Flash Glucose Monitoring for Predicting Cardiogenic Shock Occurrence in Critically Ill Patients: A Retrospective Pilot Study
Abstract
:1. Introduction
2. Cardiogenic Shock and Hypoglycemia
3. Materials and Methods
3.1. Study Subjects
3.2. Glycemic and Vital Signs Measurements
3.3. Statistical Analysis
4. Results
5. Discussion
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krakauer, M.; Botero, J.F.; Lavalle-González, F.J.; Proietti, A.; Barbieri, D.E. A Review of Flash Glucose Monitoring in Type 2 Diabetes. Diabetol. Metab. Syndr. 2021, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Battelino, T.; Alexander, C.M.; Amiel, S.A.; Arreaza-Rubin, G.; Beck, R.W.; Bergenstal, R.M.; Buckingham, B.A.; Carroll, J.; Ceriello, A.; Chow, E.; et al. Continuous Glucose Monitoring and Metrics for Clinical Trials: An International Consensus Statement. Lancet Diabetes Endocrinol. 2023, 11, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Long, D.; Yang, Y.; Wang, Q.; Wu, Q.; Zhang, Q. Diabetic Peripheral Neuropathy and Glycemic Variability Assessed by Continuous Glucose Monitoring: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2024, 213, 111757. [Google Scholar] [CrossRef]
- Huang, L.; Pan, Y.; Zhou, K.; Liu, H.; Zhong, S. Correlation between Glycemic Variability and Diabetic Complications: A Narrative Review. Int. J. Gen. Med. 2023, 16, 3083–3094. [Google Scholar] [CrossRef]
- Belli, M.; Bellia, A.; Sergi, D.; Barone, L.; Lauro, D.; Barillà, F. Glucose Variability: A New Risk Factor for Cardiovascular Disease. Acta Diabetol. 2023, 60, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Ancona, P.; Eastwood, G.M.; Lucchetta, L.; Ekinci, E.I.; Bellomo, R.; Mårtensson, J. The Performance of Fl Ash Glucose Monitoring in Critically Ill Patients with Diabetes. Crit. Care Resusc. 2017, 19, 167–174. [Google Scholar] [CrossRef]
- Naraba, H.; Goto, T.; Tokuda, M.; Sonoo, T.; Nakano, H.; Takahashi, Y.; Hashimoto, H.; Nakamura, K. Accuracy and Stability of a Subcutaneous Flash Glucose Monitoring System in Critically Ill Patients. J. Diabetes Sci. Technol. 2022, 16, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Zelada, H.; Perez-Guzman, M.C.; Chernavvsky, D.R.; Galindo, R.J. Continuous Glucose Monitoring for Inpatient Diabetes Management: An Update on Current Evidence and Practice. Endocr. Connect. 2023, 12, e230180. [Google Scholar] [CrossRef]
- Rigon, F.A.; Ronsoni, M.F.; Vianna, A.G.D.; Schiavon, L.d.L.; Hohl, A.; Sande-Lee, S. van de Flash Glucose Monitoring System in Special Situations. Arch. Endocrinol. Metab. 2022, 66, 883–894. [Google Scholar]
- Hryciw, B.N.; Ghossein, J.; Rochwerg, B.; Meggison, H.; Fernando, S.M.; Kyeremanteng, K.; Tran, A.; Seely, A.J. Glycemic Variability as a Prognostic Factor for Mortality in Patients with Critical Illness: A Systematic Review and Meta-Analysis. Crit. Care Explor. 2024, 6, e1025. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Y.-H.; Zheng, W.-H.; Huang, H.-B. Subcutaneous Continuous Glucose Monitoring in Critically Ill Patients during Insulin Therapy: A Meta-Analysis. Am. J. Transl. Res. 2022, 14, 4757. [Google Scholar] [PubMed]
