A Low-Cost Optomechatronic Diffuse Optical Mammography System for 3D Image Reconstruction: Proof of Concept
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Diffuse Optical Mammography (DOM)
2.3. Mechanical and Electrical System
2.3.1. Mechanical Components
2.3.2. Electrical Components
2.4. 3D Reconstruction
3. Results
- , and
- , and
- , and
4. Discussion
4.1. Strengths and Current Limitations
4.2. Comparison with Other Techniques
4.3. Future Directions: A Quantitative Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOM | Diffuse optical mammography |
3D | Three-dimensional |
LED | Light-emitting diode |
GUI | Graphical user interface |
PCB | Printed circuit board |
PWM | Pulse-width modulation |
SNR | Signal-to-noise ratio |
HDR | High Dynamic Range |
References
- Carvajal, C. The Impact of Medical Diagnosis as a Traumatic Experience. Some Thoughts. Rev. Médica Clínica Las. Condes 2017, 28, 841–848. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Hu, Z.; Xu, Y.; Cui, Z. Multi-View Convolutional Neural Networks for Mammographic Image Classification. IEEE Access 2019, 7, 126273–126282. [Google Scholar] [CrossRef]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, T.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 5. [Google Scholar] [CrossRef]
- Breast Cancer Research Foundation. Breast Cancer Statistics and Resources. Available online: https://www.bcrf.org/breast-cancer-statistics-and-resources (accessed on 4 March 2024).
- World Health Organization. Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 8 March 2024).
- DOF. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5194157&fecha=09/06/2011#gsc.tab=0 (accessed on 25 January 2024).
- Wang, L. Mammography with deep learning for breast cancer detection. Front. Oncol. 2014, 14, 1281922. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Kumar Das, P.; Meher, S. An efficient deep learning scheme to detect breast cancer using mammogram and ultrasound breast images. Biomed. Signal Process. Control 2024, 87 Pt. A, 105377. [Google Scholar] [CrossRef]
- Reeja, S.; Thotakura, T.; Yaseen, I. Chapter 9—Scrutinization of mammogram images using deep learning. In Computational Intelligence and Modelling Techniques for Disease Detection in Mammogram Images; Academic Press: Cambridge, MA, USA, 2024; pp. 177–202. [Google Scholar]
- Rajoub, B.; Qusa, H.; Abdul-Rahman, H.; Mohamed, H. Chapter 5—Segmentation of breast tissue structures in mammographic images. In Developments in Biomedical Engineering and Bioelectronics; Academic Press: Cambridge, MA, USA, 2024; pp. 115–146. [Google Scholar]
- Carriero, A.; Groenhoff, L.; Vologina, E.; Basile, P.; Albera, M. Deep Learning in Breast Cancer Imaging: State of the Art and Recent Advancements in Early 2024. Diagnostics 2024, 14, 848. [Google Scholar] [CrossRef]
- Roszkowski, S. Low doses of radiation—Impact on the environment and humans. Med. Res. J. 2023, 8, 152–158. [Google Scholar] [CrossRef]
- National Cancer Institute at the National Institutes of Health. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/ionizing-radiation (accessed on 23 January 2024).
