Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design, Setting, and Ethics
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.4. Surgical Procedures
2.4.1. Epi-Off CXL
2.4.2. Epi-On CXL
2.4.3. Postoperative Management
2.5. Statistical Analysis
3. Results
3.1. Changes in Visual Acuity and Refraction
3.2. Changes in Endothelial Cell Density
3.3. Changes in Topographic Measurements
3.4. Epi-Off Versus Epi-On
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vazirani, J.; Basu, S. Keratoconus: Current perspectives. Clin. Ophthalmol. 2013, 7, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Barr, J.T.; Zadnik, K. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study: Methods and findings to date. Contact Lens Anterior Eye J. Br. Contact Lens Assoc. 2007, 30, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, T.; Funnell, C.L.; Cassels-Brown, A.; O’Conor, R. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. Eye 2004, 18, 379–383. [Google Scholar] [CrossRef]
- Nielsen, K.; Hjortdal, J.; Aagaard Nohr, E.; Ehlers, N. Incidence and prevalence of keratoconus in Denmark. Acta Ophthalmol. Scand. 2007, 85, 890–892. [Google Scholar] [CrossRef]
- Kennedy, R.H.; Bourne, W.M.; Dyer, J.A. A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 1986, 101, 267–273. [Google Scholar] [CrossRef]
- Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, Y.S. Diagnosing keratoconus and patients at risk. Cataract. Refract. Surg Today May 2007, 85–87. [Google Scholar]
- Levy, D.; Hutchings, H.; Rouland, J.F.; Guell, J.; Burillon, C.; Arné, J.L.; Colin, J.; Laroche, L.; Montard, M.; Delbosc, B.; et al. Videokeratographic anomalies in familial keratoconus. Ophthalmology 2004, 111, 867–874. [Google Scholar] [CrossRef]
- Funderburgh, J.L.; Panjwani, N.; Conrad, G.W.; Baum, J. Altered keratan sulfate epitopes in keratoconus. Investig. Ophthalmol. Vis. Sci. 1989, 30, 2278–2281. [Google Scholar]
- Sawaguchi, S.; Yue, B.Y.; Chang, I.; Sugar, J.; Robin, J. Proteoglycan molecules in keratoconus corneas. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1846–1853. [Google Scholar]
- Sawaguchi, S.; Yue, B.Y.; Sugar, J.; Gilboy, J.E. Lysosomal enzyme abnormalities in keratoconus. Arch. Ophthalmol. 1989, 107, 1507–1510. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Sawaguchi, S.; Twining, S.S.; Sugar, J.; Feder, R.S.; Yue, B.Y. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1117–1124. [Google Scholar]
- Barnett, M.; Lee, K.; Mannis, M. Keratoconus: Diagnosis and Management With Spectacles and Contact Lenses. In Keratoconus; Elsevier: Amsterdam, The Netherlands, 2023; pp. 303–316. [Google Scholar]
- Rathi, V.M.; Krishnamachary, M.; Gupta, S. Cataract formation after penetrating keratoplasty. J. Cataract. Refract. Surg. 1997, 23, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Ing, J.J.; Ing, H.H.; Nelson, L.R.; Hodge, D.O.; Bourne, W.M. Ten-year postoperative results of penetrating keratoplasty. Ophthalmology 1998, 105, 1855–1865. [Google Scholar] [CrossRef]
