Rapid Molecular Diagnostics for MDR Nosocomial Infections in ICUs: Integration with Prevention, Stewardship, and Novel Therapies
Abstract
1. Introduction
2. Antimicrobial Stewardship
| Step | Action | Details/Examples |
|---|---|---|
| A. Empiric Start (Syndrome-based) | HAP/VAP | Meropenem ± vancomycin (depending on MRSA prevalence) |
| Severe sepsis/BSI | Meropenem ± amikacin; consider ceftazidime–avibactam in high-KPC units | |
| IAI (severe) | Piperacillin-tazobactam or meropenem; adjust for ESBL prevalence | |
| B. Rapid Test Triage | Choose cartridge | UNYVERO HPN (respiratory; TAT 4–5 h) UNYVERO BCU (blood culture; TAT 4–5 h) GeneXpert Carba-R (MBL/KPC/OXA detection; TAT 45–60 min). |
| C. Gene-Based Therapeutic Rules | KPC detected | Start ceftazidime–avibactam or meropenem–vaborbactam. Avoid carbapenem monotherapy |
| NDM detected | First-line: aztreonam–avibactam alternative: cefiderocol. | |
| OXA-48-like detected | Start ceftazidime–avibactam; alternative cefiderocol. | |
| mecA/mecC detected | Switch to vancomycin or linezolid | |
| D. When MIC Confirmation is Needed | ESBL/AmpC | Confirm MIC before using cefepime or piperacillin–tazobactam |
| OXA-48-like | Requires phenotype confirmation due to variable hydrolysis | |
| Any escalation to new agents | Ceftolozane–tazobactam, cefiderocol, and imipenem-relebactam require MIC confirmation before use |
3. Prevention Strategies for Nosocomial Infections
3.1. Prevention of Central Line–Associated Bloodstream Infections (CLABSIs)
3.2. Prevention of Ventilator-Associated Pneumonia (VAP)
3.3. Prevention of Catheter-Associated Urinary Tract Infections (CAUTIs)
3.4. General Measures to Prevent Horizontal Transmission of Bacterial Pathogens
4. Early Detection of Pathogens and Timely Empiric Therapy
5. Rapid Molecular Diagnostics for Antimicrobial Resistance
5.1. PCR-Based Techniques: GeneXpert System
5.1.1. Diagnostic Performance and Sensitivity/Specificity
5.1.2. Implementation in Low and Middle-Income Countries
5.1.3. Clinical Impact in MDR Infections
5.1.4. Advantages and Limitations of Rapid PCR-Based Diagnostic Platforms (Table 3)
| Category | Description | Clinical Impact | Supporting Evidence |
|---|---|---|---|
| Speed | Results available in 45–60 min compared with 48–72 h for cultures | Early optimization of empiric therapy; faster escalation/de-escalation | Tsalik et al., 2018 [45] Zhang et al., 2024 [39] |
| Ease of Use | Minimal training required; fully automated | Expands access to rapid diagnostics outside tertiary centers | Centner et al., 2024 [49] Albert H et al., 2016 [67] |
| High Negative Predictive Value (NPV) | Reliable exclusion of major resistance genes when negative | Enables safe de-escalation and reduces broad-spectrum antibiotic use | Li et al., 2021 [51] Buchan et al., 2020 [65] |
| Detection of Key Resistance Genes | Identifies KPC, NDM, OXA-48-like, mecA/mecC | Earlier targeted therapy for MDR pathogens | Tsalik et al., 2018 [45] Li et al., 2021 [51] |
| Limited Scope | Does not detect all resistance mechanisms (e.g., efflux pumps, porin mutations) | May fail to predict phenotypic resistance | Tsalik et al., 2018 [45] Chakravorty et al., 2017 [50] |
| No Species Identification | Resistance genes may belong to various bacterial species | Requires culture confirmation for accurate therapy selection | Darie et al., 2022 [64] Buchan et al., 2020 [65] |
| Cost Constraints | Cartridge cost USD 20–65 per test, plus instrument maintenance | Financial barrier for widespread implementation in the ICU | WHO, 2024 [5] Albert H et al., 2016 [67] |
| False Positives/Negatives | FP: detection of non-viable DNA; FN: low bacterial load | Must be interpreted together with clinical findings and cultures | Huang et al., 2013 [68] Clark et al., 2013 [42] |
5.2. UNYVERO® System
- Enhanced pathogen detection: Identifies clinically relevant pathogens that may be missed by conventional culture-based methods [65].
