Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design, Setting, and Ethics
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.4. Surgical Procedures
2.4.1. Epi-Off CXL
2.4.2. Epi-On CXL
2.4.3. Postoperative Management
2.5. Statistical Analysis
3. Results
3.1. Changes in Visual Acuity and Refraction
3.2. Changes in Endothelial Cell Density
3.3. Changes in Topographic Measurements
3.4. Epi-Off Versus Epi-On
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vazirani, J.; Basu, S. Keratoconus: Current perspectives. Clin. Ophthalmol. 2013, 7, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Barr, J.T.; Zadnik, K. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study: Methods and findings to date. Contact Lens Anterior Eye J. Br. Contact Lens Assoc. 2007, 30, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, T.; Funnell, C.L.; Cassels-Brown, A.; O’Conor, R. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. Eye 2004, 18, 379–383. [Google Scholar] [CrossRef]
- Nielsen, K.; Hjortdal, J.; Aagaard Nohr, E.; Ehlers, N. Incidence and prevalence of keratoconus in Denmark. Acta Ophthalmol. Scand. 2007, 85, 890–892. [Google Scholar] [CrossRef]
- Kennedy, R.H.; Bourne, W.M.; Dyer, J.A. A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 1986, 101, 267–273. [Google Scholar] [CrossRef]
- Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, Y.S. Diagnosing keratoconus and patients at risk. Cataract. Refract. Surg Today May 2007, 85–87. [Google Scholar]
- Levy, D.; Hutchings, H.; Rouland, J.F.; Guell, J.; Burillon, C.; Arné, J.L.; Colin, J.; Laroche, L.; Montard, M.; Delbosc, B.; et al. Videokeratographic anomalies in familial keratoconus. Ophthalmology 2004, 111, 867–874. [Google Scholar] [CrossRef]
- Funderburgh, J.L.; Panjwani, N.; Conrad, G.W.; Baum, J. Altered keratan sulfate epitopes in keratoconus. Investig. Ophthalmol. Vis. Sci. 1989, 30, 2278–2281. [Google Scholar]
- Sawaguchi, S.; Yue, B.Y.; Chang, I.; Sugar, J.; Robin, J. Proteoglycan molecules in keratoconus corneas. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1846–1853. [Google Scholar]
- Sawaguchi, S.; Yue, B.Y.; Sugar, J.; Gilboy, J.E. Lysosomal enzyme abnormalities in keratoconus. Arch. Ophthalmol. 1989, 107, 1507–1510. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Sawaguchi, S.; Twining, S.S.; Sugar, J.; Feder, R.S.; Yue, B.Y. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1117–1124. [Google Scholar]
- Barnett, M.; Lee, K.; Mannis, M. Keratoconus: Diagnosis and Management With Spectacles and Contact Lenses. In Keratoconus; Elsevier: Amsterdam, The Netherlands, 2023; pp. 303–316. [Google Scholar]
- Rathi, V.M.; Krishnamachary, M.; Gupta, S. Cataract formation after penetrating keratoplasty. J. Cataract. Refract. Surg. 1997, 23, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Ing, J.J.; Ing, H.H.; Nelson, L.R.; Hodge, D.O.; Bourne, W.M. Ten-year postoperative results of penetrating keratoplasty. Ophthalmology 1998, 105, 1855–1865. [Google Scholar] [CrossRef]