- Vedantam, D.; Poman, D.S.; Motwani, L.; Asif, N.; Patel, A.; Anne, K.K. Stress-Induced Hyperglycemia: Consequences and Management. Cureus 2022, 14, e26714. [Google Scholar] [CrossRef]
- Ferrari, F.; Moretti, A.; Villa, R.F. Hyperglycemia in Acute Ischemic Stroke: Physiopathological and Therapeutic Complexity. Neural Regen. Res. 2022, 17, 292–299. [Google Scholar]
- Altabas, V.; Altabas, K.; Berković-Cigrovski, M.; Maloševac, S.; Vrkljan, M.; Nikolić Heitzler, V. Glucose Metabolism Disorders in Patients with Acute Coronary Syndromes. Acta Clin. Croat. 2012, 51, 71–77. [Google Scholar] [PubMed]
- Bar-Or, D.; Rael, L.T.; Madayag, R.M.; Banton, K.L.; Tanner, A.; Acuna, D.L.; Lieser, M.J.; Marshall, G.T.; Mains, C.W.; Brody, E. Stress Hyperglycemia in Critically Ill Patients: Insight into Possible Molecular Pathways. Front. Med. 2019, 6, 54. [Google Scholar] [CrossRef]
- Chen, H.; Xing, H.; Fang, F.; Fan, B.; Chen, P. Influence of Stress Hyperglycemia on ICU Patients with Infections. Chin. J. Nosocomiology 2018, 28, 2481–2485. [Google Scholar]
- Malik, A.H.; Yandrapalli, S.; Aronow, W.S.; Jain, D.; Frishman, W.H.; Panza, J.A.; Cooper, H.A. Severe Hypoglycemia and Risk of Subsequent Cardiovascular Events: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cardiol. Rev. 2020, 28, 244–249. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diabetes Care in the Hospital: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S295–S306. [Google Scholar] [CrossRef]
- Jung, C.; Bruno, R.R.; Jumean, M.; Price, S.; Krychtiuk, K.A.; Ramanathan, K.; Dankiewicz, J.; French, J.; Delmas, C.; Mendoza, A.-A.; et al. Management of Cardiogenic Shock: State-of-the-Art. Intensive Care Med. 2024, 50, 1814–1829. [Google Scholar] [CrossRef]
- Lüsebrink, E.; Binzenhöfer, L.; Adamo, M.; Lorusso, R.; Mebazaa, A.; Morrow, D.A.; Price, S.; Jentzer, J.C.; Brodie, D.; Combes, A.; et al. Cardiogenic Shock. Lancet 2024, 404, 2006–2020. [Google Scholar] [CrossRef]
- Thiele, H.; de Waha-Thiele, S.; Freund, A.; Zeymer, U.; Desch, S.; Fitzgerald, S. Management of Cardiogenic Shock. EuroIntervention 2021, 17, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Bertini, P.; Guarracino, F. Pathophysiology of Cardiogenic Shock. Curr. Opin. Crit. Care 2021, 27, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Siopi, S.A.; Antonitsis, P.; Karapanagiotidis, G.T.; Tagarakis, G.; Voucharas, C.; Anastasiadis, K. Cardiac Failure and Cardiogenic Shock: Insights into Pathophysiology, Classification, and Hemodynamic Assessment. Cureus 2024, 16, e72106. [Google Scholar] [CrossRef]
- Iborra-Egea, O.; Rueda, F.; García-García, C.; Borràs, E.; Sabido, E.; Bayes-Genis, A. Molecular Signature of Cardiogenic Shock. Eur. Heart J. 2020, 41, 3839–3848. [Google Scholar] [CrossRef]
- Sun, Q.; Karwi, Q.G.; Wong, N.; Lopaschuk, G.D. Advances in Myocardial Energy Metabolism: Metabolic Remodelling in Heart Failure and Beyond. Cardiovasc. Res. 2024, 120, 1996–2016. [Google Scholar] [CrossRef] [PubMed]
