Editorial for the Special Issue “Medical Data Processing and Analysis—2nd Edition”
Author Contributions
Funding
Conflicts of Interest
References
- Yean, C.W.; Ahmad, W.K.W.; Mustafa, W.A.; Murugappan, M.; Rajamanickam, Y.; Adom, A.H.; Omar, M.I.; Zheng, B.S.; Junoh, A.K.; Razlan, Z.M.; et al. An emotion assessment of stroke patients by using bispectrum features of EEG signals. Brain Sci. 2020, 10, 672. [Google Scholar] [CrossRef]
- Yin, P.; Yin, T.; Zhao, S.; Yu, S. Construction of a secure storage and sharing model for medical data under computer network technology. Appl. Math. Nonlinear Sci. 2024, 9, 888. [Google Scholar] [CrossRef]
- Alsalatie, M.; Alquran, H.; Mustafa, W.A.; Mohd Yacob, Y.; Ali Alayed, A. Analysis of Cytology Pap Smear Images Based on Ensemble Deep Learning Approach. Diagnostics 2022, 12, 2756. [Google Scholar] [CrossRef]
- Budd, S.; Robinson, E.C.; Kainz, B. A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med. Image Anal. 2021, 71, 102062. [Google Scholar] [CrossRef] [PubMed]
- van der Velden, B.H.M.; Kuijf, H.J.; Gilhuijs, K.G.A.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef] [PubMed]
- Qu, J. Blockchain in medical informatics. J. Ind. Inf. Integr. 2022, 25, 100258. [Google Scholar] [CrossRef]
- Schaefer, J.; Lehne, M.; Schepers, J.; Prasser, F.; Thun, S. The use of machine learning in rare diseases: A scoping review. Orphanet J. Rare Dis. 2020, 15, 145. [Google Scholar] [CrossRef]
- Chittora, P.; Chaurasia, S.; Chakrabarti, P.; Kumawat, G.; Chakrabarti, T.; Leonowicz, Z.; Jasinski, M.; Jasinski, L.; Gono, R.; Jasinska, E.; et al. Prediction of Chronic Kidney Disease—A Machine Learning Perspective. IEEE Access 2021, 9, 17312–17334. [Google Scholar] [CrossRef]
- Kaur, C.; Kumar, M.S.; Anjum, A.; Binda, M.B.; Mallu, M.R.; Ansari, M.S. Al Chronic Kidney Disease Prediction Using Machine Learning. J. Adv. Inf. Technol. 2023, 14, 384–391. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Halim, A.; Jamlos, M.A.; Syed Idrus, Z.S. A Review: Pap Smear Analysis Based on Image Processing Approach. J. Phys. Conf. Ser. 2020, 1529, 1–13. [Google Scholar] [CrossRef]
- Mustafa, W.A.B.W.; Yazid, H.; Yaacob, S.B.; Basah, S.N. Bin Blood vessel extraction using morphological operation for diabetic retinopathy. In Proceedings of the 2014 IEEE Region 10 Symposium, Kuala Lumpur, Malaysia, 14–16 April 2014; pp. 208–212. [Google Scholar] [CrossRef]
- Tur, K. Multi-Modal Machine Learning Approach for COVID-19 Detection Using Biomarkers and X-Ray Imaging. Diagnostics 2024, 14, 2800. [Google Scholar] [CrossRef]
- Jeon, I.; Kim, M.; So, D.; Kim, E.Y.; Nam, Y.; Kim, S.; Shim, S.; Kim, J.; Moon, J. Reliable Autism Spectrum Disorder Diagnosis for Pediatrics Using Machine Learning and Explainable AI. Diagnostics 2024, 14, 2504. [Google Scholar] [CrossRef]
- Gasmi, K.; Ayadi, H.; Torjmen, M. Enhancing Medical Image Retrieval with UMLS-Integrated CNN-Based Text Indexing. Diagnostics 2024, 14, 1204. [Google Scholar] [CrossRef] [PubMed]
- Mosqueira-Rey, E.; Hernández-Pereira, E.; Bobes-Bascarán, J.; Alonso-Ríos, D.; Pérez-Sánchez, A.; Fernández-Leal, Á.; Moret-Bonillo, V.; Vidal-Ínsua, Y.; Vázquez-Rivera, F. Addressing the data bottleneck in medical deep learning models using a human-in-the-loop machine learning approach. Neural Comput. Appl. 2024, 36, 2597–2616. [Google Scholar] [CrossRef]
- Singh, K.N.; Mantri, J.K. Clinical decision support system based on RST with machine learning for medical data classification. Multimed. Tools Appl. 2024, 83, 39707–39730. [Google Scholar] [CrossRef]
- Hussain, M.J.; Mishra, A. Transforming Public Health with AI and Big Data Deep Learning for COVID-19 Detection in Medical Imaging. J. Intell. Syst. Internet Things 2025, 16, 42–59. [Google Scholar] [CrossRef]
- Paccoud, I.; Valero, M.M.; Marín, L.C.; Bontridder, N.; Ibrahim, A.; Winkler, J.; Fomo, M.; Sapienza, S.; Khoury, F.; Corvol, J.-C.; et al. Patient perspectives on the use of digital medical devices and health data for AI-driven personalised medicine in Parkinson’s Disease. Front. Neurol. 2024, 15, 1453243. [Google Scholar] [CrossRef]
