology and HPV DNA Detection in a Rural and Low Resource Setting: Malaysian Experience. Asian Pac. J. Cancer Prev. 2015, 16, 8495–8501. [Google Scholar] [CrossRef]
- NCI. SELF-CERV Pivotal Study: SELF-Collection for CERVical Cancer Screening. Available online: https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2024-01758 (accessed on 27 March 2025).
- Nodjikouambaye, Z.A.; Compain, F.; Sadjoli, D.; Bouassa, R.-S.M.; Péré, H.; Veyer, D.; Robin, L.; Adawaye, C.; Tonen-Wolyec, S.; Moussa, A.M.; et al. Accuracy of Curable Sexually Transmitted Infections and Genital Mycoplasmas Screening by Multiplex Real-Time PCR Using a Self-Collected Veil among Adult Women in Sub-Saharan Africa. Infect. Dis. Obstet. Gynecol. 2019, 2019, 8639510. [Google Scholar] [CrossRef]
- Aranda Flores, C.E.; Gomez Gutierrez, G.; Ortiz Leon, J.M.; Cruz Rodriguez, D.; Sørbye, S.W. Self-collected versus clinician-collected cervical samples for the detection of HPV infections by 14-type DNA and 7-type mRNA tests. BMC Infect. Dis. 2021, 21, 504. [Google Scholar] [CrossRef]
- Gradíssimo, A.; Burk, R.D. Molecular tests potentially improving HPV screening and genotyping for cervical cancer prevention. Expert Rev. Mol. Diagn. 2017, 17, 379–391. [Google Scholar] [CrossRef]
- Milanova, V.; Gomes, M.; Mihaylova, K.; Twelves, J.L.; Multmeier, J.; McMahon, H.; McCulloch, H.; Cuschieri, K. Diagnostic accuracy of the Daye diagnostic tampon compared to clinician-collected and self-collected vaginal swabs for detecting HPV: A comparative study. J. Clin. Microbiol. 2025, e01852-24. [Google Scholar] [CrossRef] [PubMed]
- Naseri, S.; Young, S.; Cruz, G.; Blumenthal, P.D. Screening for High-Risk Human Papillomavirus Using Passive, Self-Collected Menstrual Blood. Obstet. Gynecol. 2022, 140, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, P.; Maheshwari, A.; Tahlan, S.; Kadam, P.; Bagal, S.; Gore, S.; Panse, N.; Deodhar, K.; Chaturvedi, P.; Dikshit, R.; et al. Diagnostic accuracy of menstrual blood for human papillomavirus detection in cervical cancer screening: A systematic review. Ecancermedicalscience 2022, 16, 1427. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.C.; Sargent, A.; Pinggera, E.; Carter, S.; Gilham, C.; Sasieni, P.; Crosbie, E.J. Urine high-risk human papillomavirus testing as an alternative to routine cervical screening: A comparative diagnostic accuracy study of two urine collection devices using a randomised study design trial. BJOG Int. J. Obstet. Gynaecol. 2024, 131, 1456–1464. [Google Scholar] [CrossRef]
- Nilyanimit, P.; Chaithongwongwatthana, S.; Oranratanaphan, S.; Poudyal, N.; Excler, J.-L.; Lynch, J.; Vongpunsawad, S.; Poovorawan, Y. Comparable detection of HPV using real-time PCR in paired cervical samples and concentrated first-stream urine collected with Colli-Pee device. Diagn. Microbiol. Infect. Dis. 2024, 108, 116160. [Google Scholar] [CrossRef]
- Gibert, M.J.; Sánchez-Contador, C.; Artigues, G. Validity and acceptance of self vs conventional sampling for the analysis of human papillomavirus and Pap smear. Sci. Rep. 2023, 13, 2809. [Google Scholar] [CrossRef]
- Lorenzi, N.P.C.; Termini, L.; Filho, A.L.; Tacla, M.; de Aguiar, L.M.; Beldi, M.C.; Ferreira-Filho, E.S.; Baracat, E.C.; Soares-Júnior, J.M. Age-related acceptability of vaginal self-sampling in cervical cancer screening at two university hospitals: A pilot cross-sectional study. BMC Public Health 2019, 19, 1–11. [Google Scholar] [CrossRef]
- Sabeena, S.; Kuriakose, S.; Binesh, D.; Abdulmajeed, J.; Dsouza, G.; Ramachandran, A.; Vijaykumar, B.; Aswathyraj, S.; Devadiga, S.; Ravishankar, N.; et al. The Utility of Urine-Based Sampling for Cervical Cancer Screening in Low-Resource Settings. Asian Pac. J. Cancer Prev. 2019, 20, 2409–2413. [Google Scholar] [CrossRef]
- Turner, F.; Drury, J.; Hapangama, D.K.; Tempest, N. Menstrual Tampons Are Reliable and Acceptable Tools to Self-Collect Vaginal Microbiome Samples. Int. J. Mol. Sci. 2023, 24, 14121. [Google Scholar] [CrossRef]
- Teal Health. FDA Puts Teal Health on an Accelerated Path to Market for Our At-Home Cervical Cancer Screening. Available online: https://www.getteal.com/post/fda-puts-teal-health-on-an-accelerated-path-to-market-for-our-at-home-cervical-cancer-screening (accessed on 20 December 2024).