- Diakos, N.A.; Navankasattusas, S.; Abel, E.D.; Rutter, J.; McCreath, L.; Ferrin, P.; McKellar, S.H.; Miller, D.V.; Park, S.Y.; Richardson, R.S.; et al. Evidence of Glycolysis Up-Regulation and Pyruvate Mitochondrial Oxidation Mismatch during Mechanical Unloading of the Failing Human Heart: Implications for Cardiac Reloading and Conditioning. JACC Basic Transl. Sci. 2016, 1, 432–444. [Google Scholar] [CrossRef]
- Yuen, T.; Senaratne, J.M. Definition, Classification, and Management of Primary Non-Cardiac Causes of Cardiogenic Shock. Can. J. Cardiol. 2024, in press. [Google Scholar] [CrossRef]
- Pratiwi, C.; Mokoagow, M.I.; Kshanti, I.A.M.; Soewondo, P. The Risk Factors of Inpatient Hypoglycemia: A Systematic Review. Heliyon 2020, 6, e03913. [Google Scholar] [CrossRef]
- Yeh, H.-F.; Chao, W.-C.; Wu, C.-L.; Chan, M.-C. Hypoglycemia and Hospital Mortality in Critically Ill Patients. Sci. Rep. 2025, 15, 2642. [Google Scholar] [CrossRef]
- Naidu, S.S.; Baran, D.A.; Jentzer, J.C.; Hollenberg, S.M.; van Diepen, S.; Basir, M.B.; Grines, C.L.; Diercks, D.B.; Hall, S.; Kapur, N.K.; et al. SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies: This Statement Was Endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021. J. Am. Coll. Cardiol. 2022, 79, 933–946. [Google Scholar]
- Levin, A.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. Executive Summary of the KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease: Known Knowns and Known Unknowns. Kidney Int. 2024, 105, 684–701. [Google Scholar] [CrossRef] [PubMed]
- Nakhleh, A.; Shehadeh, N. Hypoglycemia in Diabetes: An Update on Pathophysiology, Treatment, and Prevention. World J. Diabetes 2021, 12, 2036. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Chen, L.L. Hypoglycemia in Critically Ill Patients: A Concise Clinical Review. Crit. Care Nurs. Q. 2024, 47, 270–274. [Google Scholar] [CrossRef]
- Shao, Y.; Shao, F.; Zhou, J.; Fang, S.; Zhu, J.; Li, F. The Association between Hypoglycemia and Mortality in Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Adv. Clin. Exp. Med. Off. Organ Wroclaw Med. Univ. 2024, 33, 197–205. [Google Scholar] [CrossRef]
- The ADVANCE Collaborative Group. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef]
- Bonds, D.E.; Miller, M.E.; Bergenstal, R.M.; Buse, J.B.; Byington, R.P.; Cutler, J.A.; Dudl, R.J.; Ismail-Beigi, F.; Kimel, A.R.; Hoogwerf, B.; et al. The Association between Symptomatic, Severe Hypoglycaemia and Mortality in Type 2 Diabetes: Retrospective Epidemiological Analysis of the ACCORD Study. Bmj 2010, 340, b4909. [Google Scholar] [CrossRef] [PubMed]
- Seaquist, E.R.; Miller, M.E.; Bonds, D.E.; Feinglos, M.; Goff Jr, D.C.; Peterson, K.; Senior, P.; Investigators, A. The Impact of Frequent and Unrecognized Hypoglycemia on Mortality in the ACCORD Study. Diabetes Care 2012, 35, 409–414. [Google Scholar] [CrossRef]
- Zoungas, S.; Patel, A.; Chalmers, J.; De Galan, B.E.; Li, Q.; Billot, L.; Woodward, M.; Ninomiya, T.; Neal, B.; MacMahon, S.; et al. Severe Hypoglycemia and Risks of Vascular Events and Death. N. Engl. J. Med. 2010, 363, 1410–1418. [Google Scholar] [CrossRef]