- Antunes, V.A.C.; Possebom, H.M. Indications and Contraindications for Corneal Transplantation in Keratoconus. In Keratoconus: A Comprehensive Guide to Diagnosis and Treatment; Springer: Berlin/Heidelberg, Germany, 2022; pp. 869–880. [Google Scholar]
- Napolitano, P.; Tranfa, F.; D’Andrea, L.; Caruso, C.; Rinaldi, M.; Mazzucco, A.; Ciampa, N.; Melenzane, A.; Costagliola, C. Topographic Outcomes in Keratoconus Surgery: Epi-on versus Epi-off Iontophoresis Corneal Collagen Cross-Linking. J. Clin. Med. 2022, 11, 1785. [Google Scholar] [CrossRef]
- Caporossi, A.; Mazzotta, C.; Baiocchi, S.; Caporossi, T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: The Siena eye cross study. Am. J. Ophthalmol. 2010, 149, 585–593. [Google Scholar] [CrossRef]
- Ruyter, I.E. Composites-characterization of composite filling materials: Reactor response. Adv. Dent. Res. 1988, 2, 122–129; discussion 129–133. [Google Scholar] [CrossRef] [PubMed]
- Golomb, G.; Schoen, F.J.; Smith, M.S.; Linden, J.; Dixon, M.; Levy, R.J. The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am. J. Pathol. 1987, 127, 122–130. [Google Scholar]
- Spoerl, E.; Huhle, M.; Seiler, T. Induction of cross-links in corneal tissue. Exp. Eye Res. 1998, 66, 97–103. [Google Scholar] [CrossRef]
- Spörl, E.; Schreiber, J.; Hellmund, K.; Seiler, T.; Knuschke, P. Studies on the stabilization of the cornea in rabbits. Der Ophthalmol. Z. Der Dtsch. Ophthalmol. Ges. 2000, 97, 203–206. [Google Scholar] [CrossRef]
- Wollensak, G.; Spoerl, E.; Seiler, T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003, 135, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Asri, D.; Touboul, D.; Fournié, P.; Malet, F.; Garra, C.; Gallois, A.; Malecaze, F.; Colin, J. Corneal collagen crosslinking in progressive keratoconus: Multicenter results from the French National Reference Center for Keratoconus. J. Cataract. Refract. Surg. 2011, 37, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Doors, M.; Tahzib, N.G.; Eggink, F.A.; Berendschot, T.T.; Webers, C.A.; Nuijts, R.M. Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking. Am. J. Ophthalmol. 2009, 148, 844–851.e842. [Google Scholar] [CrossRef] [PubMed]
- Alnawaiseh, M.; Rosentreter, A.; Böhm, M.R.; Eveslage, M.; Eter, N.; Zumhagen, L. Accelerated (18 mW/cm2) Corneal Collagen Cross-Linking for Progressive Keratoconus. Cornea 2015, 34, 1427–1431. [Google Scholar] [CrossRef]
- Hashemi, H.; Fotouhi, A.; Miraftab, M.; Bahrmandy, H.; Seyedian, M.A.; Amanzadeh, K.; Heidarian, S.; Nikbin, H.; Asgari, S. Short-term comparison of accelerated and standard methods of corneal collagen crosslinking. J. Cataract. Refract. Surg. 2015, 41, 533–540. [Google Scholar] [CrossRef]
- O’Brart, D.P.; Chan, E.; Samaras, K.; Patel, P.; Shah, S.P. A randomised, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br. J. Ophthalmol. 2011, 95, 1519–1524. [Google Scholar] [CrossRef]