- Chaudhry, N.; Kinos, A.; Ruchkina, M.; Zabiliūtė-Karaliūnė, A.; Bukartė, S.K.E.; Zackrisson, S.; Reistad, N. Breast cancer diagnosis using extended-wavelength diffuse reflectance spectroscopy: Comparing tumor subgroups. 17th International Workshop on Breast Imaging (IWBI 2024). Proc. SPIE 2024, 13174, 131740X. [Google Scholar]
- Barragán-Montero, A.; Javaid, U.; Valdés, G.; Nguyen, D.; Desbordes, P.; Macq, B.; Willems, S.; Vandewinckele, L.; Holmström, M.; Löfman, F.; et al. Artificial intelligence and machine learning for medical imaging: A technology review. Phys. Med. 2021, 83, 242–256. [Google Scholar] [CrossRef]
- Carbone, N.A.; Vera, D.A.; Victoria Waks-Serra, M.; García, H.A.; Iriarte, D.I.; Pomarico, J.A.; Pardini, P.A.; Puca, S.; Fuentes, N.; Renati, M.E.; et al. MamoRef: An optical mammography device using whole-field CW diffuse reflectance. Presentation, validation and preliminary clinical results. Phys. Med. Biol. 2023, 69, 015021. [Google Scholar] [CrossRef] [PubMed]
- Sasián, J. Optomechatronics: Fusion of Optical and Mechatronic Engineering. In Introduction to Optomechatronics; SPIE Press: Bellingham, WA, USA, 2009. [Google Scholar]
- Cho, H. Optomechatronics for Biomedical Optical Imaging: An Overview. MATEC Web Conf. 2015, 32, 04001. [Google Scholar] [CrossRef]
- Pears, N.; Yonghuai Liu, Y.; Bunting, P. 3D Imaging, Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Montoro, C.I.; Alcaraz, M.d.C.; Galvez-Sánchez, C.M. Experience of Pain and Unpleasantness during Mammography Screening: A Cross-Sectional Study on the Roles of Emotional, Cognitive, and Personality Factors. Behav. Sci. 2023, 13, 377. [Google Scholar] [CrossRef]
- Gubarkova, E.V.; Moiseev, A.A.; Kiseleva, E.B.; Vorontsov, D.A.; Kuznetsov, S.S.; Vorontsov, A.Y.; Gelikonov, G.V.; Sirotkina, M.A.; Gladkova, N.D. Tissue optical properties estimation from cross-polarization OCT data for breast cancer margin assessment. Laser Phys. Lett. 2020, 17, 075602. [Google Scholar] [CrossRef]
- Iranmakani, S.; Mortezazadeh, T.; Sajadian, F.; Ghaziani, M.F.; Ghafari, A.; Khezerloo, D.; Musa, A.E. A review of various modalities in breast imaging: Technical aspects and clinical outcomes. Egypt. J. Radiol. Nucl. Med. 2020, 51, 57. [Google Scholar] [CrossRef]
- Kaffashbashi, A.; Sobhani, V.; Goodarzian, F.; Jolai, F.; Aghsami, A. Augmented data strategies for enhanced computer vision performance in breast cancer diagnosis. J. Ambient Intell. Humaniz. Comput. 2024, 15, 3093–3106. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.-I. Biomedical Optics: Principles and Imaging; John Wiley & Sons, Inc.: Austin, TX, USA, 2007. [Google Scholar]
- Fantini, S.; Sassaroli, A. Near-Infrared Optical Mammography for Breast Cancer Detection with Intinsic Contrast. Ann. Biomed. Eng. 2012, 40, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Chae, E.Y.; Kim, H.H.; Sabir, S.; Kim, Y.; Kim, H.; Yoon, S.; Ye, J.C.; Cho, S.; Heo, D.; Kim, K.H.; et al. Development of digital breast tomosynthesis and diffuse optical tomography fusion imaging for breast cancer detection. Sci. Rep. 2020, 10, 13127. [Google Scholar] [CrossRef]
- He, C.; He, H.; Chang, J.; Chen, B.; Ma, H.; Booth, M.J. Polarization optics for biomedical and clinical applications: A review. Light Sci. Appl. 2021, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Alciatore, A.; Histand, M. Introduction to Mechatronics and Measurement Systems, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Shetty, D.; Kolk, R.A. Mecatrónica: Sistemas de Control Electrónico en Ingeniería Mecánica y Eléctrica; Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
- Craig, J. Introduction to Robotics: Mechanics and Control, 4th ed.; Pearson: London, UK, 2017. [Google Scholar]
- Vinodkumar, P.K.; Karabulut, D.; Avots, E.; Ozcinar, C.; Anbarjafari, G. Deep Learning for 3D Reconstruction, Augmentation, and Registration: A Review Paper. Entropy 2024, 26, 235. [Google Scholar] [CrossRef] [PubMed]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer: London, UK, 2011. [Google Scholar]
- Lachat, E.; Macher, H.; Landes, T.; Grussenmeyer, P. Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling. Remote Sens. 2015, 7, 13070–13097. [Google Scholar] [CrossRef]
- Marek, J.; Chmelař, P. Survey of Point Cloud Registration Methods and New Statistical Approach. Mathematics 2023, 11, 3564. [Google Scholar] [CrossRef]
- Moulon, P.; Monasse, P.; Perrot, R.; Marlet, R. OpenMVG: Open Multiple View Geometry. In Reproducible Research in Pattern Recognition; Lecture Notes in Computer Science; Springer: Cham, Germany, 2017; Volume 10214. [Google Scholar]
- American Cancer Society. Breast Cancer Stages. Available online: https://www.cancer.org/cancer/types/breast-cancer/understanding-a-breast-cancer-diagnosis/stages-of-breast-cancer.html (accessed on 22 July 2024).