- Seibold, A.; Brines, R. Comment on Grino et al: Suitability of Flash Glucose Monitoring for Detection of Hypoglycemia. J. Diabetes Sci. Technol. 2019, 13, 607–608. [Google Scholar] [CrossRef]
- Contreras, M.; Mesa, A.; Pueyo, I.; Claro, M.; Milad, C.; Viñals, C.; Roca, D.; Granados, M.; Giménez, M.; Conget, I. Effectiveness of Flash Glucose Monitoring in Patients with Type 1 Diabetes and Recurrent Hypoglycemia between Early and Late Stages after Flash Glucose Monitoring Initiation. J. Diabetes Complicat. 2023, 37, 108560. [Google Scholar] [CrossRef]
- Amiel, S.A.; Aschner, P.; Childs, B.; Cryer, P.E.; de Galan, B.E.; Frier, B.M.; Gonder-Frederick, L.; Heller, S.R.; Jones, T.; Khunti, K.; et al. Hypoglycaemia, Cardiovascular Disease, and Mortality in Diabetes: Epidemiology, Pathogenesis, and Management. Lancet Diabetes Endocrinol. 2019, 7, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Rana, O.; Byrne, C.D.; Kerr, D.; Coppini, D.V.; Zouwail, S.; Senior, R.; Begley, J.; Walker, J.J.; Greaves, K. Acute Hypoglycemia Decreases Myocardial Blood Flow Reserve in Patients with Type 1 Diabetes Mellitus and in Healthy Humans. Circulation 2011, 124, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mendoza-Elias, J.; Qi, M.; Harvat, T.; Ahn, S.; Lee, D.; Gutierrez, D.; Jeon, H.; Paushter, D.; Oberholzer, J. Implication of Mitochondrial Cytoprotection in Human Islet Isolation and Transplantation. Biochem. Res. Int. 2012, 2012, 395974. [Google Scholar] [CrossRef]
- Davis, T.M.; Dwyer, P.; England, M.; Fegan, P.G.; Davis, W.A. Efficacy of Intermittently Scanned Continuous Glucose Monitoring in the Prevention of Recurrent Severe Hypoglycemia. Diabetes Technol. Ther. 2020, 22, 367–373. [Google Scholar] [CrossRef]
- Egi, M.; Bellomo, R.; Stachowski, E.; French, C.J.; Hart, G.K.; Taori, G.; Hegarty, C.; Bailey, M. Hypoglycemia and Outcome in Critically Ill Patients. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2010; Volume 85, pp. 217–224. [Google Scholar]
- The NICE SUGAR Study Investigators. Intensive versus Conventional Glucose Control in Critically Ill Patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar] [CrossRef]
- Ma, H.; Yu, G.; Wang, Z.; Zhou, P.; Lv, W. Association between Dysglycemia and Mortality by Diabetes Status and Risk Factors of Dysglycemia in Critically Ill Patients: A Retrospective Study. Acta Diabetol. 2022, 59, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Krinsley, J.; Schultz, M.; Spronk, P.; Harmsen, R.; van Braam Houckgeest, F.; Van der Sluijs, J.; Mélot, C.; Preiser, J.C. Mild Hypoglycemia Is Independently Associated with Increased Mortality in the Critically Ill. Crit. Care 2011, 15, 1–190. [Google Scholar] [CrossRef]
- Saliba, L.; Cook, C.H.; Dungan, K.M.; Porter, K.; Murphy, C.V. Medication-Induced and Spontaneous Hypoglycemia Carry the Same Risk for Hospital Mortality in Critically Ill Patients. J. Crit. Care 2016, 36, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Mancini, G.; Berioli, M.G.; Santi, E.; Rogari, F.; Toni, G.; Tascini, G.; Crispoldi, R.; Ceccarini, G.; Esposito, S. Flash Glucose Monitoring: A Review of the Literature with a Special Focus on Type 1 Diabetes. Nutrients 2018, 10, 992. [Google Scholar] [CrossRef]