- Hersh, P.S.; Greenstein, S.A.; Fry, K.L. Corneal collagen crosslinking for keratoconus and corneal ectasia: One-year results. J. Cataract. Refract. Surg. 2011, 37, 149–160. [Google Scholar] [CrossRef]
- Agrawal, V.B. Corneal collagen cross-linking with riboflavin and ultraviolet—A light for keratoconus: Results in Indian eyes. Indian J. Ophthalmol. 2009, 57, 111–114. [Google Scholar] [CrossRef]
- Buzzonetti, L.; Petrocelli, G. Transepithelial corneal cross-linking in pediatric patients: Early results. J. Refract. Surg. 2012, 28, 763–767. [Google Scholar] [CrossRef]
- Ghanem, R.C.; Santhiago, M.R.; Berti, T.; Netto, M.V.; Ghanem, V.C. Topographic, corneal wavefront, and refractive outcomes 2 years after collagen crosslinking for progressive keratoconus. Cornea 2014, 33, 43–48. [Google Scholar] [CrossRef]
- Hayes, S.; O’Brart, D.P.; Lamdin, L.S.; Doutch, J.; Samaras, K.; Marshall, J.; Meek, K.M. Effect of complete epithelial debridement before riboflavin-ultraviolet-A corneal collagen crosslinking therapy. J. Cataract. Refract. Surg. 2008, 34, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Samaras, K.; O’Brart, D.P.; Doutch, J.; Hayes, S.; Marshall, J.; Meek, K.M. Effect of epithelial retention and removal on riboflavin absorption in porcine corneas. J. Refract. Surg. 2009, 25, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Filippello, M.; Stagni, E.; O’Brart, D. Transepithelial corneal collagen crosslinking: Bilateral study. J. Cataract. Refract. Surg. 2012, 38, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, R.; Spoerl, E.; Romano, M.R.; Rosetta, P.; Vinciguerra, P. Comparative stress strain measurements of human corneas after transepithelial UV-A induced cross-linking: Impregnation with iontophoresis, different riboflavin solutions and irradiance power. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1518. [Google Scholar]
- Buzzonetti, L.; Petrocelli, G.; Valente, P.; Iarossi, G.; Ardia, R.; Petroni, S.; Parrilla, R. Iontophoretic Transepithelial Collagen Cross-Linking Versus Epithelium-Off Collagen Cross-Linking in Pediatric Patients: 3-Year Follow-Up. Cornea 2019, 38, 859–863. [Google Scholar] [CrossRef]
- Henriquez, M.A.; Hernandez-Sahagun, G.; Camargo, J.; Izquierdo, L., Jr. Accelerated Epi-On Versus Standard Epi-Off Corneal Collagen Cross-Linking for Progressive Keratoconus in Pediatric Patients: Five Years of Follow-Up. Cornea 2020, 39, 1493–1498. [Google Scholar] [CrossRef]
- Cifariello, F.; Minicucci, M.; Di Renzo, F.; Di Taranto, D.; Coclite, G.; Zaccaria, S.; De Turris, S.; Costagliola, C. Epi-Off versus Epi-On Corneal Collagen Cross-Linking in Keratoconus Patients: A Comparative Study through 2-Year Follow-Up. J. Ophthalmol. 2018, 2018, 4947983. [Google Scholar] [CrossRef]
- Hamida Abdelkader, S.M.; Fernández, J.; Sebastián, J.; Piñero, D.P. Preliminary Characterization of Predictive Factors of the Visual Change after Epi-On and Epi-Off Corneal Collagen Crosslinking Techniques. J. Ophthalmol. 2021, 2021, 9680253. [Google Scholar] [CrossRef]