- Rapid results from challenging specimens: Delivers accurate results even in samples that are difficult to process by standard microbiology.
- Optimized antimicrobial therapy: By detecting both pathogens and resistance genes, it reduces the risk of ineffective antibiotic use [15].
- Improved clinical outcomes: Facilitates earlier targeted therapy, thereby reducing mortality and morbidity.
- Economic benefits: Early optimization of therapy and reduced length of hospital stay translate into substantial cost savings for healthcare systems.
5.3. Characteristics of Specific UNYVERO Panels
5.3.1. Severe Pneumonia (HPN) Panel
5.3.2. Intra-Abdominal Infection (IAI) Panel
5.3.3. Implant and Tissue Infection (ITI) Panel
5.3.4. Blood Culture Positive (BCU) Panel
6. Clinical Evidence and Local Data
- Integrate rapid molecular diagnostics (e.g., HPN, BCU, Carba-R) into early sepsis evaluation to shorten time-to-effective therapy.
- Implement gene-guided antimicrobial selection, especially for KPC, NDM, and OXA-48-like results, with immediate consultation of AMS teams.
- Adopt structured de-escalation protocols that trigger antibiotic narrowing when rapid panel results and subsequent MIC data indicate susceptibility.
- Standardize empirical therapy choices based on local ICU antibiograms and syndrome-specific risk factors.
- Reinforce infection prevention bundles and ensure continuous auditing of device management and hand hygiene in high-risk ICU areas.
- Evaluate the outcome impact of integrating rapid diagnostics with AMS algorithms across Romanian ICUs (mortality, LOS, antibiotic exposure).
- Compare diagnostic pathways (UNYVERO vs. GeneXpert vs. BioFire) in real-world ICU settings, focusing on concordance with culture/MIC results.
- Assess the cost-effectiveness of implementing rapid diagnostics in middle-income healthcare systems.
- Study gene–phenotype discordance, especially for OXA-48-like and AmpC, to refine therapeutic algorithms.
- Develop machine-learning models that combine rapid diagnostic results, local resistance patterns, and patient risk scores to guide individualized therapy.
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Sligar, A.; Phipps, M.; Byrne, S.; Bisignano, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- De Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob. Resist. Infect. Control 2019, 8, 137. [Google Scholar] [CrossRef]
- Popovici, S.E.; Bedreag, O.H.; Sandesc, D. Evolution of Acinetobacter baumannii infections and antimicrobial resistance. A review. Cent. Eur. J. Clin. Res. 2019, 2, 28–36. [Google Scholar] [CrossRef]
- WHO. Bacterial Priority Pathogens List 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance, 1st ed.; World Health Organization: Geneva, Switzerland, 2024; p. 1. [Google Scholar]
- Ochoa-Hein, E.; Galindo-Fraga, A. Antimicrobial stewardship: From theory to reality in a resource-limited setting (and beyond). Front. Antibiot. 2024, 3, 1492319. [Google Scholar] [CrossRef] [PubMed]
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef]
- Howard, P.; Pulcini, C.; Levy Hara, G.; West, R.M.; Gould, I.M.; Harbarth, S.; Nathwani, D.; ESCMID Study Group for Antimicrobial Policies (ESGAP); ISC Group on Antimicrobial Stewardship. An international cross-sectional survey of antimicrobial stewardship programmes in hospitals. J. Antimicrob. Chemother. 2015, 70, 1245–1255. [Google Scholar] [CrossRef]