- Baghel, A.; Nigam, A.; Gupta, N. Demystifying Glycemic Variability in GDM Pregnancies: A Cross-Sectional Observational Study. J. Obstet. Gynecol. India 2024, 1–7. [Google Scholar] [CrossRef]
- Eastman, D.; Butler, J.; Dicken, S.; Bottenberg, M. Insulin Therapy for Hyperglycemia Management in Critically Ill Patients. J. Diabetes Mellit. 2021, 11, 317–327. [Google Scholar] [CrossRef]
- Lee, M.M.; Sattar, N. A Review of Current Key Guidelines for Managing High-Risk Patients with Diabetes and Heart Failure and Future Prospects. Diabetes Obes. Metab. 2023, 25, 33–47. [Google Scholar] [CrossRef]
- Venditti, V.; Bleve, E.; Morano, S.; Filardi, T. Gender-Related Factors in Medication Adherence for Metabolic and Cardiovascular Health. Metabolites 2023, 13, 1087. [Google Scholar] [CrossRef]
- Fisher, T.; Hill, N.; Kalakoutas, A.; Lahlou, A.; Rathod, K.; Proudfoot, A.; Warren, A. Sex Differences in Treatments and Outcomes of Patients with Cardiogenic Shock: A Systematic Review and Epidemiological Meta-Analysis. Crit. Care 2024, 28, 192. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, A.; Brignoli, A.; Ponziani, M.C.; Zavattaro, M.; Prodam, F.; Castello, L.M.; Avanzi, G.C.; Marzullo, P.; Aimaretti, G. Aging and Comorbidities Influence the Risk of Hospitalization and Mortality in Diabetic Patients Experiencing Severe Hypoglycemia. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 160–166. [Google Scholar] [CrossRef]
- Kataja, A.; Tarvasmäki, T.; Lassus, J.; Cardoso, J.; Mebazaa, A.; Køber, L.; Sionis, A.; Spinar, J.; Carubelli, V.; Banaszewski, M.; et al. The Association of Admission Blood Glucose Level with the Clinical Picture and Prognosis in Cardiogenic Shock–Results from the CardShock Study. Int. J. Cardiol. 2017, 226, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Preiser, J.-C.; Chase, J.G.; Hovorka, R.; Joseph, J.I.; Krinsley, J.S.; De Block, C.; Desaive, T.; Foubert, L.; Kalfon, P.; Pielmeier, U.; et al. Glucose Control in the ICU: A Continuing Story. J. Diabetes Sci. Technol. 2016, 10, 1372–1381. [Google Scholar] [CrossRef]
- Chioncel, O.; Parissis, J.; Mebazaa, A.; Thiele, H.; Desch, S.; Bauersachs, J.; Harjola, V.-P.; Antohi, E.-L.; Arrigo, M.; Ben Gal, T.; et al. Epidemiology, Pathophysiology and Contemporary Management of Cardiogenic Shock–a Position Statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1315–1341. [Google Scholar] [CrossRef]
- Mantena, S.; Arévalo, A.R.; Maley, J.H.; da Silva Vieira, S.M.; Mateo-Collado, R.; da Costa Sousa, J.M.; Celi, L.A. Predicting Hypoglycemia in Critically Ill Patients Using Machine Learning and Electronic Health Records. J. Clin. Monit. Comput. 2022, 36, 1297–1303. [Google Scholar] [CrossRef]
- Leelarathna, L.; English, S.W.; Thabit, H.; Caldwell, K.; Allen, J.M.; Kumareswaran, K.; Wilinska, M.E.; Nodale, M.; Mangat, J.; Evans, M.L.; et al. Feasibility of Fully Automated Closed-Loop Glucose Control Using Continuous Subcutaneous Glucose Measurements in Critical Illness: A Randomized Controlled Trial. Crit. Care 2013, 17, R159. [Google Scholar] [CrossRef]