- Antunes, V.A.C.; Possebom, H.M. Indications and Contraindications for Corneal Transplantation in Keratoconus. In Keratoconus: A Comprehensive Guide to Diagnosis and Treatment; Springer: Berlin/Heidelberg, Germany, 2022; pp. 869–880. [Google Scholar]
- Napolitano, P.; Tranfa, F.; D’Andrea, L.; Caruso, C.; Rinaldi, M.; Mazzucco, A.; Ciampa, N.; Melenzane, A.; Costagliola, C. Topographic Outcomes in Keratoconus Surgery: Epi-on versus Epi-off Iontophoresis Corneal Collagen Cross-Linking. J. Clin. Med. 2022, 11, 1785. [Google Scholar] [CrossRef]
- Caporossi, A.; Mazzotta, C.; Baiocchi, S.; Caporossi, T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: The Siena eye cross study. Am. J. Ophthalmol. 2010, 149, 585–593. [Google Scholar] [CrossRef]
- Ruyter, I.E. Composites-characterization of composite filling materials: Reactor response. Adv. Dent. Res. 1988, 2, 122–129; discussion 129–133. [Google Scholar] [CrossRef] [PubMed]
- Golomb, G.; Schoen, F.J.; Smith, M.S.; Linden, J.; Dixon, M.; Levy, R.J. The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am. J. Pathol. 1987, 127, 122–130. [Google Scholar]
- Spoerl, E.; Huhle, M.; Seiler, T. Induction of cross-links in corneal tissue. Exp. Eye Res. 1998, 66, 97–103. [Google Scholar] [CrossRef]
- Spörl, E.; Schreiber, J.; Hellmund, K.; Seiler, T.; Knuschke, P. Studies on the stabilization of the cornea in rabbits. Der Ophthalmol. Z. Der Dtsch. Ophthalmol. Ges. 2000, 97, 203–206. [Google Scholar] [CrossRef]
- Wollensak, G.; Spoerl, E.; Seiler, T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003, 135, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Asri, D.; Touboul, D.; Fournié, P.; Malet, F.; Garra, C.; Gallois, A.; Malecaze, F.; Colin, J. Corneal collagen crosslinking in progressive keratoconus: Multicenter results from the French National Reference Center for Keratoconus. J. Cataract. Refract. Surg. 2011, 37, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Doors, M.; Tahzib, N.G.; Eggink, F.A.; Berendschot, T.T.; Webers, C.A.; Nuijts, R.M. Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking. Am. J. Ophthalmol. 2009, 148, 844–851.e842. [Google Scholar] [CrossRef] [PubMed]
- Alnawaiseh, M.; Rosentreter, A.; Böhm, M.R.; Eveslage, M.; Eter, N.; Zumhagen, L. Accelerated (18 mW/cm2) Corneal Collagen Cross-Linking for Progressive Keratoconus. Cornea 2015, 34, 1427–1431. [Google Scholar] [CrossRef]
- Hashemi, H.; Fotouhi, A.; Miraftab, M.; Bahrmandy, H.; Seyedian, M.A.; Amanzadeh, K.; Heidarian, S.; Nikbin, H.; Asgari, S. Short-term comparison of accelerated and standard methods of corneal collagen crosslinking. J. Cataract. Refract. Surg. 2015, 41, 533–540. [Google Scholar] [CrossRef]
- O’Brart, D.P.; Chan, E.; Samaras, K.; Patel, P.; Shah, S.P. A randomised, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br. J. Ophthalmol. 2011, 95, 1519–1524. [Google Scholar] [CrossRef]