- Affum, E.; Enchill, M. Data Confidentiality in Machine Learning: Exploring Multivariate Regression and Its Application on Encrypted Medical Data. SN Comput. Sci. 2024, 5, 335. [Google Scholar] [CrossRef]
- Pham, A.N.Q.; Barber, C.E.H.; Drummond, N.; Jasper, L.; Klein, D.; Lindeman, C.; Widdifield, J.; Williamson, T.; Jones, C.A. Development and validation of a rheumatoid arthritis case definition: A machine learning approach using data from primary care electronic medical records. BMC Med. Inform. Decis. Mak. 2024, 24, 360. [Google Scholar] [CrossRef]
- Hakkoum, H.; Idri, A.; Abnane, I. Global and local interpretability techniques of supervised machine learning black box models for numerical medical data. Eng. Appl. Artif. Intell. 2024, 131, 107829. [Google Scholar] [CrossRef]
- Shakhovska, N.; Shebeko, A.; Prykarpatskyy, Y. A novel explainable ai model for medical data analysis. J. Artif. Intell. Soft Comput. Res. 2024, 14, 121–137. [Google Scholar] [CrossRef]
- Holm, S. Data-driven decisions about individual patients: The case of medical AI. J. Eval. Clin. Pract. 2024, 30, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.D.I.; Zamzmi, G.; Mouton, P.R.; Salekin, M.D.S.; Sun, Y.; Goldgof, D. Explainable AI for Medical Data: Current Methods, Limitations, and Future Directions. ACM Comput. Surv. 2025, 57, 148. [Google Scholar] [CrossRef]
- Park, Y.-T.; Kim, D.; Jeon, J.S.; Kim, K.G. Predictors of Medical and Dental Clinic Closure by Machine Learning Methods: Cross-Sectional Study Using Empirical Data. J. Med. Internet Res. 2024, 26, e46608. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, S.; Jain, P.K.; Al-Sharify, N.T.; Ghosh, S.; Dubey, D.; Kaur, G. Medical data analysis and transaction type prediction using machine learning and blockchain technology. IET Blockchain 2025, 5, e70001. [Google Scholar] [CrossRef]
- Khan, A.A.; Laghari, A.A.; Baqasah, A.M.; Bacarra, R.; Alroobaea, R.; Alsafyani, M.; Alsayaydeh, J.A.J. BDLT-IoMT—A novel architecture: SVM machine learning for robust and secure data processing in Internet of Medical Things with blockchain cybersecurity. J. Supercomput. 2025, 81, 271. [Google Scholar] [CrossRef]
- Karthiyayini, S.; John Simon Christopher, J.; Sheik Arafat, I.; Syed Moomin, F.M.H. Enhanced Model for Medical Image Data Security Using Machine Learning. SN Comput. Sci. 2024, 5, 1103. [Google Scholar] [CrossRef]
- Alyahyan, S. Applying machine learning classification techniques for disease diagnosis from medical imaging data using Transformer based Attention Guided CNN (TAGCNN). Multimed. Tools Appl. 2024, 83, 72861–72887. [Google Scholar] [CrossRef]
- Salman, O.S.; Latiff, N.M.A.; Arifin, S.H.S.; Salman, O.H. Early Triage Prediction for Outpatient Care Based on Heterogeneous Medical Data Utilizing Machine Learning. Pertanika J. Sci. Technol. 2024, 32, 2343–2367. [Google Scholar] [CrossRef]
- Kural, K.C.; Mazo, I.; Walderhaug, M.; Santana-Quintero, L.; Karagiannis, K.; Thompson, E.E.; Kelman, J.A.; Goud, R. Using machine learning to improve anaphylaxis case identification in medical claims data. JAMIA Open 2024, 7, ooae037. [Google Scholar] [CrossRef]
- Ong Ly, C.; Unnikrishnan, B.; Tadic, T.; Patel, T.; Duhamel, J.; Kandel, S.; Moayedi, Y.; Brudno, M.; Hope, A.; Ross, H.; et al. Shortcut learning in medical AI hinders generalization: Method for estimating AI model generalization without external data. NPJ Digit. Med. 2024, 7, 124. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, W.A.; Alquran, H. Editorial for the Special Issue “Medical Data Processing and Analysis—2nd Edition”. Diagnostics 2025, 15, 1170. https://doi.org/10.3390/diagnostics15091170
Mustafa WA, Alquran H. Editorial for the Special Issue “Medical Data Processing and Analysis—2nd Edition”. Diagnostics. 2025; 15(9):1170. https://doi.org/10.3390/diagnostics15091170
Chicago/Turabian StyleMustafa, Wan Azani, and Hiam Alquran. 2025. "Editorial for the Special Issue “Medical Data Processing and Analysis—2nd Edition”" Diagnostics 15, no. 9: 1170. https://doi.org/10.3390/diagnostics15091170
APA StyleMustafa, W. A., & Alquran, H. (2025). Editorial for the Special Issue “Medical Data Processing and Analysis—2nd Edition”. Diagnostics, 15(9), 1170. https://doi.org/10.3390/diagnostics15091170