- Guerrero-Arroyo, L.; Faulds, E.; Perez-Guzman, M.C.; Davis, G.M.; Dungan, K.; Pasquel, F.J. Continuous Glucose Monitoring in the Intensive Care Unit. J. Diabetes Sci. Technol. 2023, 17, 667–678. [Google Scholar] [CrossRef] [PubMed]
With Hypoglycemia Registered with FGM (N = 18) | Without Hypoglycemia Registered with FGM (N = 10) | Total Population | p (Mann Withney U Test, * χ2 Test) | |
---|---|---|---|---|
Age (years) | 75 (IQR 71–81) | 75 (IQR 67–81) | 75 (IQR 70–79) | 0.9283 |
Female gender | 2 (11.11%) | 6 (60%) | 8 (28.57%) | 0.0144 * |
Length of hospitalization (days) | 17 (IQR 7–24) | 9 (IQR 6–13) | 9 (IQR 6–21) | 0.2585 |
History of diabetes | 9 (50.00%) | 9 (90.00%) | 18 (64.29%) | 0.0917 * |
History of hypertension | 11 (61.11%) | 7 (70.00%) | 18 (64.29%) | 0.7961 * |
Coronary artery disease | 13 (72.22%) | 5 (50.00%) | 18 (64.29%) | 0.2044 * |
Chronic heart failure | 13 (72.22%) | 6 (60.00%) | 19 (67.86%) | 0.6383 * |
Chronic renal disease | 12 (66.67%) | 7 (70.00%) | 19 (67.86%) | 0.8367 * |
Liver disease | 0 (0%) | 1 (10.00%) | 1 (3.57%) | 0.6961 * |
Systolic blood pressure at admission (mmHg) | 130 (IQR 110–150) | 120 (IQR 110–145) | 125 (IQR 110–150) | 0.9045 |
Pulse at admission (min−1) | 90 (IQR 80–105) | 85 (IQR 70–107) | 90 (IQR 76–105) | 0.5619 |
Hemoglobin at admission (g/L) | 128 (IQR 99–136) | 110 (IQR 91–140) | 121 (IQR 99–140) | 0.5485 |
Blood glucose at admission (mmol/L) | 12.5 (IQR 8.0–13.1) | 10.1 (IQR 7.2–14.4) | 11.5 (IQR 7.2–13.1) | 0.2585 |
Serum creatinine at admission (μg/L) | 105 (IQR 94–134) | 149 (IQR 109–226) | 125 (IQR 95–186) | 0.1074 |
APACHE IV score | 63 (IQR 54–72) | 57 (IQR 45–72) | 62 (IQR 49–80) | 0.7414 |
Ejection fraction (%) | 35 (IQR 30–50) | 42 (IQR 35–50) | 40 (IQR 30–50) | 0.2041 |
Hypoglycemia in standard glucose monitoring | 5 (27.78%) | 1 (10.00%) | 6 (21.43%) | 0.4887 * |
Mean FGM glucose (mmol/L) | 6.5 (IQR 5.1–7.7) | 7.8 (IQR 7.4–9.1) | 7.2 (IQR 5.4–9.2) | 0.0214 |
glucovariability | 23.7 (IQR 20.5–33.6) | 21.9 (IQR 16.8–28.3) | 23.7 (IQR 18.5–29.3) | 0.4413 |
TIR/% | 78 (IQR 53–94) | 65 (IQR 27–97) | 78 (IQR 51–94) | 0.9442 |
TBR/% | 8 (IQR 3–19) | 0 (IQR 0–0) | 2 (IQR 0–11) | <0.0001 |
TITR/% | 68 (IQR 36–79) | 57 (IQR 15–68) | 65 (IQR 20–79) | 0.3030 |
In-hospital insulin use | 11(61.11%) | 7(70.00%) | 18(64.29%) | 0.6381 * |
Shock occurence | 12 (66.67%) | 1(10.00%) | 13 (46.43%) | 0.0268 * |
Death | 10 (55.56%) | 7 (70.00%) | 17 (60.71%) | 0.1198 * |
Patients Who Developed Shock (N = 13) | Patients Who Did Not Develop Shock (N = 15) | Total Population (n = 28) | p (Mann Withney U Test, * χ2 Test) | |
---|---|---|---|---|
Age/years | 73 (IQR 68–81) | 77 (IQR 71–79) | 75 (IQR 70–79) | 0.6455 |
Female gender | 2 (15.38%) | 6 (40.00%) | 8 (28.57%) | 0.3084 * |
Length of hospitalization/days | 17 (IQR 7–22) | 9 (IQR 6–14) | 9 (IQR 6–21) | 0.2150 |
History of diabetes | 6 (46.15%) | 12 (80.00%) | 18 (64.29%) | 0.1419 * |
History of hypertension | 7 (53.85%) | 11 (73.33%) | 18 (64.29%) | 0.4978 * |
Coronary artery disease | 10 (76.92%) | 8 (53.33%) | 18 (64.29%) | 0.3661 * |