- Hersh, P.S.; Greenstein, S.A.; Fry, K.L. Corneal collagen crosslinking for keratoconus and corneal ectasia: One-year results. J. Cataract. Refract. Surg. 2011, 37, 149–160. [Google Scholar] [CrossRef]
- Agrawal, V.B. Corneal collagen cross-linking with riboflavin and ultraviolet—A light for keratoconus: Results in Indian eyes. Indian J. Ophthalmol. 2009, 57, 111–114. [Google Scholar] [CrossRef]
- Buzzonetti, L.; Petrocelli, G. Transepithelial corneal cross-linking in pediatric patients: Early results. J. Refract. Surg. 2012, 28, 763–767. [Google Scholar] [CrossRef]
- Ghanem, R.C.; Santhiago, M.R.; Berti, T.; Netto, M.V.; Ghanem, V.C. Topographic, corneal wavefront, and refractive outcomes 2 years after collagen crosslinking for progressive keratoconus. Cornea 2014, 33, 43–48. [Google Scholar] [CrossRef]
- Hayes, S.; O’Brart, D.P.; Lamdin, L.S.; Doutch, J.; Samaras, K.; Marshall, J.; Meek, K.M. Effect of complete epithelial debridement before riboflavin-ultraviolet-A corneal collagen crosslinking therapy. J. Cataract. Refract. Surg. 2008, 34, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Samaras, K.; O’Brart, D.P.; Doutch, J.; Hayes, S.; Marshall, J.; Meek, K.M. Effect of epithelial retention and removal on riboflavin absorption in porcine corneas. J. Refract. Surg. 2009, 25, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Filippello, M.; Stagni, E.; O’Brart, D. Transepithelial corneal collagen crosslinking: Bilateral study. J. Cataract. Refract. Surg. 2012, 38, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, R.; Spoerl, E.; Romano, M.R.; Rosetta, P.; Vinciguerra, P. Comparative stress strain measurements of human corneas after transepithelial UV-A induced cross-linking: Impregnation with iontophoresis, different riboflavin solutions and irradiance power. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1518. [Google Scholar]
- Buzzonetti, L.; Petrocelli, G.; Valente, P.; Iarossi, G.; Ardia, R.; Petroni, S.; Parrilla, R. Iontophoretic Transepithelial Collagen Cross-Linking Versus Epithelium-Off Collagen Cross-Linking in Pediatric Patients: 3-Year Follow-Up. Cornea 2019, 38, 859–863. [Google Scholar] [CrossRef]
- Henriquez, M.A.; Hernandez-Sahagun, G.; Camargo, J.; Izquierdo, L., Jr. Accelerated Epi-On Versus Standard Epi-Off Corneal Collagen Cross-Linking for Progressive Keratoconus in Pediatric Patients: Five Years of Follow-Up. Cornea 2020, 39, 1493–1498. [Google Scholar] [CrossRef]
- Cifariello, F.; Minicucci, M.; Di Renzo, F.; Di Taranto, D.; Coclite, G.; Zaccaria, S.; De Turris, S.; Costagliola, C. Epi-Off versus Epi-On Corneal Collagen Cross-Linking in Keratoconus Patients: A Comparative Study through 2-Year Follow-Up. J. Ophthalmol. 2018, 2018, 4947983. [Google Scholar] [CrossRef]
- Hamida Abdelkader, S.M.; Fernández, J.; Sebastián, J.; Piñero, D.P. Preliminary Characterization of Predictive Factors of the Visual Change after Epi-On and Epi-Off Corneal Collagen Crosslinking Techniques. J. Ophthalmol. 2021, 2021, 9680253. [Google Scholar] [CrossRef]
