Anatomical Determinants of Tracheal Breathing Sounds: A Computational Study of Airway Narrowing and Obstructive Sleep Apnea
Abstract
1. Introduction
1.1. TBS Relevance
1.2. Anatomical Determinants
1.3. Rationale for TBS Modelling
2. Materials and Methods
2.1. Aero-Acoustic Simulation Framework
2.2. Anatomical Feature Extraction
3. Results
3.1. Aerodynamics
3.2. Airway Resistance
3.3. Acoustics
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jácome, C.; Marques, A. Computerized Respiratory Sounds in Patients with COPD: A Systematic Review. COPD J. Chronic Obstr. Pulm. Dis. 2015, 12, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Gavriely, N.; Palti, Y.; Alroy, G.; Grotberg, J.B. Measurement and Theory of Wheezing Breath Sounds. J. Appl. Physiol. 1984, 57, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Yadollahi, A.; Giannouli, E.; Moussavi, Z. Sleep Apnea Monitoring and Diagnosis Based on Pulse Oximetery and Tracheal Sound Signals. Med. Biol. Eng. Comput. 2010, 48, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Sabil, A. The Use of Tracheal Sounds for the Diagnosis of Sleep Apnoea. Breathe 2017, 13, e37–e45. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Peppard, P.E.; Gottlieb, D.J. Epidemiology of Obstructive Sleep Apnea: A Population Health Perspective. Am. J. Respir. Crit. Care Med. 2002, 165, 1217–1239. [Google Scholar] [CrossRef]
- Strohl, K.P.; Redline, S. Recognition of Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 1996, 154, 279–289. [Google Scholar] [CrossRef]
- Beecroft, J.M.; Ward, M.; Younes, M.; Crombach, S.; Smith, O.; Hanly, P.J. Sleep Monitoring in the Intensive Care Unit: Comparison of Nurse Assessment, Actigraphy and Polysomnography. Intensive Care Med. 2008, 34, 2076–2083. [Google Scholar] [CrossRef]
- American Society of Anesthesiologists Task Force on Perioperative Management of patients with obstructive sleep apnea. Practice Guidelines for the Perioperative Management of Patients with Obstructive Sleep Apnea. Anesthesiology 2014, 120, 268–286. [Google Scholar] [CrossRef]
- Elwali, A.; Moussavi, Z. A Novel Decision Making Procedure during Wakefulness for Screening Obstructive Sleep Apnea Using Anthropometric Information and Tracheal Breathing Sounds. Sci. Rep. 2019, 9, 11467. [Google Scholar] [CrossRef]
- Pasterkamp, H.; Schäfer, J.; Wodicka, G.R. Posture-Dependent Change of Tracheal Sounds at Standardized Flows in Patients with Obstructive Sleep Apnea. Chest 1996, 110, 1493–1498. [Google Scholar] [CrossRef]
- Ashraf, W.; Fredberg, J.J.; Moussavi, Z. Aeroacoustics of Breath Sounds in Trachea and Upper Airway. Appl. Acoust. 2026, 241, 111021. [Google Scholar] [CrossRef]
- Rama, A.N.; Tekwani, S.H.; Kushida, C.A. Sites of Obstruction in Obstructive Sleep Apnea. Chest 2002, 122, 1139–1147. [Google Scholar] [CrossRef]
- Finkelstein, Y.; Wolf, L.; Nachmani, A.; Lipowezky, U.; Rub, M.; Shemer, S.; Berger, G. Velopharyngeal Anatomy in Patients with Obstructive Sleep Apnea versus Normal Subjects. J. Oral Maxillofac. Surg. 2014, 72, 1350–1372. [Google Scholar] [CrossRef]
- Walsh, J.H.; Leigh, M.S.; Paduch, A.; Maddison, K.J.; Philippe, D.L.; Armstrong, J.J.; Sampson, D.D.; Hillman, D.R.; Eastwood, P.R. Evaluation of Pharyngeal Shape and Size Using Anatomical Optical Coherence Tomography in Individuals with and without Obstructive Sleep Apnoea. J. Sleep Res. 2008, 17, 230–238. [Google Scholar] [CrossRef]
- Chen, H.; Aarab, G.; de Ruiter, M.H.T.; de Lange, J.; Lobbezoo, F.; van der Stelt, P.F. Three-Dimensional Imaging of the Upper Airway Anatomy in Obstructive Sleep Apnea: A Systematic Review. Sleep Med. 2016, 21, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Horner, R.L.; Shea, S.A.; Mcivor, J.; Guz, A. Pharyngeal Size and Shape During Wakefulness and Sleep in Patients with Obstructive Sleep Apnoea. QJM Int. J. Med. 1989, 72, 719–735. [Google Scholar]