- Rossi, S.; Orrico, A.; Santamaria, C.; Romano, V.; De Rosa, L.; Simonelli, F.; De Rosa, G. Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking. Clin. Ophthalmol. 2015, 9, 503–509. [Google Scholar] [CrossRef]
- Ozgurhan, E.B.; Kara, N.; Cankaya, K.I.; Kurt, T.; Demirok, A. Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes. J. Refract. Surg. 2014, 30, 843–849. [Google Scholar] [CrossRef]
- Holladay, J.T.; Prager, T.C. Mean visual acuity. Am. J. Ophthalmol. 1991, 111, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, W.; Thaer, A.A.; Kroll, P.; Geyer, O.C.; Garcia, A.J. Optical sectioning of the cornea with a new confocal in vivo slit-scanning video microscope. Ophthalmology 1995, 102, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Wollensak, G. Crosslinking treatment of progressive keratoconus: New hope. Curr. Opin. Ophthalmol. 2006, 17, 356–360. [Google Scholar] [CrossRef]
- Grewal, D.S.; Brar, G.S.; Jain, R.; Sood, V.; Singla, M.; Grewal, S.P. Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus: One-year analysis using Scheimpflug imaging. J. Cataract. Refract. Surg. 2009, 35, 425–432. [Google Scholar] [CrossRef]
- Raiskup-Wolf, F.; Hoyer, A.; Spoerl, E.; Pillunat, L.E. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: Long-term results. J. Cataract. Refract. Surg. 2008, 34, 796–801. [Google Scholar] [CrossRef]
- Goldich, Y.; Marcovich, A.L.; Barkana, Y.; Mandel, Y.; Hirsh, A.; Morad, Y.; Avni, I.; Zadok, D. Clinical and corneal biomechanical changes after collagen cross-linking with riboflavin and UV irradiation in patients with progressive keratoconus: Results after 2 years of follow-up. Cornea 2012, 31, 609–614. [Google Scholar] [CrossRef]
- Chan, T.C.; Chow, V.W.; Jhanji, V.; Wong, V.W. Different Topographic Response Between Mild to Moderate and Advanced Keratoconus After Accelerated Collagen Cross-linking. Cornea 2015, 34, 922–927. [Google Scholar] [CrossRef]
- Chang, C.Y.; Hersh, P.S. Corneal collagen cross-linking: A review of 1-year outcomes. Eye Contact Lens 2014, 40, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Toprak, I.; Yildirim, C. Scheimpflug parameters after corneal collagen crosslinking for keratoconus. Eur. J. Ophthalmol. 2013, 23, 793–798. [Google Scholar] [CrossRef]
- Ostadian, F.; Nickkhah, S.; Farrahi, F.; Rad, A.M. Evaluation of changes in corneal volume, volume and angle of anterior chamber in keratoconus patients using Pentacam after CXL. J. Fam. Med. Prim. Care 2021, 10, 3820–3824. [Google Scholar] [CrossRef]
- Salman, A.G. Corneal Biomechanical and Anterior Chamber Parameters Variations after 1-year of Transepithelial Corneal Collagen Cross-linking in Eyes of Children with Keratoconus. Middle East Afr. J. Ophthalmol. 2016, 23, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Koç, M.; Uzel, M.M.; Koban, Y.; Durukan, I.; Tekin, K.; Ylmazbaş, P. Comparison of Results of Accelerated Corneal Cross-Linking With Hypo-Osmolar Riboflavin Solution Performed on Corneas Thicker and Thinner Than 400 μm. Cornea 2016, 35, 151–156. [Google Scholar] [CrossRef]