Congestive heart failure | 11 (84.62%) | 8 (53.33%) | 19 (67.86%) | 0.1732 * |
Chronic renal disease | 11 (84.62%) | 8 (53.33%) | 19 (67.86%) | 0.1732 * |
Liver disease | 1 (7.69%) | 0 (0.00%) | 1 (3.57%) | 0.3415 * |
Systolic blood pressure at admission/mmHg | 110 (IQR 100–130) | 140 (IQR 120–160) | 120 (IQR 110–145) | 0.0767 |
Pulse at admission/ min−1 | 90 (IQR 76–105) | 89 (IQR 80–107) | 90 (IQR 79–105) | 0.7114 |
Hemoglobin at admission | 123 (IQR 99–129) | 136(IQR 101–143) | 120 (IQR 99–136) | 0.4354 |
Blood glucose at admission/mmol/L | 9.0 (IQR 6.6–12.2) | 12.2 (IQR 8.0–14.4) | 11.5 (IQR 7.2–13.1) | 0.0969 |
Serum creatinine at admission/μg/L | 105 (IQR 95–186) | 133 (IQR 100–226) | 133 (IQR 100–213) | 0.4902 |
APACHE IV score | 63 (IQR 56–114) | 54 (IQR 38–72) | 62 (IQR 49–83) | 0.2301 |
Ejection fraction/% | 35 (IQR 25–40) | 50 (IQR 35–55) | 40 (IQR 35–50) | 0.0164 |
Hypoglycemia in standard glucose monitoring | 5 (38.46%) | 1 (6.67%) | 6 (23.33%) | 0.1134 * |
Hypoglycemia reading in FGM | 12 (92.31%) | 6 (40.00%) | 18 (64.29%) | 0.0129 * |
Mean FGM glucose/mmol/L | 5.9 (IQR 5.1–8.3) | 7.5 (IQR 6.6–9.5) | 7.2 (IQR 5.4–9.2) | 0.1074 |
Glucovariability | 23.7 (IQR 17.7–29.3) | 25.1 (IQR 18.4–29.7) | 23.7 (IQR 18.5–29.3) | 0.8887 |
TIR/% | 81 (IQR 27–97) | 78 (IQR 55–94) | 78 (IQR 51–94) | 0.8026 |
TITR/% | 68 (IQR 23–79) | 57 (IQR 14–68) | 65 (IQR 20–79) | 0.3524 |
TBR/% | 6 (IQR 3–13) | 0 (IQR 0–3) | 2 (IQR 0–11) | 0.0093 |
In-hospital insulin use | 7(53.85%) | 11(73.33) | 18 (64.29%) | 0.2832 * |
Variable | p-Value | Odds Ratio | 95% Confidence Interval |
---|---|---|---|
LVEF | 0.0390 | 0.9058 | 0.8246–0.9950 |
Hypoglycemia in FGM | 0.0217 | 20.4481 | 1.5543–269.0104 |
Variable | p-Value | Odds Ratio | 95% Confidence Interval |
---|---|---|---|
LVEF | 0.0382 | 0.8318 | 0.6988–0.9900 |
Hypoglycemia in FGM | 0.0174 | 253.7483 | 2.6420–24370.7646 |
Gender | 0.1323 | 0.0378 | 0.0005–2.6912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altabas, V.; Babić, D.; Grulović, A.; Bulum, T.; Babić, Z. Flash Glucose Monitoring for Predicting Cardiogenic Shock Occurrence in Critically Ill Patients: A Retrospective Pilot Study. Diagnostics 2025, 15, 685. https://doi.org/10.3390/diagnostics15060685
Altabas V, Babić D, Grulović A, Bulum T, Babić Z. Flash Glucose Monitoring for Predicting Cardiogenic Shock Occurrence in Critically Ill Patients: A Retrospective Pilot Study. Diagnostics. 2025; 15(6):685. https://doi.org/10.3390/diagnostics15060685
Chicago/Turabian StyleAltabas, Velimir, Dorijan Babić, Anja Grulović, Tomislav Bulum, and Zdravko Babić. 2025. "Flash Glucose Monitoring for Predicting Cardiogenic Shock Occurrence in Critically Ill Patients: A Retrospective Pilot Study" Diagnostics 15, no. 6: 685. https://doi.org/10.3390/diagnostics15060685
APA StyleAltabas, V., Babić, D., Grulović, A., Bulum, T., & Babić, Z. (2025). Flash Glucose Monitoring for Predicting Cardiogenic Shock Occurrence in Critically Ill Patients: A Retrospective Pilot Study. Diagnostics, 15(6), 685. https://doi.org/10.3390/diagnostics15060685