- Rossi, S.; Orrico, A.; Santamaria, C.; Romano, V.; De Rosa, L.; Simonelli, F.; De Rosa, G. Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking. Clin. Ophthalmol. 2015, 9, 503–509. [Google Scholar] [CrossRef]
- Ozgurhan, E.B.; Kara, N.; Cankaya, K.I.; Kurt, T.; Demirok, A. Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes. J. Refract. Surg. 2014, 30, 843–849. [Google Scholar] [CrossRef]
- Holladay, J.T.; Prager, T.C. Mean visual acuity. Am. J. Ophthalmol. 1991, 111, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, W.; Thaer, A.A.; Kroll, P.; Geyer, O.C.; Garcia, A.J. Optical sectioning of the cornea with a new confocal in vivo slit-scanning video microscope. Ophthalmology 1995, 102, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Wollensak, G. Crosslinking treatment of progressive keratoconus: New hope. Curr. Opin. Ophthalmol. 2006, 17, 356–360. [Google Scholar] [CrossRef]
- Grewal, D.S.; Brar, G.S.; Jain, R.; Sood, V.; Singla, M.; Grewal, S.P. Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus: One-year analysis using Scheimpflug imaging. J. Cataract. Refract. Surg. 2009, 35, 425–432. [Google Scholar] [CrossRef]
- Raiskup-Wolf, F.; Hoyer, A.; Spoerl, E.; Pillunat, L.E. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: Long-term results. J. Cataract. Refract. Surg. 2008, 34, 796–801. [Google Scholar] [CrossRef]
- Goldich, Y.; Marcovich, A.L.; Barkana, Y.; Mandel, Y.; Hirsh, A.; Morad, Y.; Avni, I.; Zadok, D. Clinical and corneal biomechanical changes after collagen cross-linking with riboflavin and UV irradiation in patients with progressive keratoconus: Results after 2 years of follow-up. Cornea 2012, 31, 609–614. [Google Scholar] [CrossRef]
- Chan, T.C.; Chow, V.W.; Jhanji, V.; Wong, V.W. Different Topographic Response Between Mild to Moderate and Advanced Keratoconus After Accelerated Collagen Cross-linking. Cornea 2015, 34, 922–927. [Google Scholar] [CrossRef]
- Chang, C.Y.; Hersh, P.S. Corneal collagen cross-linking: A review of 1-year outcomes. Eye Contact Lens 2014, 40, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Toprak, I.; Yildirim, C. Scheimpflug parameters after corneal collagen crosslinking for keratoconus. Eur. J. Ophthalmol. 2013, 23, 793–798. [Google Scholar] [CrossRef]
- Ostadian, F.; Nickkhah, S.; Farrahi, F.; Rad, A.M. Evaluation of changes in corneal volume, volume and angle of anterior chamber in keratoconus patients using Pentacam after CXL. J. Fam. Med. Prim. Care 2021, 10, 3820–3824. [Google Scholar] [CrossRef]
- Salman, A.G. Corneal Biomechanical and Anterior Chamber Parameters Variations after 1-year of Transepithelial Corneal Collagen Cross-linking in Eyes of Children with Keratoconus. Middle East Afr. J. Ophthalmol. 2016, 23, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Koç, M.; Uzel, M.M.; Koban, Y.; Durukan, I.; Tekin, K.; Ylmazbaş, P. Comparison of Results of Accelerated Corneal Cross-Linking With Hypo-Osmolar Riboflavin Solution Performed on Corneas Thicker and Thinner Than 400 μm. Cornea 2016, 35, 151–156. [Google Scholar] [CrossRef]