- Teotia Sumeet, S.; Min-Jeong, C.; Haddock, N.T. Salvaging Breast Reconstruction: Profunda Artery Perforator Flaps Using Thoracodorsal Vessels. Plast. Reconstr. Surg.-Glob. Open 2018, 6, e1837. [Google Scholar] [PubMed]
- Di Ninni, P.; Martelli, F.; Zaccanti, G. The use of India ink in tissue-simulating phantoms. Opt. Express 2010, 18, 26854–26865. [Google Scholar] [CrossRef] [PubMed]
- Matiatou, M.; Giannios, P.; Koutsoumpos, S.; Michalopoulos, N.V.; Toutouzas, K.G.; Zografos, G.C.; Moutzouris, K. Complex refractive index of freshly excised human breast tissue as a marker of disease. Lasers Med. Sci. 2022, 37, 2597–2604. [Google Scholar] [CrossRef] [PubMed]
- Daniels, A.U. Silicone Breast Implant Materials; Faculty of Medicine, University of Basel: Basel, Switzerland, 2012. [Google Scholar] [CrossRef]
- Ismagilova, R.I.; Shaidullin, R.I.; Khramov, I.O.; Kovalenko, N.A.; Ryabushkin, A. Scattering and absorption coefficients measurements in silicone polymers used in fiber optics. J. Phys. Conf. Ser. 2021, 1919, 012012. [Google Scholar] [CrossRef]
- Marmo, A.C.; Grunlan, M.A. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett. 2023, 12, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Early Diagnosis of Breast Cancer. Sensors 2017, 17, 1572. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.X.; Lim, Z.L.; Ho, P.J.; Li, J. Breast Cancer in Asia: Incidence, Mortality, Early Detection, Mammography Programs, and Risk-Based Screening Initiatives. Cancers 2022, 14, 4218. [Google Scholar] [CrossRef] [PubMed]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef]
- Beňačka, R.; Szabóová, D.; Guľašová, Z.; Hertelyová, Z.; Radoňák, J. Classic and New Markers in Diagnostics and Classification of Breast Cancer. Cancers 2022, 14, 5444. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Microwave Imaging and Sensing Techniques for Breast Cancer Detection. Micromachines 2023, 14, 1462. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Fernández, J.D.; Roa-Tort, K.; Stolik, S.; Valor, A.; Fabila-Bustos, D.A.; de la Rosa, G.; Hernández-Chávez, M.; de la Rosa-Vázquez, J.M. Design of a Low-Cost Diffuse Optical Mammography System for Biomedical Image Processing in Breast Cancer Diagnosis. Sensors 2023, 23, 4390. [Google Scholar] [CrossRef]
- Leong, A.S.-Y.; Zhuang, Z. The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology 2011, 78, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Cserni, G.; Francz, M.; Járay, B.; Kálmán, E.; Kovács, I.; Krenács, T.; Tóth, E.; Udvarhelyi, N.; Vass, L.; Vörös, A.; et al. Pathological Diagnosis, Work-Up and Reporting of Breast Cancer 1st Central-Eastern European Professional Consensus Statement on Breast Cancer. Pathol. Oncol. Res. 2022, 28, 1610373. [Google Scholar] [CrossRef] [PubMed]
- Cravo Sá, A.; Fermento, A.; Neves, D.; Ferreira, S.; Silva, T.; Marques Coelho, C.; Vaandering, A.; Roma, A.; Quaresma, S.; Bonnarens, E. Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience. Rep. Pract. Oncol. Radiother. 2018, 23, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Min, I.S.; Kim, T.H.; Kim, D.H.; Hwang, S.; Kang, K.; Kim, K.; Park, S.; Lee, J.; Cho, Y.U.; et al. Fully implantable and battery-free wireless optoelectronic system for modulable cancer therapy and real-time monitoring. npj Flex Electron. 2023, 7, 41. [Google Scholar] [CrossRef]