- Ciscar, M.A.; Juan, G.; Martínez, V.; Ramón, M.; Lloret, T.; Mínguez, J.; Armengot, M.; Marín, J.; Basterra, J. Magnetic Resonance Imaging of the Pharynx in OSA Patients and Healthy Subjects. Eur. Respir. J. 2001, 17, 79–86. [Google Scholar] [CrossRef]
- Galvin, J.R.; Rooholamini, S.A.; Stanford, W. Obstructive sleep apnea: Diagnosis with ultrafast CT. Radiology 1989, 171, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Segal, Y.; Malhotra, A.; Pillar, G. Upper Airway Length May Be Associated with the Severity of Obstructive Sleep Apnea Syndrome. Sleep Breath. 2008, 12, 311–316. [Google Scholar] [CrossRef]
- Abramson, Z.; Susarla, S.; August, M.; Troulis, M.; Kaban, L. Three-Dimensional Computed Tomographic Analysis of Airway Anatomy in Patients With Obstructive Sleep Apnea. J. Oral Maxillofac. Surg. 2010, 68, 354–362. [Google Scholar] [CrossRef]
- Griscom, N.T.; Wohl, M.E. Dimensions of the Growing Trachea Related to Body Height. Length, Anteroposterior and Transverse Diameters, Cross-Sectional Area, and Volume in Subjects Younger than 20 Years of Age. Am. Rev. Respir. Dis. 1985, 131, 840–844. [Google Scholar] [CrossRef]
- Sanchez, I.; Pasterkamp, H. Tracheal Sound Spectra Depend on Body Height. Am. Rev. Respir. Dis. 1993, 148, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Kraman, S.S.; Pasterkamp, H.; Kompis, M.; Takase, M.; Wodicka, G.R. Effects of Breathing Pathways on Tracheal Sound Spectral Features. Respir. Physiol. 1998, 111, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Yonemaru, M.; Kikuchi, K.; Mori, M.; Kawai, A.; Abe, T.; Kawashiro, T.; Ishihara, T.; Yokoyama, T. Detection of Tracheal Stenosis by Frequency Analysis of Tracheal Sounds. J. Appl. Physiol. 1993, 75, 605–612. [Google Scholar] [CrossRef]
- Ghahjaverestan, N.M.; Aguiar, C.; Hummel, R.; Cao, X.; Yu, J.; Bradley, T.D. Sleep Apnea Detection by Tracheal Motion and Sound, and Oximetry via Application of Deep Neural Networks. Nat. Sci. Sleep 2023, 15, 423–432. [Google Scholar] [CrossRef]
- Muñoz Rojo, M.; Pramono, R.X.A.; Devani, N.; Thomas, M.; Mandal, S.; Rodriguez-Villegas, E. Validation of Tracheal Sound-Based Respiratory Effort Monitoring for Obstructive Sleep Apnoea Diagnosis. J. Clin. Med. 2024, 13, 3628. [Google Scholar] [CrossRef]
- Yeom, S.H.; Na, J.S.; Jung, H.D.; Cho, H.J.; Choi, Y.J.; Lee, J.S. Computational Analysis of Airflow Dynamics for Predicting Collapsible Sites in the Upper Airways: Machine Learning Approach. J. Appl. Physiol. 2019, 127, 959–973. [Google Scholar] [CrossRef]
- Xi, J.; Wang, Z.; Talaat, K.; Glide-Hurst, C.; Dong, H. Numerical Study of Dynamic Glottis and Tidal Breathing on Respiratory Sounds in a Human Upper Airway Model. Sleep Breath. 2018, 22, 463–479. [Google Scholar] [CrossRef]
- Saha, S.; Bradley, T.D.; Taheri, M.; Moussavi, Z.; Yadollahi, A. A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef]
- Lighthill, M.J. On Sound Generated Aerodynamically I. General Theory. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1952, 211, 564–587. [Google Scholar] [CrossRef]
- Schoder, S.; Weitz, M.; Maurerlehner, P.; Hauser, A.; Falk, S.; Kniesburges, S.; Döllinger, M.; Kaltenbacher, M. Hybrid Aeroacoustic Approach for the Efficient Numerical Simulation of Human Phonation. J. Acoust. Soc. Am. 2020, 147, 1179–1194. [Google Scholar] [CrossRef] [PubMed]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations: I. The Basic Experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Lilly, D.K. A Proposed Modification of the Germano Sugrid-Scale Closure Method. Phys. Fluids A 1992, 4, 633–635. [Google Scholar] [CrossRef]
- Zielinska-Krawczyk, M.; Krenke, R.; Grabczak, E.M.; Light, R.W. Pleural Manometry–Historical Background, Rationale for Use and Methods of Measurement. Respir. Med. 2018, 136, 21–28. [Google Scholar] [CrossRef]