- Karanika, S.; Paudel, S.; Grigoras, C.; Kalbasi, A.; Mylonakis, E. Systematic Review and Meta-analysis of Clinical and Economic Outcomes from the Implementation of Hospital-Based Antimicrobial Stewardship Programs. Antimicrob. Agents Chemother. 2016, 60, 4840–4852. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Proposals for EU Guidelines on the Prudent Use of Antimicrobials in Humans; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2017. [Google Scholar]
- Bedreag, O.H.; Rogobete, A.F.; Luca, L.; Neamtu, C.; Dragulescu, D.M.; Nartita, R.; Papurica, M. Incidence of pathogens infections in a Romanian Intensive Care Unit and sensitivity to antibiotics. A prospective single center study. Acta Medica Marisiensis 2016, 62, 21–26. [Google Scholar] [CrossRef]
- Axente, C.; Licker, M.; Moldovan, R.; Hogea, E.; Muntean, D.; Horhat, F.; Bedreag, O.; Sandesc, D.; Papurica, M.; Dugaesescu, D. Antimicrobial consumption, costs and resistance patterns: A two year prospective study in a Romanian intensive care unit. BMC Infect. Dis. 2017, 17, 358. [Google Scholar] [CrossRef]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.A.; Sherertz, R.J.; Warren, D.K.; et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef]
- Papurica, M.; Rogobete, A.; Sandesc, D.; Cradigati, C.; Sarandan, M.; Dumache, R.; Horhat, F.; Bratu, L.; Nitu, R.; Crisan, D.; et al. Using the Expression of Damage-Associated Molecular Pattern (DAMP) for the Evaluation and Monitoring of the Critically Ill Polytrauma Patient. Clin. Lab. 2016, 62, 1829–1840. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Klompas, M.; Branson, R.; Cawcutt, K.; Crist, M.; Eichenwald, E.C.; Greene, L.R.; Lee, G.; Maragakis, L.L.; Powell, K.; Priebe, G.P.; et al. Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2022, 43, 687–713. [Google Scholar] [CrossRef]
- Pozuelo-Carrascosa, D.P.; Herráiz-Adillo, Á.; Alvarez-Bueno, C.; Añón, J.M.; Martínez-Vizcaíno, V.; Cavero-Redondo, I. Subglottic secretion drainage for preventing ventilator-associated pneumonia: An overview of systematic reviews and an updated meta-analysis. Eur. Respir. Rev. 2020, 29, 190107. [Google Scholar] [CrossRef]
- Siempos, I.I.; Ntaidou, T.K.; Filippidis, F.T.; Choi, A.M.K. Effect of early versus late or no tracheostomy on mortality and pneumonia of critically ill patients receiving mechanical ventilation: A systematic review and meta-analysis. Lancet Respir. Med. 2015, 3, 150–158. [Google Scholar] [CrossRef]
- Metheny, N.A.; Krieger, M.M.; Healey, F.; Meert, K.L. A review of guidelines to distinguish between gastric and pulmonary placement of nasogastric tubes. Heart Lung 2019, 48, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Lecuona, M.; Jiménez, A.; Lorenzo, L.; Roca, I.; Cabrera, J.; Llanos, C.; Mora, M.L. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit. Care 2014, 18, R77. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodpoor, A.; Hamishehkar, H.; Hamidi, M.; Shadvar, K.; Sanaie, S.; Golzari, S.E.; Khan, Z.H.; Nader, N.D. A prospective randomized trial of tapered-cuff endotracheal tubes with intermittent subglottic suctioning in preventing ventilator-associated pneumonia in critically ill patients. J. Crit. Care 2017, 38, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Van Decker, S.G.; Bosch, N.; Murphy, J. Catheter-associated urinary tract infection reduction in critical care units: A bundled care model. BMJ Open Qual. 2021, 10, e001534. [Google Scholar] [CrossRef]
- Hooton, T.M.; Bradley, S.F.; Cardenas, D.D.; Colgan, R.; Geerlings, S.E.; Rice, J.C.; Saint, S.; Schaeffer, A.J.; Tambayh, P.A.; Tenke, P. Diagnosis, Prevention, and Treatment of Catheter-Associated Urinary Tract Infection in Adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 625–663. [Google Scholar] [CrossRef]