- Shafaghmotlagh, S. Cancer Research UK—Cancer News. 2024. Papcup: Could This at-Home HPV Test Make Cervical Screening Easier? Available online: https://news.cancerresearchuk.org/2024/09/04/papcup-at-home-hpv-test-to-make-cervical-screening-smear-test-easier/ (accessed on 20 December 2024).
- Asciutto, K.C.; Henningsson, A.J.; Borgfeldt, H.; Darlin, L.; Borgfeldt, C. Vaginal and Urine Self-sampling Compared to Cervical Sampling for HPV-testing with the Cobas 4800 HPV Test. Anticancer Res. 2017, 37, 4183–4187. Available online: http://ar.iiarjournals.org/content/37/8/4183.abstract (accessed on 19 December 2024).
- Ørnskov, D.; Jochumsen, K.; Steiner, P.H.; Grunnet, I.M.; Lykkebo, A.W.; Waldstrøm, M. Clinical performance and acceptability of self-collected vaginal and urine samples compared with clinician-taken cervical samples for HPV testing among women referred for colposcopy. A cross-sectional study. BMJ Open 2021, 11, e041512. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ning, L.; Fan, W.; Jia, C.; Ge, L. Electronic Health Interventions and Cervical Cancer Screening: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2024, 26, e58066. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.L.; Khoo, S.P.; Gravitt, P.; Hawkes, D.; Rajasuriar, R.; Saville, M. The Implementation of a Primary HPV Self-Testing Cervical Screening Program in Malaysia through Program ROSE—Lessons Learnt and Moving Forward. Curr. Oncol. 2022, 29, 7379–7387. [Google Scholar] [CrossRef] [PubMed]
- Olthof, E.M.G.; Aitken, C.A.; Siebers, A.G.; van Kemenade, F.J.; de Kok, I.M.C.M. The impact of loss to follow-up in the Dutch organised HPV-based cervical cancer screening programme. Int. J. Cancer 2024, 154, 2132–2141. [Google Scholar] [CrossRef]
- Manley, K.; Patel, A.; Pawade, J.; Glew, S.; Hunt, K.; Villeneuve, N.; Mukonoweshuro, P.; Thompson, S.; Hoskins, H.; López-Bernal, A.; et al. The use of biomarkers and HPV genotyping to improve diagnostic accuracy in women with a transformation zone type 3. Br. J. Cancer 2021, 126, 91–99. [Google Scholar] [CrossRef]
- Othman, N.H.; Zaki, F.H.M.; Hussain, N.H.N.; Yusoff, W.Z.W.; Ismail, P. SelfSampling Versus Physicians’ Sampling for Cervical Cancer Screening Agreement of Cytological Diagnoses. Asian Pac. J. Cancer Prev. 2016, 17, 3489–3494. [Google Scholar]
- Verdoodt, F.; Dehlendorff, C.; Kjaer, S.K. Dose-related Effectiveness of Quadrivalent Human Papillomavirus Vaccine Against Cervical Intraepithelial Neoplasia: A Danish Nationwide Cohort Study. Clin. Infect. Dis. 2020, 70, 608–614. [Google Scholar] [CrossRef]
- Yeh, P.T.; E Kennedy, C.; de Vuyst, H.; Narasimhan, M. Self-sampling for human papillomavirus (HPV) testing: A systematic review and meta-analysis. BMJ Glob. Health 2019, 4, e001351. [Google Scholar] [CrossRef]
- Ouh, Y.-T.; Kim, T.J.; Ju, W.; Kim, S.W.; Jeon, S.; Kim, S.-N.; Kim, K.G.; Lee, J.-K. Development and validation of artificial intelligence-based analysis software to support screening system of cervical intraepithelial neoplasia. Sci. Rep. 2024, 14, 1957. [Google Scholar] [CrossRef]