- Chan, T.C.Y.; Tsui, R.W.Y.; Chow, V.W.S.; Lam, J.K.M.; Wong, V.W.Y.; Wan, K.H. Accelerated corneal collagen cross-linking in progressive keratoconus: Five-year results and predictors of visual and topographic outcomes. Indian J. Ophthalmol. 2022, 70, 2930–2935. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Jian, W.; Zhang, X.; Sun, L.; Zhou, X. Three-year follow-up of accelerated transepithelial corneal cross-linking for progressive paediatric keratoconus. Br. J. Ophthalmol. 2020, 104, 1608–1612. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, S.; Gupta, S.; Gogia, V.; Sasikala, N.K.; Panda, A. Trans-epithelial versus conventional corneal collagen crosslinking: A randomized trial in keratoconus. Oman J. Ophthalmol. 2015, 8, 9–13. [Google Scholar] [CrossRef]
- Wen, D.; Song, B.; Li, Q.; Tu, R.; Huang, Y.; Wang, Q.; McAlinden, C.; OʼBrart, D.; Huang, J. Comparison of Epithelium-Off Versus Transepithelial Corneal Collagen Cross-Linking for Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2018, 37, 1018–1024. [Google Scholar] [CrossRef]
- Magli, A.; Forte, R.; Tortori, A.; Capasso, L.; Marsico, G.; Piozzi, E. Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea 2013, 32, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Beckman, K.A.; Milner, M.S.; Luchs, J.I.; Majmudar, P.A. Corneal cross-linking: Epi-on vs. epi-off current protocols, pros, and cons. Curr. Ophthalmol. Rep. 2020, 8, 99–103. [Google Scholar] [CrossRef]
- Kocak, I.; Aydin, A.; Kaya, F.; Koc, H. Comparison of transepithelial corneal collagen crosslinking with epithelium-off crosslinking in progressive keratoconus. J. Fr. D’ophtalmologie 2014, 37, 371–376. [Google Scholar] [CrossRef]
- Çerman, E.; Toker, E.; Ozarslan Ozcan, D. Transepithelial versus epithelium-off crosslinking in adults with progressive keratoconus. J. Cataract. Refract. Surg. 2015, 41, 1416–1425. [Google Scholar] [CrossRef]
Age | 21.34 ± 5.77 |
---|---|
Sex | |
Male | 119 (59.2%) |
Female | 82 (40.8%) |
Operation | |
Epi-Off | 269 (92.8%) |
Epi-On | 21 (7.2%) |
Operation | ||||
---|---|---|---|---|
All Eyes (n = 290) | Epi-Off (n = 269) | Epi-On (n = 21) | p (Between Groups) | |
Uncorrected distance visual acuity (logMAR) | ||||
Preoperative | 0.5 (0.3–1.0) | 0.5 (0.3–1.0) | 0.5 (0.4–1.0) | 0.713 |
Postoperative 6–12 months | 0.5 (0.3–0.7) | 0.5 (0.3–0.7) | 0.5 (0.4–0.7) | 0.654 |
Postoperative 1–3 years | 0.5 (0.3–0.7) | 0.5 (0.3–0.7) | 0.5 (0.2–0.7) | 0.643 |
p (within groups) | 0.518 | 0.572 | 0.535 | |
Corrected distance visual acuity (logMAR) | ||||
Preoperative | 0.3 (0.2–0.5) | 0.3 (0.2–0.5) | 0.3 (0.2–0.4) | 0.418 |
Postoperative 6–12 months | 0.3 (0.2–0.5) | 0.3 (0.2–0.5) | 0.4 (0.2–0.5) | 0.842 |
Postoperative 1–3 years | 0.3 (0.2–0.5) | 0.3 (0.2–0.5) | 0.3 (0.2–0.4) | 0.506 |
p (within groups) | 0.185 | 0.246 | 0.683 | |
Spherical power (D) | ||||
Preoperative | −1.5 (−3.75–0.5) | −1.5 (−3.5–−0.5) | −2.0 (−4.0–−0.75) | 0.570 |
Postoperative 6–12 months | −1.25 (−3.5–0.0) * | −1.25 (−3.5–0.0) * | −2.0 (−3.25–−0.5) | 0.635 |