- Lo, E.; Nicolle, L.E.; Coffin, S.E.; Gould, C.; Maragakis, L.L.; Meddings, J.; Pegues, D.A.; Pettis, A.M.; Saint, S.; Yokoe, D.S. Strategies to Prevent Catheter-Associated Urinary Tract Infections in Acute Care Hospitals: 2014 Update. Infect. Control Hosp. Epidemiol. 2014, 35, 464–479. [Google Scholar] [CrossRef] [PubMed]
- Novacescu, A.N.; Buzzi, B.; Bedreag, O.; Papurica, M.; Rogobete, A.F.; Sandesc, D.; Sorescu, T.; Baditoiu, L.; Musuroi, C.; Vlad, D. Bacterial and Fungal Superinfections in COVID-19 Patients Hospitalized in an Intensive Care Unit from Timișoara, Romania. Infect. Drug Resist. 2022, 15, 7001–7014. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Pittet, D. Role of hand hygiene in healthcare-associated infection prevention. J. Hosp. Infect. 2009, 73, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization in Health Care Facilities. Infect. Dis. Clin. N. Am. 2021, 35, 575–607. [Google Scholar] [CrossRef] [PubMed]
- Donskey, C.J. Does improving surface cleaning and disinfection reduce health care-associated infections? Am. J. Infect. Control 2013, 41, S12–S19. [Google Scholar] [CrossRef]
- Phan, L.T.; Maita, D.; Mortiz, D.C.; Weber, R.; Fritzen-Pedicini, C.; Bleasdale, S.C.; Jones, R.M.; Program, F.T.C.P.E. Personal protective equipment doffing practices of healthcare workers. J. Occup. Environ. Hyg. 2019, 16, 575–581. [Google Scholar] [CrossRef]
- Verbeek, J.H.; Rajamaki, B.; Ijaz, S.; Sauni, R.; Toomey, E.; Blackwood, B. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst. Rev. 2020, CD011621. [Google Scholar] [CrossRef]
- Pittet, D.; Hugonnet, S.; Harbarth, S.; Mourouga, P.; Sauvan, V.; Touveneau, S.; Perneger, T.V. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Lancet 2000, 356, 1307–1312. [Google Scholar] [CrossRef]
- Loveday, H.P.; Wilson, J.A.; Pratt, R.J.; Golsorkhi, M.; Tingle, A.; Bak, A.; Browne, J.; Prieto, J.; Wilcox, M. epic3: National Evidence-Based Guidelines for Preventing Healthcare-Associated Infections in NHS Hospitals in England. J. Hosp. Infect. 2014, 86, S1–S70. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am. J. Infect. Control 2007, 35, S65–S164. [Google Scholar] [CrossRef]
- Weber, D.J.; Anderson, D.J.; Sexton, D.J.; Rutala, W.A. Role of the environment in the transmission of Clostridium difficile in health care facilities. Am. J. Infect. Control 2013, 41, S105–S110. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef] [PubMed]
- Paray, A.A.; Singh, M.; Amin Mir, M. Gram Staining: A Brief Review. Int. J. Res. Rev. 2023, 10, 336–341. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, J.; Shen, S.; Ding, L.; Yang, W.; Tang, C.; Shi, Q.; Zhao, H.; Guo, Y.; Han, R.; et al. Comparison of three colloidal gold immunoassays and GeneXpert Carba-R for the detection of Klebsiella pneumoniae blaKPC-2 variants. J. Clin. Microbiol. 2024, 62, e00154-24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furlaneto-Maia, L.; Rocha, K.R.; Siqueira, V.L.D.; Furlaneto, M.C. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 97–103. [Google Scholar] [CrossRef]
- Baron, E.J.; Miller, J.M.; Weinstein, M.P.; Richter, S.S.; Gilligan, P.H.; Thomson, R.B., Jr.; Bourbeau, P.; Carroll, K.C.; Kehl, S.C.; Dunne, W.M.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)a. Clin. Infect. Dis. 2013, 57, e22–e121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef]