- Chan, T.C.Y.; Tsui, R.W.Y.; Chow, V.W.S.; Lam, J.K.M.; Wong, V.W.Y.; Wan, K.H. Accelerated corneal collagen cross-linking in progressive keratoconus: Five-year results and predictors of visual and topographic outcomes. Indian J. Ophthalmol. 2022, 70, 2930–2935. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Jian, W.; Zhang, X.; Sun, L.; Zhou, X. Three-year follow-up of accelerated transepithelial corneal cross-linking for progressive paediatric keratoconus. Br. J. Ophthalmol. 2020, 104, 1608–1612. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, S.; Gupta, S.; Gogia, V.; Sasikala, N.K.; Panda, A. Trans-epithelial versus conventional corneal collagen crosslinking: A randomized trial in keratoconus. Oman J. Ophthalmol. 2015, 8, 9–13. [Google Scholar] [CrossRef]
- Wen, D.; Song, B.; Li, Q.; Tu, R.; Huang, Y.; Wang, Q.; McAlinden, C.; OʼBrart, D.; Huang, J. Comparison of Epithelium-Off Versus Transepithelial Corneal Collagen Cross-Linking for Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2018, 37, 1018–1024. [Google Scholar] [CrossRef]
- Magli, A.; Forte, R.; Tortori, A.; Capasso, L.; Marsico, G.; Piozzi, E. Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea 2013, 32, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Beckman, K.A.; Milner, M.S.; Luchs, J.I.; Majmudar, P.A. Corneal cross-linking: Epi-on vs. epi-off current protocols, pros, and cons. Curr. Ophthalmol. Rep. 2020, 8, 99–103. [Google Scholar] [CrossRef]
- Kocak, I.; Aydin, A.; Kaya, F.; Koc, H. Comparison of transepithelial corneal collagen crosslinking with epithelium-off crosslinking in progressive keratoconus. J. Fr. D’ophtalmologie 2014, 37, 371–376. [Google Scholar] [CrossRef]
- Çerman, E.; Toker, E.; Ozarslan Ozcan, D. Transepithelial versus epithelium-off crosslinking in adults with progressive keratoconus. J. Cataract. Refract. Surg. 2015, 41, 1416–1425. [Google Scholar] [CrossRef]
Age | 21.34 ± 5.77 |
---|---|
Sex | |
Male | 119 (59.2%) |
Female | 82 (40.8%) |
Operation | |
Epi-Off | 269 (92.8%) |
Epi-On | 21 (7.2%) |
Operation | ||||
---|---|---|---|---|
All Eyes (n = 290) | Epi-Off (n = 269) | Epi-On (n = 21) | p (Between Groups) | |
Uncorrected distance visual acuity (logMAR) | ||||
Preoperative | 0.5 (0.3–1.0) | 0.5 (0.3–1.0) | 0.5 (0.4–1.0) | 0.713 |
Postoperative 6–12 months | 0.5 (0.3–0.7) | 0.5 (0.3–0.7) | 0.5 (0.4–0.7) | 0.654 |
Postoperative 1–3 years | 0.5 (0.3–0.7) | 0.5 (0.3–0.7) | 0.5 (0.2–0.7) | 0.643 |
p (within groups) | 0.518 | 0.572 | 0.535 | |
Corrected distance visual acuity (logMAR) | ||||
Preoperative | 0.3 (0.2–0.5) | 0.3 (0.2–0.5) | 0.3 (0.2–0.4) | 0.418 |
Postoperative 6–12 months | 0.3 (0.2–0.5) | 0.3 (0.2–0.5) | 0.4 (0.2–0.5) | 0.842 |
Postoperative 1–3 years | 0.3 (0.2–0.5) | 0.3 (0.2–0.5) | 0.3 (0.2–0.4) | 0.506 |
p (within groups) | 0.185 | 0.246 | 0.683 | |
Spherical power (D) | ||||
Preoperative | −1.5 (−3.75–0.5) | −1.5 (−3.5–−0.5) | −2.0 (−4.0–−0.75) | 0.570 |
Postoperative 6–12 months | −1.25 (−3.5–0.0) * | −1.25 (−3.5–0.0) * | −2.0 (−3.25–−0.5) | 0.635 |