Postoperative 1–3 years | −1.25 (−3.0–0.0) * | −1.25 (−3.0–0.0) * | −1.75 (−4.0–−0.75) | 0.228 |
p (within groups) | <0.001 | <0.001 | 0.555 | |
Cylindrical power (D) | ||||
Preoperative | −3.75 (−6.0–2.25) | −3.87 (−6.0–−2.5) | −3.5 (−5.0–−1.25) | 0.104 |
Postoperative 6–12 months | −3.75 (−5.75–2.5) | −3.75 (−5.87–−2.5) | −4.0 (−5.75–−2.75) * | 0.711 |
Postoperative 1–3 years | −3.5 (−5.5–2.25) * | −3.5 (−5.5–−2.25) * | −3.25 (−6.25–−2.25) | 0.938 |
p (within groups) | 0.015 | 0.030 | 0.004 | |
Manifest refraction spherical equivalent (D) | ||||
Preoperative | −3.75 (−5.87–−2.00) | −3.75(−5.94–−2.12) | −3.75 (−5.0–−1.37) | 0.606 |
Postoperative 6–12 months | −3.75 (−5.75–1.75) * | −3.5 (−5.75–−1.75) * | −4.5 (−5.75–−1.88) | 0.613 |
Postoperative 1–3 years | −3.12 (−5.37–1.62) * | −3.0 (−5.25–−1.62) * | −4.25 (−6.37–−1.87) | 0.227 |
p (within groups) | <0.001 | <0.001 | 0.424 | |
Cylindrical dioptric power (D) | ||||
Preoperative | 3.7 (2.5–5.2) | 3.7 (2.5–5.2) | 3.5 (2.7–4.5) | 0.756 |
Postoperative 6–12 months | 3.8 (2.5–5.2) | 3.8 (2.5–5.2) | 3.2 (2.5–4.7) | 0.338 |
Postoperative 1–3 years | 3.8 (2.5–5.2) | 3.8 (2.5–5.3) | 3.2 (2.3–4.8) | 0.395 |
p (within groups) | 0.905 | 0.890 | 0.282 |
Operation | ||||
---|---|---|---|---|
All Eyes (n = 290) | Epi-Off (n = 269) | Epi-On (n = 21) | p (Between Groups) | |
Endothelial cell density (cells/mm2) | ||||
Preoperative | 2841 (2674–3012) | 2841 (2674–3003) | 2915 (2688–3021) | 0.547 |
Postoperative 6–12 months | 2538 (2315–2710) * | 2497 (2312–2695) * | 2710 (2604–2857) * | 0.003 |
Postoperative 1–3 years | 2432.5 (2234–2639) *# | 2397 (2232–2596) *# | 2639 (2555–2717) * | 0.002 |
p (within groups) | <0.001 | <0.001 | <0.001 |
Operation | ||||
---|---|---|---|---|
All Eyes (n = 290) | Epi-Off (n = 269) | Epi-On (n = 21) | p (Between Groups) | |
Corneal volume (mm3) | ||||
Preoperative | 56.91 ± 3.29 | 56.96 ± 3.35 | 56.27 ± 2.28 | 0.351 |
Postoperative 6–12 months | 56.28 ± 3.37 * | 56.30 ± 3.43 * | 55.99 ± 2.49 | 0.683 |
Postoperative 1–3 years | 55.98 ± 3.39 *# | 56.01 ± 3.45 *# | 55.54 ± 2.47 | 0.428 |
p (within groups) | <0.001 | <0.001 | 0.071 | |
Anterior chamber volume (mm3) | ||||
Preoperative | 201.99 ± 32.83 | 202.46 ± 32.69 | 196.00 ± 34.87 | 0.386 |
Postoperative 6–12 months | 199.47 ± 32.49 * | 199.85 ± 32.30 * | 194.67 ± 35.23 | 0.482 |
Postoperative 1–3 years | 197.14 ± 32.66 *# | 197.62 ± 32.48 *# | 190.90 ± 35.14 * | 0.365 |
p (within groups) | <0.001 | <0.001 | 0.009 | |
Anterior chamber depth (mm) | ||||
Preoperative | 3.39 ± 0.28 | 3.38 ± 0.28 | 3.40 ± 0.28 | 0.838 |
Postoperative 6–12 months | 3.36 ± 0.29 * | 3.36 ± 0.29 * | 3.41 ± 0.26 | 0.477 |
Postoperative 1–3 years | 3.35 ± 0.30 *# | 3.35 ± 0.30 * | 3.38 ± 0.28 | 0.640 |
p (within groups) | <0.001 | <0.001 | 0.155 | |
Anterior chamber angle (degree) | ||||
Preoperative | 38.21 ± 6.19 | 38.21 ± 6.24 | 38.15 ± 5.55 | 0.963 |
Postoperative 6–12 months | 40.36 ± 5.78 * | 40.46 ± 5.73 * | 39.18 ± 6.43 | 0.331 |