- Becker, K.L.; Nylén, E.S.; White, J.C.; Müller, B.; Snider, R.H. Procalcitonin and the Calcitonin Gene Family of Peptides in Inflammation, Infection, and Sepsis: A Journey from Calcitonin Back to Its Precursors. J. Clin. Endocrinol. Metab. 2004, 89, 1512–1525. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Tsalik, E.L.; Bonomo, R.A.; Fowler, V.G. New Molecular Diagnostic Approaches to Bacterial Infections and Antibacterial Resistance. Annu. Rev. Med. 2018, 69, 379–394. [Google Scholar] [CrossRef]
- Banerjee, R.; Özenci, V.; Patel, R. Individualized Approaches Are Needed for Optimized Blood Cultures. Clin. Infect. Dis. 2016, 63, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Solanki, A.M.; Basu, S.; Biswas, A.; Roy, S.; Banta, A. Sensitivity and Specificity of Gene Xpert in the Diagnosis of Spinal Tuberculosis: A Prospective Controlled Clinical Study. Glob. Spine J. 2020, 10, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Nur, T.E.; Shirin, A.; Saha, M.M. Diagnostic Accuracy of Fine Needle Aspiration Cytology in Diagnosis of Tuberculous Lymphadenitis. J. Enam Med. Coll. 2019, 9, 30–33. [Google Scholar] [CrossRef]
- Centner, C.M.; Munir, R.; Tagliani, E.; Rieß, F.; Brown, P.; Hayes, C.; Dolby, T.; Zemanay, W.; Cirillo, D.M.; David, A.; et al. Reflex Xpert MTB/XDR Testing of Residual Rifampicin-Resistant Specimens: A Clinical Laboratory-Based Diagnostic Accuracy and Feasibility Study in South Africa. Open Forum Infect. Dis. 2024, 11, ofae437. [Google Scholar] [CrossRef]
- Chakravorty, S.; Simmons, A.M.; Rowneki, M.; Parmar, H.; Cao, Y.; Ryan, J.; Banada, P.P.; Deshpande, S.; Shenai, S.; Gall, A.; et al. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing. mBio 2017, 8, e00812-17. [Google Scholar] [CrossRef]
- Li, H.H.; He, Z.J.; Xie, L.M.; Zhang, J.S.; Xie, T.A.; Fan, S.J.; Guo, X.G. Evaluation of Xpert Carba-R Assay for the Detection of Carbapenemase Genes in Gram-Negative Bacteria. BioMed Res. Int. 2021, 2021, 6614812. [Google Scholar] [CrossRef]
- Haider, M.H.; McHugh, T.D.; Roulston, K.; Arruda, L.B.; Sadouki, Z.; Riaz, S. Detection of carbapenemases blaOXA48-blaKPC-blaNDM-blaVIM and extended-spectrum-β-lactamase blaOXA1-blaSHV-blaTEM genes in Gram-negative bacterial isolates from ICU burns patients. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 18. [Google Scholar]
- Xu, Y.; Song, W.; Huang, P.; Mei, Y.; Zhang, Y.; Xu, T. A Rapid Carbapenemase Genes Detection Method with Xpert Carba-R from Positive Blood Cultures Compared with NG-Test Carba 5 and Sequencing. Infect. Drug Resist. 2022, 15, 7719–7725. [Google Scholar] [CrossRef]
- Van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Potoski, B.A.; Marini, R.V.; Doi, Y.; Kreiswirth, B.N.; Clancy, C.J. Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant Klebsiella pneumoniae Bacteremia. Antimicrob. Agents Chemother. 2017, 61, e00883-17. [Google Scholar] [CrossRef]
- Sangiorgio, G.; Calvo, M.; Stefani, S. Aztreonam and avibactam combination therapy for metallo-β-lactamase-producing gram-negative bacteria: A Narrative Review. Clin. Microbiol. Infect. 2025, 31, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kontogiannis, D.S.; Ragias, D.; Kakoullis, S.A. Antibiotics for the Treatment of Patients with Metallo-β-Lactamase (MBL)-Producing Gram-Negative Bacterial Infections. Antibiotics 2025, 14, 894. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. Aeruginosa). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar] [PubMed]