- Wimmer, K.; Bolliger, M.; Bago-Horvath, Z.; Steger, G.; Kauer-Dorner, D.; Helfgott, R.; Gruber, C.; Moinfar, F.; Mittlböck, M.; Fitzal, F. Impact of Surgical Margins in Breast Cancer After Preoperative Systemic Chemotherapy on Local Recurrence and Survival. Ann. Surg. Oncol. 2020, 27, 1700–1707. [Google Scholar] [CrossRef]
- Liang, T.; Shen, J.; Wang, J.; Liao, W.; Zhang, Z.; Liu, J.; Feng, Z.; Pei, S.; Liu, K. Ultrasound-based prediction of preoperative core biopsy categories in solid breast tumor using machine learning. QIMS 2023, 13, 4. [Google Scholar] [CrossRef]
- Kirshenbaum, K.; Keppke, A.; Hou, K.; Dickerson, M.; Gajjar, M.; Kirshenbaum, G. Reassessing Specimen Number and Diagnostic Yield of Ultrasound Guided Breast Core Biopsy. Breast J. 2012, 18, 464–469. [Google Scholar] [CrossRef]
- Guo, R.; Lu, G.; Qin, B.; Fei, B. Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound Med. Biol. 2018, 44, 37–70. [Google Scholar] [CrossRef]
- Bhatt, A.A.; Whaley, D.H.; Lee, C.U. Ultrasound-Guided Breast Biopsies: Basic and New Techniques. J. Ultrasound Med. 2021, 40, 1427–1443. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, I.; Ullah, N.; Shah, S.S.U.D.; Bakhtawar, A.K.; Zahoor, M.; Riaz, U.; Farhat Ali, K.; Mujeeb, A.S. Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. BioMed Res. Int. 2022, 2022, 5164970. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Zhang, T.; Shung, K.K.; Zhu, B. Recent Advancements in Ultrasound Transducer: From Material Strategies to Biomedical Applications. BME Front. 2022, 2022, 9764501. [Google Scholar] [CrossRef]
- Gubarkova, E.V.; Sovetsky, A.A.; Vorontsov, D.A.; Buday, P.A.; Sirotkina, M.A.; Plekhanov, A.A.; Kuznetsov, S.S.; Matveyev, A.L.; Matveev, L.A.; Gamayunov, S.V.; et al. Compression optical coherence elastography versus strain ultrasound elastography for breast cancer detection and differentiation: Pilot study. Biomed. Opt. Express 2022, 13, 2859–2880. [Google Scholar] [CrossRef] [PubMed]
- Azhdeh, S.; Kaviani, A.; Sadighi, N.; Rahmani, M. Accurate Estimation of Breast Tumor Size: A Comparison Between Ultrasonography, Mammography, Magnetic Resonance Imaging, and Associated Contributing Factors. Eur. J. Breast Health 2020, 17, 53. [Google Scholar] [CrossRef]
- Yang, R.-Q.; Chen, M.; Zhang, Q.; Gao, Y.-Y.; Lou, K.-L.; Lin, T.-T.; Huang, W.-H.; Zeng, Y.-Z.; Zhang, Y.-Q.; Dang, Y.-Y.; et al. Development and Preclinical Evaluation of a Near-Infrared Fluorescence Probe Based on Tailored Hepatitis B Core Particles for Imaging-Guided Surgery in Breast Cancer. Int. J. Nanomed. 2022, 17, 1343–1360. [Google Scholar] [CrossRef]
- Chesebro, A.L.; Chikarmane, S.A.; Ritner, J.A.; Birdwell, R.L.; Giess, C.S. Troubleshooting to Overcome Technical Challenges in Image-guided Breast Biopsy. RadioGraphics 2017, 37, 705–718. [Google Scholar] [CrossRef]