- Vara Almirall, B.; Calmet, H.; Ang, H.Q.; Inthavong, K. Flow Behavior in Idealized & Realistic Upper Airway Geometries. Comput. Biol. Med. 2025, 194, 110449. [Google Scholar] [CrossRef]
- Lancmanová, A.; Bodnár, T. Numerical Simulations of Human Respiratory Flows: A Review; Springer International Publishing: Cham, Switzerland, 2025; Volume 7, ISBN 0123456789. [Google Scholar]
- Caro, S.; Ploumhans, P.; Gallez, X. Implementation of Lighthill’s Acoustic Analogy in a Finite/Infinite Elements Framework. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, 10–12 May 2004; Volume 2, pp. 1048–1065. [Google Scholar] [CrossRef]
- Iwasaki, T.; Sugiyama, T.; Yanagisawa-Minami, A.; Oku, Y.; Yokura, A.; Yamasaki, Y. Effect of Adenoids and Tonsil Tissue on Pediatric Obstructive Sleep Apnea Severity Determined by Computational Fluid Dynamics. J. Clin. Sleep Med. 2020, 16, 2021–2028. [Google Scholar] [CrossRef]
- Rubinstein, I.; Bradley, T.D.; Zamel, N.; Hoffstein, V. Glottic and Cervical Tracheal Narrowing in Patients with Obstructive Sleep Apnea. J. Appl. Physiol. 1989, 67, 2427–2431. [Google Scholar] [CrossRef]
- Van Holsbeke, C.; Vos, W.; Van Hoorenbeeck, K.; Boudewyns, A.; Salgado, R.; Verdonck, P.R.; Ramet, J.; De Backer, J.; De Backer, W.; Verhulst, S.L. Functional Respiratory Imaging as a Tool to Assess Upper Airway Patency in Children with Obstructive Sleep Apnea. Sleep Med. 2013, 14, 433–439. [Google Scholar] [CrossRef]
- Ashraf, W.; Fredberg, J.J.; Moussavi, Z. Aero-Acoustic Simulation of Patient-Specific Breathing Sounds in Obstructive Sleep Apnea Versus Healthy Airways. Am. J. Respir. Crit. Care Med. 2025, 211, A3645. [Google Scholar] [CrossRef]
- Foucart, M. Aeroacoustic Investigation of a Stridor Patient’s Upper Respiratory System. Master Thesis, TU Delft, Delft, The Netherlands, 2015; pp. 1–242. [Google Scholar]
- Curle, N. The Influence of Solid Boundaries upon Aerodynamic Sound. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1955, 231, 505–514. [Google Scholar] [CrossRef]
- Blackstock, D.T. Fundamentals of Physical Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 2000; ISBN 0471319791. [Google Scholar]
- Ashraf, W.; Alqudah, A.; Band, M.; Zhao, L.; Lithgow, B.; Elwali, A. Developing an Empirical Acoustic Transfer Function Model for the Upper Airway. Ann. Biomed. Eng. 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Titze, I.R. Acoustic Interpretation of Resonant Voice. J. Voice 2001, 15, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.J.; Kim, W.S.; Sung, S.J. Numerical Investigation on the Flow Characteristics and Aerodynamic Force of the Upper Airway of Patient with Obstructive Sleep Apnea Using Computational Fluid Dynamics. Med. Eng. Phys. 2007, 29, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Schwab, R.J.; Gefter, W.B.; Hoffman, E.A.; Gupta, K.B.; Pack, A.I. Dynamic Upper Airway Imaging during Awake Respiration in Normal Subjects and Patients with Sleep Disordered Breathing. Am. Rev. Respir. Dis. 1993, 148, 1385–1400. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, J.B.; Maislin, G.; Schwab, R.J. Physical Findings and the Risk for Obstructive Sleep Apnea: The Importance of Oropharyngeal Structures. Am. J. Respir. Crit. Care Med. 2000, 162, 740–748. [Google Scholar] [CrossRef]
- Yanagisawa-Minami, A.; Sugiyama, T.; Iwasaki, T.; Yamasaki, Y. Primary Site Identification in Children with Obstructive Sleep Apnea by Computational Fluid Dynamics Analysis of the Upper Airway. J. Clin. Sleep Med. 2020, 16, 431–439. [Google Scholar] [CrossRef]
- Stauffer, J.L.; Zwillich, C.W.; Cadieux, R.J.; Bixler, E.O.; Kales, A.; Varano, L.A.; White, D.P. Pharyngeal Size and Resistance in Obstructive Sleep Apnea. Am. Rev. Respir. Dis. 1987, 136, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, J.L.; White, D.P.; Zwillich, C.W. Pulmonary Function in Obstructive Sleep Apnea. Relationships to Pharyngeal Resistance and Cross-Sectional Area. Chest 1990, 97, 302–307. [Google Scholar] [CrossRef]