- Wang, M.; Ge, L.; Chen, L.; Komarow, L.; Hanson, B.; Reyes, J.; Cober, E.; Alenazi, T.; Zong, Z.; Xie, Q.; et al. Clinical Outcomes and Bacterial Characteristics of Carbapenem-resistant Acinetobacter baumannii Among Patients from Different Global Regions. Clin. Infect. Dis. 2024, 78, 248–258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children: Executive Summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Pascual, A. CON: Carbapenems are NOT necessary for all infections caused by ceftriaxone-resistant Enterobacterales. JAC-Antimicrob. Resist. 2021, 3, dlaa112. [Google Scholar] [CrossRef]
- Tekele, S.G.; Mulatie, Z.; Gedefie, A.; Ebrahim, H.; Eshetu, B.; Tilahun, M.; Debash, H.; Shibabew, A.; Mohammed, O.; Alemayehu, E.; et al. Prevalence of AmpC beta-lactamase producing Escherichia coli and Klebsiella pneumoniae in Africa: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2025, 14, 109. [Google Scholar] [CrossRef]
- Rezzoug, I.; Ouacel, K.; Droit, T.; Ronsin, S.; Bonnin, R.A.; Jousset, A.B.; Latour, L.; Dortet, L.; Emeraud, C. Therapeutic challenges in treating ESBL- and/or AmpC-producing non-carbapenemase-producing Enterobacterales: An in vitro evaluation of novel β-lactam/β-lactamase inhibitor combinations and cefiderocol. J. Antimicrob. Chemother. 2025, 28, dkaf364. [Google Scholar] [CrossRef] [PubMed]
- Darie, A.M.; Khanna, N.; Jahn, K.; Osthoff, M.; Bassetti, S.; Osthoff, M.; Schumann, D.M.; Albrich, W.C.; Hirsch, H.; Brutsche, M. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): A multicentre, randomised controlled trial. Lancet Respir. Med. 2022, 10, 877–887. [Google Scholar] [CrossRef]
- Buchan, B.W.; Windham, S.; Balada-Llasat, J.M.; Leber, A.; Harrington, A.; Relich, R.; Murphy, C.; Bard, J.D.; Naccache, S.; Ronen, S. Practical Comparison of the BioFire FilmArray Pneumonia Panel to Routine Diagnostic Methods and Potential Impact on Antimicrobial Stewardship in Adult Hospitalized Patients with Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, e00135-20. [Google Scholar] [CrossRef]
- Timbrook, T.T.; Olin, K.E.; Spaulding, U.; Galvin, B.W.; Cox, C.B. Epidemiology of Antimicrobial Resistance Among Blood and Respiratory Specimens in the United States Using Genotypic Analysis from a Cloud-Based Population Surveillance Network. Open Forum Infect. Dis. 2022, 9, ofac296. [Google Scholar] [CrossRef] [PubMed]
- Albert, H.; Nathavitharana, R.R.; Isaacs, C.; Pai, M.; Denkinger, C.M.; Boehme, C.C. Development, roll-out and impact of Xpert MTB/RIF for tuberculosis: What lessons have we learnt and how can we do better? Eur. Respir. J. 2016, 48, 516–525. [Google Scholar] [CrossRef]
- Huang, A.M.; Newton, D.; Kunapuli, A.; Gandhi, T.N.; Washer, L.L.; Isip, J.; Collins, C.D.; Nagel, J.L. Impact of Rapid Organism Identification via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Combined with Antimicrobial Stewardship Team Intervention in Adult Patients with Bacteremia and Candidemia. Clin. Infect. Dis. 2013, 57, 1237–1245. [Google Scholar] [CrossRef]
- Papan, C.; Meyer-Buehn, M.; Laniado, G.; Nicolai, T.; Griese, M.; Huebner, J. Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. Infection 2018, 46, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Ciesielczuk, H.; Wilks, M.; Castelain, S.; Choquet, M.; Morotti, M.; Pluquet, E.; Sambri, V.; Tassinari, M.; Zannoli, S.; Cavalié, L. Multicenter performance evaluation of the Unyvero IAI cartridge for detection of intra-abdominal infections. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Bacher, J.; Barth, S.; Atrzadeh, F.; Siebenhaller, K.; Ferreira, I.; Beisken, S.; Posch, A.E.; Carroll, K.C.; Wunderink, R.G. Multicenter Evaluation of the Unyvero Platform for Testing Bronchoalveolar Lavage Fluid. J. Clin. Microbiol. 2021, 59, e02497-20. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Bouadma, L.; Mathy, V.; Allouche, K.; Patrier, J.; Reboul, M.; Montravers, P.; Timsit, J.-F.; Armand-Lefevre, L. Performance and impact of a multiplex PCR in ICU patients with ventilator-associated pneumonia or ventilated hospital-acquired pneumonia. Crit. Care 2020, 24, 366. [Google Scholar] [CrossRef]