- Pal, U.M.; Saxena, M.; Vishnu, G.K.A.; Parsana, D.; Sarvani, B.S.R.; Varma, M.; Jayachandra, M.; Kurpad, V.; Baruah, D.; Gogoi, G.; et al. Optical spectroscopy-based imaging techniques for the diagnosis of breast cancer: A novel approach. Appl. Spectrosc. Rev. 2020, 55, 778–804. [Google Scholar] [CrossRef]
- Kasban, H.; El-Bendary, M.A.M.; Salama, D.H. A Comparative Study of Medical Imaging Techniques. Int. J. Inf. Sci. Intell. Syst. 2015, 4, 37–58. [Google Scholar]
- Bell, R.J. Mammographic density and breast cancer screening. Climacteric 2020, 23, 460–465. [Google Scholar] [CrossRef]
- Hasinoff, S.W. Saturation (Imaging). In Computer Vision; Ikeuchi, K., Ed.; Springer: Cham, Germany, 2021; pp. 1107–1109. [Google Scholar]
- Optical Filters in Medical Imaging: Enhancing Contrast and Resolution for Accurate Diagnoses. Available online: https://www.uqgoptics.com/optical-filters-in-medical-imaging-enhancing-contrast-and-resolution-for-accurate-diagnoses/ (accessed on 24 February 2025).
- Pistellato, M.; Fatima, T.; Wimmer, M. Exploiting Light Polarization for Deep HDR Imaging from a Single Exposure. Sensors 2023, 23, 5370. [Google Scholar] [CrossRef]
- Davey, M.G.; O’Donnell, J.P.M.; Boland, M.R.; Ryan, É.J.; Walsh, S.R.; Kerin, M.J.; Lowery, A.J. Optimal localization strategies for non-palpable breast cancers -A network meta-analysis of randomized controlled trials. Breast 2022, 62, 103–113. [Google Scholar] [CrossRef]
- Leiloglou, M.; Kedrzycki, M.S.; Chalau, V.; Chiarini, N.; Thiruchelvam, P.T.R.; Hadjiminas, D.J.; Hogben, K.R.; Rashid, F.; Ramakrishnan, R.; Darzi, A.W.; et al. Indocyanine green fluorescence image processing techniques for breast cancer macroscopic demarcation. Sci. Rep. 2022, 12, 8607. [Google Scholar] [CrossRef]
- Cochran, J.M.; Leproux, A.; Busch, D.R.; O’Sullivan, T.D.; Yang, W.; Mehta, R.S.; Police, A.M.; Tromberg, B.J.; Yodh, A.G. Breast cancer differential diagnosis using diffuse optical spectroscopic imaging and regression with z-score normalized data. J. Biomed. Opt. 2021, 26, 026004. [Google Scholar] [CrossRef]
- Scolaro, L.; Lorenser, D.; Quirk, B.C.; Kirk, R.W.; Ho, L.A.; Thomas, E.; Li, J.; Saunders, C.M.; Sampson, D.D.; Fuller, R.O.; et al. Multimodal imaging needle combining optical coherence tomography and fluorescence for imaging of live breast cancer cells labeled with a fluorescent analog of tamoxifen. J. Biomed. Opt. 2022, 27, 076004. [Google Scholar] [CrossRef]
- Li, G.; Munawar, A.; Win, N.S.S.; Fan, M.; Nawaz, M.Z.; Lin, L. Multispectral breast image grayscale and quality enhancement by repeated pair image registration & accumulation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 320, 124558. [Google Scholar]
- Hamdy, O.; Abdel-Salam, Z.; Abdel-Harith, M. Optical Characterization of Biological Tissues Based on Fluorescence, Absorption, and Scattering Properties. Diagnostics 2022, 12, 2846. [Google Scholar] [CrossRef] [PubMed]
- Jaglan, P.; Dass, R.; Duhan, M. Breast Cancer Detection Techniques: Issues and Challenges. J. Inst. Eng. India Ser. B. 2019, 100, 379–386. [Google Scholar] [CrossRef]