- Song, B.; Li, Y.; Sun, J.; Qi, Y.; Li, P.; Li, Y.; Gu, Z. Computational Fluid Dynamics Simulation of Changes in the Morphology and Airflow Dynamics of the Upper Airways in OSAHS Patients after Treatment with Oral Appliances. PLoS ONE 2019, 14, 1–14. [Google Scholar] [CrossRef]
- Lin, H.; Xiong, H.; Ji, C.; Wang, C.; Li, Y.; An, Y.; Li, G.; Guo, J.; Huang, X.; Zhang, H.; et al. Upper Airway Lengthening Caused by Weight Increase in Obstructive Sleep Apnea Patients. Respir. Res. 2020, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Inamoto, Y.; Saitoh, E.; Okada, S.; Kagaya, H.; Shibata, S.; Baba, M.; Onogi, K.; Hashimoto, S.; Katada, K.; Wattanapan, P. Anatomy of the Larynx and Pharynx: Effects of Age, Gender and Height Revealed by Multidetector Computed Tomography. J. Oral Rehabil. 2015, 42, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; Huang, Y.; Fogel, R.; Lazic, S.; Pillar, G.; Jakab, M.; Kikinis, R.; White, D.P. Aging Influences on Pharyngeal Anatomy and Physiology: The Predisposition to Pharyngeal Collapse. Am. J. Med. 2006, 119, 72.e9–72.e14. [Google Scholar] [CrossRef] [PubMed]












| Model ID | Target Region | Constriction Level | Length Extension Level | Variation from Original Model | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| VP | OP | Tr | Mild | Severe | Mild | Severe | Min CSA | % | Length | % | ||
| Primitive models | Model 1 | †** | † | 85 → 62 mm2 | −27% | |||||||
| Model 2 | † | † | 85 → 26 mm2 | −69% | ||||||||
| Model 3 | † | † | 190 → 85 mm2 | −55% | ||||||||
| Model 4 | † | † | 190 → 30 mm2 | −84% | ||||||||
| Model 5 | † | † | 166 → 67 mm2 | −60% | ||||||||
| Model 6 | † | † | 166 → 36 mm2 | −78% | ||||||||
| Model 7 | † | † | 135 → 155 mm | 15% | ||||||||
| Model 8 | † | † | 135→ 175 mm | 30% | ||||||||
| Combinations | Model 9 | † | † | †† | Model 2 + Model 4 | |||||||
| Model 10 | † | † | †† | Model 2 + Model 6 | ||||||||
| Model 11 | † | † | † | Model 2 + Model 8 | ||||||||
| Model 12 | † | † | †† | Model 4 + Model 6 | ||||||||
| Model 13 | † | † | † | † | Model 4 + Model 8 | |||||||
| Model 14 | † | † | † | Model 6 + Model 8 | ||||||||
| Model 15 | † | † | † | ††† | Model 2 + Model 4 + Model 6 | |||||||
| Model | Velopharynx | Oropharynx | Trachea | |||
|---|---|---|---|---|---|---|
| Volume (mm3) | Min CSA (mm2) | Volume (mm3) | Min CSA (mm2) | Volume (mm3) | Min CSA (mm2) | |
| Healthy Original | 2616 | 85 | 6009 | 190 | 6517 | 166 |
| Model 1 | 2291 | 62 | ||||
| Model 2 | 2031 | 26 | ||||
| Model 3 | 4798 | 85 | ||||
| Model 4 | 3683 | 30 | ||||
| Model 5 | 5859 | 67 | ||||
| Model 6 | 5530 | 36 | ||||
| OSA | 1540 | 28 | 6003 | 110 | 11,373 | 255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, W.; Fredberg, J.J.; Moussavi, Z. Anatomical Determinants of Tracheal Breathing Sounds: A Computational Study of Airway Narrowing and Obstructive Sleep Apnea. Diagnostics 2025, 15, 3108. https://doi.org/10.3390/diagnostics15243108
Ashraf W, Fredberg JJ, Moussavi Z. Anatomical Determinants of Tracheal Breathing Sounds: A Computational Study of Airway Narrowing and Obstructive Sleep Apnea. Diagnostics. 2025; 15(24):3108. https://doi.org/10.3390/diagnostics15243108
Chicago/Turabian StyleAshraf, Walid, Jeffrey J. Fredberg, and Zahra Moussavi. 2025. "Anatomical Determinants of Tracheal Breathing Sounds: A Computational Study of Airway Narrowing and Obstructive Sleep Apnea" Diagnostics 15, no. 24: 3108. https://doi.org/10.3390/diagnostics15243108
APA StyleAshraf, W., Fredberg, J. J., & Moussavi, Z. (2025). Anatomical Determinants of Tracheal Breathing Sounds: A Computational Study of Airway Narrowing and Obstructive Sleep Apnea. Diagnostics, 15(24), 3108. https://doi.org/10.3390/diagnostics15243108