- Burrack-Lange, S.C.; Personne, Y.; Huber, M.; Winkler, E.; Weile, J.; Knabbe, C.; Görig, J.; Rohde, H. Multicenter assessment of the rapid Unyvero Blood Culture molecular assay. J. Med. Microbiol. 2018, 67, 1294–1301. [Google Scholar] [CrossRef]
- Schinas, G.; Polyzou, E.; Spernovasilis, N.; Gogos, C.; Dimopoulos, G.; Akinosoglou, K. Preventing Multidrug-Resistant Bacterial Transmission in the Intensive Care Unit with a Comprehensive Approach: A Policymaking Manual. Antibiotics 2023, 12, 1255. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T. The staggering death toll of drug-resistant bacteria. Nature 2022. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Tängdén, T.; Carrara, E.; Hellou, M.M.; Yahav, D.; Paul, M. Introducing new antibiotics for multidrug-resistant bacteria: Obstacles and the way forward. Clin. Microbiol. Infect. 2025, 31, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Macesic, N.; Uhlemann, A.C.; Peleg, A.Y. Multidrug-resistant Gram-negative bacterial infections. Lancet 2025, 405, 257–272. [Google Scholar] [CrossRef]
| Resistance Gene Detected | Likely Mechanism/Implication | First-Line Therapy | Alternative Therapy | Key Caveats | Supporting Evidence |
|---|---|---|---|---|---|
| KPC | KPC carbapenemase → high-level carbapenem resistance | Ceftazidime–avibactam | Meropenem–vaborbactam; Imipenem–relebactam | MIC confirmation required; avoid carbapenem monotherapy; inoculum effect possible | Van Duin et al. [54]; Shields RK et al. [55]; |
| NDM | Metalo-β- lactamase → carbapenem + ceftazidime–avibactam resistance | Aztreonam + avibactam | Cefiderocol | Gene/phenotype discordance may occur; confirm susceptibility | Sangiorgio et al. [56]; Falagas et al. [57]; |
| OXA-48-like | OXA-48 carbapenemase; variable carbapenem hydrolysis | Ceftazidime–avibactam | High-dose meropenem; cefiderocol | Species- dependent expression; confirm phenotype | Tamma et al. [58]; Wang et al. [59]; |
| mecA/mecC | MRSA; β-lactam resistance | Vancomycin; Daptomycin | Linezolid; Ceftaroline | Avoid β-lactams except ceftaroline; | Liu et al. [60]; |
| ESBL genes (CTX-M) | ESBL-producing Enterobacterales | Carbapenem (merpenem) | Piperacillin–tazobactam; ceftolozane–tazobactam | Inoculum effect; avoid PTZ in severe sepsis unless MIC ≤ 8 | Tamma et al. [58]; Rodrigues-Bano et al. [61]; |
| AmpC genes | AmpC hyperproduction → cephalosporin resistance | Carbapenem | Cefepime (if MIC ≤ 2 mg/L) | Risk of treatment failure with cefepime if high inoculum | Tekele et al. [62]; Rezzoug et al. [63]; |
| Cabapenemase gene negative (wild-type profile) | No major resistance gene detected | De-escalation to narrower β-lactams | Cephalosporins; β-lactam/β-lactamase inhibitors | Must confirm susceptibility; PCR does not detect efflux/porin loss | Tamma et al. [58]; |
| Gram-Positive Bacteria | Enterobacteriaceae | Non-Fermentative Bacteria | Other Bacteria/Fungi |
|---|---|---|---|
| Staphylococcus aureus Streptococcus pneumoniae | Citrobacter freundii Escherichia coli Enterobacter cloacae complex Klebsiella aerogenes (Enterobacter aerogenes) Proteus spp. Klebsiella pneumonia Klebsiella oxytoca Klebsiella variicola Serratia marcescens Morganella morganii | Moraxella catarrhalis Pseudomonas aeruginosa Acinetobacter baumannii complex Stenotrophomonas maltophilia Legionella pneumophila | Pneumocystis jirovecii Haemophilus influenzae Mycoplasma pneumoniae Chlamydia (Chlamydophila) pneumoniae |