- Holmström, O.; Linder, N.; Kaingu, H.; Mbuuko, N.; Mbete, J.; Kinyua, F.; Törnquist, S.; Muinde, M.; Krogerus, L.; Lundin, M.; et al. Point-of-Care Digital Cytology With Artificial Intelligence for Cervical Cancer Screening in a Resource-Limited Setting. JAMA Netw. Open 2021, 4, e211740. [Google Scholar] [CrossRef]
- Kelly, H.; Benavente, Y.; Pavon, M.A.; De Sanjose, S.; Mayaud, P.; Lorincz, A.T. Performance of DNA methylation assays for detection of high-grade cervical intraepithelial neoplasia (CIN2+): A systematic review and meta-analysis. Br. J. Cancer 2019, 121, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Schreiberhuber, L.; Barrett, J.E.; Wang, J.; Redl, E.; Herzog, C.; Vavourakis, C.D.; Sundström, K.; Dillner, J.; Widschwendter, M. Cervical cancer screening using DNA methylation triage in a real-world population. Nat. Med. 2024, 30, 2251–2257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tan, W.; Yang, H.; Zhang, S.; Dai, Y. Detection of Host Cell Gene/HPV DNA Methylation Markers: A Promising Triage Approach for Cervical Cancer. Front. Oncol. 2022, 12, 831949. [Google Scholar] [CrossRef] [PubMed]
- Chatzistamatiou, K.; Tsertanidou, A.; Moysiadis, T.; Mouchtaropoulou, E.; Pasentsis, K.; Skenderi, A.; Stamatopoulos, K.; Agorastos, T. Comparison of different strategies for the triage to colposcopy of women tested high-risk HPV positive on self-collected cervicovaginal samples. Gynecol. Oncol. 2021, 162, 560–568. [Google Scholar] [CrossRef]
- Song, F.; Du, H.; Wang, C.; Huang, X.; Wu, R.; CHIMUST Team. The effectiveness of HPV16 and HPV18 genotyping and cytology with different thresholds for the triage of human papillomavirus-based screening on self-collected samples. PLoS ONE 2020, 15, e0234518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, M.; Provaggi, E.; Pembe, A.B.; Olaitan, A.; Gentry-Maharaj, A. Advancing Cervical Cancer Prevention Equity: Innovations in Self-Sampling and Digital Health Technologies Across Healthcare Settings. Diagnostics 2025, 15, 1176. https://doi.org/10.3390/diagnostics15091176
Gomes M, Provaggi E, Pembe AB, Olaitan A, Gentry-Maharaj A. Advancing Cervical Cancer Prevention Equity: Innovations in Self-Sampling and Digital Health Technologies Across Healthcare Settings. Diagnostics. 2025; 15(9):1176. https://doi.org/10.3390/diagnostics15091176
Chicago/Turabian StyleGomes, Michelle, Elena Provaggi, Andrea Barnabas Pembe, Adeola Olaitan, and Aleksandra Gentry-Maharaj. 2025. "Advancing Cervical Cancer Prevention Equity: Innovations in Self-Sampling and Digital Health Technologies Across Healthcare Settings" Diagnostics 15, no. 9: 1176. https://doi.org/10.3390/diagnostics15091176
APA StyleGomes, M., Provaggi, E., Pembe, A. B., Olaitan, A., & Gentry-Maharaj, A. (2025). Advancing Cervical Cancer Prevention Equity: Innovations in Self-Sampling and Digital Health Technologies Across Healthcare Settings. Diagnostics, 15(9), 1176. https://doi.org/10.3390/diagnostics15091176