Postoperative 1–3 years | −1.25 (−3.0–0.0) * | −1.25 (−3.0–0.0) * | −1.75 (−4.0–−0.75) | 0.228 |
p (within groups) | <0.001 | <0.001 | 0.555 | |
Cylindrical power (D) | ||||
Preoperative | −3.75 (−6.0–2.25) | −3.87 (−6.0–−2.5) | −3.5 (−5.0–−1.25) | 0.104 |
Postoperative 6–12 months | −3.75 (−5.75–2.5) | −3.75 (−5.87–−2.5) | −4.0 (−5.75–−2.75) * | 0.711 |
Postoperative 1–3 years | −3.5 (−5.5–2.25) * | −3.5 (−5.5–−2.25) * | −3.25 (−6.25–−2.25) | 0.938 |
p (within groups) | 0.015 | 0.030 | 0.004 | |
Manifest refraction spherical equivalent (D) | ||||
Preoperative | −3.75 (−5.87–−2.00) | −3.75(−5.94–−2.12) | −3.75 (−5.0–−1.37) | 0.606 |
Postoperative 6–12 months | −3.75 (−5.75–1.75) * | −3.5 (−5.75–−1.75) * | −4.5 (−5.75–−1.88) | 0.613 |
Postoperative 1–3 years | −3.12 (−5.37–1.62) * | −3.0 (−5.25–−1.62) * | −4.25 (−6.37–−1.87) | 0.227 |
p (within groups) | <0.001 | <0.001 | 0.424 | |
Cylindrical dioptric power (D) | ||||
Preoperative | 3.7 (2.5–5.2) | 3.7 (2.5–5.2) | 3.5 (2.7–4.5) | 0.756 |
Postoperative 6–12 months | 3.8 (2.5–5.2) | 3.8 (2.5–5.2) | 3.2 (2.5–4.7) | 0.338 |
Postoperative 1–3 years | 3.8 (2.5–5.2) | 3.8 (2.5–5.3) | 3.2 (2.3–4.8) | 0.395 |
p (within groups) | 0.905 | 0.890 | 0.282 |
Operation | ||||
---|---|---|---|---|
All Eyes (n = 290) | Epi-Off (n = 269) | Epi-On (n = 21) | p (Between Groups) | |
Endothelial cell density (cells/mm2) | ||||
Preoperative | 2841 (2674–3012) | 2841 (2674–3003) | 2915 (2688–3021) | 0.547 |
Postoperative 6–12 months | 2538 (2315–2710) * | 2497 (2312–2695) * | 2710 (2604–2857) * | 0.003 |
Postoperative 1–3 years | 2432.5 (2234–2639) *# | 2397 (2232–2596) *# | 2639 (2555–2717) * | 0.002 |
p (within groups) | <0.001 | <0.001 | <0.001 |
Operation | ||||
---|---|---|---|---|
All Eyes (n = 290) | Epi-Off (n = 269) | Epi-On (n = 21) | p (Between Groups) | |
Corneal volume (mm3) | ||||
Preoperative | 56.91 ± 3.29 | 56.96 ± 3.35 | 56.27 ± 2.28 | 0.351 |
Postoperative 6–12 months | 56.28 ± 3.37 * | 56.30 ± 3.43 * | 55.99 ± 2.49 | 0.683 |
Postoperative 1–3 years | 55.98 ± 3.39 *# | 56.01 ± 3.45 *# | 55.54 ± 2.47 | 0.428 |
p (within groups) | <0.001 | <0.001 | 0.071 | |
Anterior chamber volume (mm3) | ||||
Preoperative | 201.99 ± 32.83 | 202.46 ± 32.69 | 196.00 ± 34.87 | 0.386 |
Postoperative 6–12 months | 199.47 ± 32.49 * | 199.85 ± 32.30 * | 194.67 ± 35.23 | 0.482 |
Postoperative 1–3 years | 197.14 ± 32.66 *# | 197.62 ± 32.48 *# | 190.90 ± 35.14 * | 0.365 |
p (within groups) | <0.001 | <0.001 | 0.009 | |
Anterior chamber depth (mm) | ||||
Preoperative | 3.39 ± 0.28 | 3.38 ± 0.28 | 3.40 ± 0.28 | 0.838 |
Postoperative 6–12 months | 3.36 ± 0.29 * | 3.36 ± 0.29 * | 3.41 ± 0.26 | 0.477 |
Postoperative 1–3 years | 3.35 ± 0.30 *# | 3.35 ± 0.30 * | 3.38 ± 0.28 | 0.640 |
p (within groups) | <0.001 | <0.001 | 0.155 | |
Anterior chamber angle (degree) | ||||
Preoperative | 38.21 ± 6.19 | 38.21 ± 6.24 | 38.15 ± 5.55 | 0.963 |
Postoperative 6–12 months | 40.36 ± 5.78 * | 40.46 ± 5.73 * | 39.18 ± 6.43 | 0.331 |