| Antibiotic Resistance | Detected Gene |
|---|---|
| Macrolides/Lincosamides | ermB |
| Oxacillin | mecA, mecC |
| Penicillins | tem, shv |
| Third-generation cephalosporins | ctx-M |
| Carbapenems | kpc, imp, ndm, oxa-23, oxa-24/40, oxa-48, oxa-58, vim |
| Sulfonamides | sul1 |
| Fluoroquinolones | gyrA83, gyrA87 |
| Identified Pathogens | Percentage (%) | Number of Isolates |
|---|---|---|
| Acinetobacter baumannii complex | 20.4 | 72 |
| Pseudomonas aeruginosa | 18.41 | 65 |
| Klebsiella pneumoniae | 16.72 | 59 |
| Staphylococcus aureus | 7.93 | 28 |
| Stenotrophomonas maltophilia | 7.65 | 27 |
| Proteus spp. | 7.37 | 26 |
| Escherichia coli | 6.23 | 22 |
| Enterobacter cloacae complex | 3.4 | 12 |
| Streptococcus pneumoniae | 2.55 | 9 |
| Haemophilus influenzae | 2.55 | 9 |
| Klebsiella oxytoca | 1.98 | 7 |
| Serratia marcescens | 1.7 | 6 |
| Moraxella catarrhalis | 1.42 | 5 |
| Citrobacter freundii | 0.85 | 3 |
| Morganella morgani | 0.28 | 1 |
| Legionella pneumophila | 0.28 | 1 |
| Pneumocystis jirovecii | 0.28 | 1 |
| Klebsiella aerogenes (E. aerogenes) | 0 | 0 |
| Klebsiella variicola | 0 | 0 |
| Mycoplasma pneumoniae | 0 | 0 |
| Chlamydia (Chlamydophila) pneumoniae | 0 | 0 |
| CR Enterobacteriacee | Pseudomonas aeruginosa | CR A. baumannii CRAB | S. maltophilia | MRSA | C. Diff. | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| OXA-48-like+ | KPC+ | MBL+ | CR Cabapenemase —negative | MBL+ | CR Cabapenemase —negative | |||||
| Cefiderocol | ||||||||||
| Ceftazidime/ Avibactam | ||||||||||
| Ceftolozane/ Tazobactam | ||||||||||
| Imipenem/ Relebactam | ||||||||||
| Eravacyline | ||||||||||
| Aztreonam/ Avibactam | ||||||||||
| Vancomycin | ||||||||||
| Linezolid | ||||||||||
| Tedizolid | ||||||||||
| Dalbavancin | ||||||||||
| Daptomycin | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, K.C.; Ritiu, S.A.; Băloi, A.; Barsac, C.R.; Sandesc, D.; Papurica, M.; Rogobete, A.F.; Toma, D.; Porosnicu, M.T.; Gindac, C.; et al. Rapid Molecular Diagnostics for MDR Nosocomial Infections in ICUs: Integration with Prevention, Stewardship, and Novel Therapies. Diagnostics 2025, 15, 3060. https://doi.org/10.3390/diagnostics15233060
Marin KC, Ritiu SA, Băloi A, Barsac CR, Sandesc D, Papurica M, Rogobete AF, Toma D, Porosnicu MT, Gindac C, et al. Rapid Molecular Diagnostics for MDR Nosocomial Infections in ICUs: Integration with Prevention, Stewardship, and Novel Therapies. Diagnostics. 2025; 15(23):3060. https://doi.org/10.3390/diagnostics15233060
Chicago/Turabian StyleMarin, Karina Cristina, Stelian Adrian Ritiu, Adelina Băloi, Claudiu Rafael Barsac, Dorel Sandesc, Marius Papurica, Alexandru Florin Rogobete, Daiana Toma, Mirela Tamara Porosnicu, Ciprian Gindac, and et al. 2025. "Rapid Molecular Diagnostics for MDR Nosocomial Infections in ICUs: Integration with Prevention, Stewardship, and Novel Therapies" Diagnostics 15, no. 23: 3060. https://doi.org/10.3390/diagnostics15233060
APA StyleMarin, K. C., Ritiu, S. A., Băloi, A., Barsac, C. R., Sandesc, D., Papurica, M., Rogobete, A. F., Toma, D., Porosnicu, M. T., Gindac, C., Butaș, M., & Bedreag, O. H. (2025). Rapid Molecular Diagnostics for MDR Nosocomial Infections in ICUs: Integration with Prevention, Stewardship, and Novel Therapies. Diagnostics, 15(23), 3060. https://doi.org/10.3390/diagnostics15233060