Postoperative 1–3 years | 41.03 ± 6.02 *# | 41.11 ± 5.98 *# | 39.95 ± 6.56 * | 0.396 |
p (within groups) | <0.001 | <0.001 | 0.003 | |
Maximum anterior elevation (µm) | ||||
Preoperative | 13 (8–20) | 13 (8–19) | 14 (6–20) | 0.688 |
Postoperative 6–12 months | 12 (6–17) * | 12 (6–17) * | 13 (4–17) | 0.840 |
Postoperative 1–3 years | 9.5 (4–15) *# | 9 (4–15) *# | 11 (5–16) | 0.479 |
p (within groups) | <0.001 | <0.001 | 0.095 | |
Maximum posterior elevation (µm) | ||||
Preoperative | 30 (18–46) | 31 (19–46) | 28 (13–42) | 0.585 |
Postoperative 6–12 months | 29 (18–44) * | 29 (18–44) * | 28 (14–40) | 0.696 |
Postoperative 1–3 years | 29 (19–43) * | 29 (19–43) * | 29 (14–41) | 0.789 |
p (within groups) | 0.001 | <0.001 | 0.695 | |
Flat curvature power of the cornea (D) | ||||
Preoperative | 45.8 (44.1–47.8) | 45.7 (44.1–47.7) | 46.1 (45.3–48.0) | 0.098 |
Postoperative 6–12 months | 45.1 (43.2–47.5) * | 45.0 (43.0–47.2) * | 46.5 (44.7–49.5) | 0.012 |
Postoperative 1–3 years | 44.5 (42.5–46.6) *# | 44.2 (42.2–46.3) *# | 46.6 (44.7–48.8) | 0.002 |
p (within groups) | <0.001 | <0.001 | 0.243 | |
Steep curvature power of the cornea (D) | ||||
Preoperative | 49.6 (47.5–52.5) | 49.6 (47.5–52.4) | 49.3 (48.4–53.8) | 0.293 |
Postoperative 6–12 months | 48.6 (46.6–52.2) * | 48.5 (46.6–51.8) * | 48.9 (48.0–53.5) | 0.142 |
Postoperative 1–3 years | 48.2 (45.8–50.9) *# | 48.1 (45.7–50.8) *# | 49.7 (48.0–53.4) | 0.043 |
p (within groups) | <0.001 | <0.001 | 0.091 | |
Mean curvature power of the cornea (D) | ||||
Preoperative | 47.45 (46.0–50.1) | 47.4 (45.9–50.0) | 48.1 (46.7–50.8) | 0.185 |
Postoperative 6–12 months | 46.75 (44.9–49.6) * | 46.7 (44.9–49.4) * | 48.0 (46.3–50.9) | 0.040 |
Postoperative 1–3 years | 46.25 (44.2–48.5) *# | 46.1 (44.1–48.4) *# | 47.7 (46.3–50.7) | 0.007 |
p (within groups) | <0.001 | <0.001 | 0.176 | |
Central corneal thickness (µm) | ||||
Preoperative | 474.85 ± 32.68 | 475.65 ± 32.85 | 464.57 ± 29.14 | 0.135 |
Postoperative 6–12 months | 450.79 ± 40.65 * | 450.83 ± 41.56 * | 450.19 ± 26.87 * | 0.921 |
Postoperative 1–3 years | 445.56 ± 42.86 *# | 445.39 ± 43.95 *# | 447.76 ± 25.55 * | 0.704 |
p (within groups) | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahar, T.S.; Şahin, V.; Ayaz, Y.; Ünal, M. Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus. Diagnostics 2025, 15, 626. https://doi.org/10.3390/diagnostics15050626
Bahar TS, Şahin V, Ayaz Y, Ünal M. Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus. Diagnostics. 2025; 15(5):626. https://doi.org/10.3390/diagnostics15050626
Chicago/Turabian StyleBahar, Tevfik Serhat, Vedat Şahin, Yusuf Ayaz, and Mustafa Ünal. 2025. "Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus" Diagnostics 15, no. 5: 626. https://doi.org/10.3390/diagnostics15050626
APA StyleBahar, T. S., Şahin, V., Ayaz, Y., & Ünal, M. (2025). Long-Term Outcomes in Crosslinking Therapy for Patients with Progressive Keratoconus. Diagnostics, 15(5), 626. https://doi.org/10.3390/diagnostics15050626