Postoperative 1–3 years | 41.03 ± 6.02 *# | 41.11 ± 5.98 *# | 39.95 ± 6.56 * | 0.396 |
p (within groups) | <0.001 | <0.001 | 0.003 | |
Maximum anterior elevation (µm) | ||||
Preoperative | 13 (8–20) | 13 (8–19) | 14 (6–20) | 0.688 |
Postoperative 6–12 months | 12 (6–17) * | 12 (6–17) * | 13 (4–17) | 0.840 |
Postoperative 1–3 years | 9.5 (4–15) *# | 9 (4–15) *# | 11 (5–16) | 0.479 |
p (within groups) | <0.001 | <0.001 | 0.095 | |
Maximum posterior elevation (µm) | ||||
Preoperative | 30 (18–46) | 31 (19–46) | 28 (13–42) | 0.585 |
Postoperative 6–12 months | 29 (18–44) * | 29 (18–44) * | 28 (14–40) | 0.696 |
Postoperative 1–3 years | 29 (19–43) * | 29 (19–43) * | 29 (14–41) | 0.789 |
p (within groups) | 0.001 | <0.001 | 0.695 | |
Flat curvature power of the cornea (D) | ||||
Preoperative | 45.8 (44.1–47.8) | 45.7 (44.1–47.7) | 46.1 (45.3–48.0) | 0.098 |
Postoperative 6–12 months | 45.1 (43.2–47.5) * | 45.0 (43.0–47.2) * | 46.5 (44.7–49.5) | 0.012 |
Postoperative 1–3 years | 44.5 (42.5–46.6) *# | 44.2 (42.2–46.3) *# | 46.6 (44.7–48.8) | 0.002 |
p (within groups) | <0.001 | <0.001 | 0.243 | |
Steep curvature power of the cornea (D) | ||||
Preoperative | 49.6 (47.5–52.5) | 49.6 (47.5–52.4) | 49.3 (48.4–53.8) | 0.293 |
Postoperative 6–12 months | 48.6 (46.6–52.2) * | 48.5 (46.6–51.8) * | 48.9 (48.0–53.5) | 0.142 |
Postoperative 1–3 years | 48.2 (45.8–50.9) *# | 48.1 (45.7–50.8) *# | 49.7 (48.0–53.4) | 0.043 |
p (within groups) | <0.001 | <0.001 | 0.091 | |
Mean curvature power of the cornea (D) | ||||
Preoperative | 47.45 (46.0–50.1) | 47.4 (45.9–50.0) | 48.1 (46.7–50.8) | 0.185 |
Postoperative 6–12 months | 46.75 (44.9–49.6) * | 46.7 (44.9–49.4) * | 48.0 (46.3–50.9) | 0.040 |
Postoperative 1–3 years | 46.25 (44.2–48.5) *# | 46.1 (44.1–48.4) *# | 47.7 (46.3–50.7) | 0.007 |
p (within groups) | <0.001 | <0.001 | 0.176 | |
Central corneal thickness (µm) | ||||
Preoperative | 474.85 ± 32.68 | 475.65 ± 32.85 | 464.57 ± 29.14 | 0.135 |
Postoperative 6–12 months | 450.79 ± 40.65 * | 450.83 ± 41.56 * | 450.19 ± 26.87 * | 0.921 |
Postoperative 1–3 years | 445.56 ± 42.86 *# | 445.39 ± 43.95 *# | 447.76 ± 25.55 * | 0.704 |
p (within groups) | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahar, T.S.; Şahin, V.; Ayaz, Y.; Ünal, M. Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus. Diagnostics 2025, 15, 626. https://doi.org/10.3390/diagnostics15050626
Bahar TS, Şahin V, Ayaz Y, Ünal M. Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus. Diagnostics. 2025; 15(5):626. https://doi.org/10.3390/diagnostics15050626
Chicago/Turabian StyleBahar, Tevfik Serhat, Vedat Şahin, Yusuf Ayaz, and Mustafa Ünal. 2025. "Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus" Diagnostics 15, no. 5: 626. https://doi.org/10.3390/diagnostics15050626
APA StyleBahar, T. S., Şahin, V., Ayaz, Y., & Ünal, M. (2025). Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus. Diagnostics, 15(5), 626. https://doi.org/10.3390/diagnostics15050626