- Brown, A.L.; Vijapura, C.; Patel, M.; De La Cruz, A.; Wahab, R. Breast Cancer in Dense Breasts: Detection Challenges and Supplemental Screening Opportunities. RadioGraphics 2023, 43, 10. [Google Scholar] [CrossRef]
Optical Technique | Principle of Operation | Advantages over Conventional Techniques |
---|---|---|
Optical Spectroscopy | Analyzes light absorption and scattering to identify biomarkers. | Non-invasive, enables biochemical analysis without biopsies. |
Diffuse Optical Tomography (DOT) | Uses near-infrared light to reconstruct tissue optical properties. | Provides depth-resolved imaging, assesses cerebral oxygenation. |
Optical Coherence Tomography (OCT) | Employs low-coherence interferometry to generate cross-sectional images. | High-resolution, non-invasive, widely used in ophthalmology. |
Raman Spectroscopy | Measures inelastic scattering to detect molecular composition. | High molecular specificity, useful in oncological diagnosis. |
Fluorescence Imaging | Uses fluorophores to highlight specific molecules in tissues. | High sensitivity enables real-time imaging of biological processes. |
Photoacoustic Imaging (PAT) | Combines laser-induced ultrasound with optical absorption contrast. | Functional imaging of vascularization and tissue oxygenation. |
Material | Refractive Index at 635 nm |
---|---|
Real breast tissue |
|
Breast implant 1 |
|
Technique | Sensitivity | Specificity |
---|---|---|
Mammography 1 | 67.8% | 75% |
Ultrasound 1 | 83% | 34% |
DOM with 3D image reconstruction | 72% | 68% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Fernández, J.D.; Hernández-Mendoza, A.; Fabila-Bustos, D.A.; de la Rosa-Vázquez, J.M.; Hernández-Chávez, M.; de la Rosa-Gutierrez, G.; Roa-Tort, K. A Low-Cost Optomechatronic Diffuse Optical Mammography System for 3D Image Reconstruction: Proof of Concept. Diagnostics 2025, 15, 584. https://doi.org/10.3390/diagnostics15050584
Rivera-Fernández JD, Hernández-Mendoza A, Fabila-Bustos DA, de la Rosa-Vázquez JM, Hernández-Chávez M, de la Rosa-Gutierrez G, Roa-Tort K. A Low-Cost Optomechatronic Diffuse Optical Mammography System for 3D Image Reconstruction: Proof of Concept. Diagnostics. 2025; 15(5):584. https://doi.org/10.3390/diagnostics15050584
Chicago/Turabian StyleRivera-Fernández, Josué D., Alfredo Hernández-Mendoza, Diego A. Fabila-Bustos, José M. de la Rosa-Vázquez, Macaria Hernández-Chávez, Gabriela de la Rosa-Gutierrez, and Karen Roa-Tort. 2025. "A Low-Cost Optomechatronic Diffuse Optical Mammography System for 3D Image Reconstruction: Proof of Concept" Diagnostics 15, no. 5: 584. https://doi.org/10.3390/diagnostics15050584
APA StyleRivera-Fernández, J. D., Hernández-Mendoza, A., Fabila-Bustos, D. A., de la Rosa-Vázquez, J. M., Hernández-Chávez, M., de la Rosa-Gutierrez, G., & Roa-Tort, K. (2025). A Low-Cost Optomechatronic Diffuse Optical Mammography System for 3D Image Reconstruction: Proof of Concept. Diagnostics, 15(5), 584. https://doi.org/10.3390/diagnostics15050584