Deep Learning Model for Volume Measurement of the Remnant Pancreas After Pancreaticoduodenectomy and Distal Pancreatectomy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Preprocessing
2.3. Manual Delineation
2.4. Evaluation
2.5. Pancreas Segmentation with DL
3. Results
3.1. Patient Characteristics
3.2. Pancreas Segmentation
3.3. Pancreas Volume Estimation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | artificial intelligence |
| CAD | computer-aided diagnosis |
| CLAHE | contrast-limited adaptive histogram equalization |
| CT | computed tomography |
| DL | deep learning |
| DSC | dice similarity coefficient |
| FCN | fully convolutional network |
| HU | Hounsfield units |
| ROI | region of interest |
References
- Lee, D.-H.; Jang, J.Y.; Kang, J.S.; Kim, J.R.; Han, Y.; Kim, E.; Kwon, W.; Kim, S.W. Recent treatment patterns and survival outcomes in pancreatic cancer according to clinical stage based on single-center large-cohort data. Ann. Hepatobiliary Pancreat. Surg. 2018, 22, 386–396. [Google Scholar] [CrossRef]
- Kim, J.R.; Jang, K.T.; Jang, J.Y.; Lee, K.B.; Kim, S.W.; Kwon, W.; Choi, D.W.; Heo, J.; Choi, S.H.; Han, S.; et al. Clinicopathologic analysis of intraductal papillary neoplasm of bile duct: Korean multicenter cohort study. HPB 2020, 22, 1139–1148. [Google Scholar] [CrossRef]
- Han, Y.; Lee, H.; Kim, H.; Kwon, W.; Jang, J.Y.; Kim, S.W. Progression of pancreatic branch duct intraductal papillary mucinous neoplasm associates with cyst size. Gastroenterology 2018, 154, 576–584. [Google Scholar] [CrossRef]
- Chang, Y.R.; Park, J.K.; Jang, J.Y.; Kwon, W.; Yoon, J.H.; Kim, S.W. Incidental pancreatic cystic neoplasms in an asymptomatic healthy population of 21,745 individuals: Large-scale, single-center cohort study. Medicine 2016, 95, e5535. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Han, Y.; Byun, Y.; Kim, H.; Kwon, W.; Jang, J.Y. Central pancreatectomy versus distal pancreatectomy and pancreaticoduodenectomy for benign and low-grade malignant neoplasms: A retrospective and propensity score-matched study with long-term functional outcomes and pancreas volumetry. Ann. Surg. Oncol. 2020, 27, 1215–1224. [Google Scholar] [CrossRef]
- Shin, Y.C.; Jang, J.Y.; Chang, Y.R.; Jung, W.; Kwon, W.; Kim, H.; Kim, E.; Kim, S.W. Comparison of long-term clinical outcomes of external and internal pancreatic stents in pancreaticoduodenectomy: Randomized controlled study. HPB 2019, 21, 51–59. [Google Scholar] [CrossRef]
- Valueva, M.V.; Nagornov, N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [Google Scholar] [CrossRef]
- Fu, Y.; Lei, Y.; Wang, T.; Curran, W.J.; Liu, T.; Yang, X. A review of deep learning based methods for medical image multi-organ segmentation. Phys. Med. 2021, 85, 107–122. [Google Scholar] [CrossRef]
- Karasawa, K.I.; Okada, T.; Yokota, K.; Takao, H.; Hori, M.; Murata, K.; Sato, Y.; Shirato, H.; Aoki, S. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. Med. Image Anal. 2017, 39, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, D. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation. PLoS ONE 2021, 16, e0252287. [Google Scholar] [CrossRef]
- Kumar, H.; DeSouza, S.V.; Petrov, M.S. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review. Comput. Methods Programs Biomed. 2019, 178, 319–328. [Google Scholar] [CrossRef]
- Lim, S.-H.; Kim, D.; Lee, S.; Lee, D.H.; Seo, J.K. Automated pancreas segmentation and volumetry using deep neural network on computed tomography. Sci. Rep. 2022, 12, 4075. [Google Scholar] [CrossRef] [PubMed]
- Roth, H.; Lu, L.; Farag, A.; Shin, H.C.; Liu, J.; Turkbey, E.; Summers, R.M. Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks. Proc. SPIE 2018, 10574, 59–64. [Google Scholar]
- Hansen, D.C.; Sørensen, T.S.; Rit, S. Fast reconstruction of low dose proton CT by sinogram interpolation. Phys. Med. Biol. 2016, 61, 5868. [Google Scholar] [CrossRef] [PubMed]
- Roth, H.R.; Lu, L.; Farag, A.; Shin, H.-C.; Liu, J.; Turkbey, E.; Summers, R.M. DeepOrgan: Multi-Level Deep Convolutional Networks for Automated Pancreas Segmentation. Med. Image Anal. 2015, 19, 198–211. [Google Scholar]
- Singh, P.; Mukundan, R.; De Ryke, R. Feature enhancement in medical ultrasound videos using contrast-limited adaptive histogram equalization. J. Digit. Imaging 2020, 33, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Anifah, L.; Purnama, I.K.E.; Hariadi, M.; Purnomo, M.H. Osteoarthritis classification using self organizing map based on gabor kernel and contrast-limited adaptive histogram equalization. Open Biomed. Eng. J. 2013, 7, 18–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Wang, S.; Yu, Y.; Dai, Q.; Zhang, X. Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. Simulation 2016, 92, 873–885. [Google Scholar] [CrossRef]
- Ravichandran, C.; Raja, J.B. A fast enhancement/thresholding based blood vessel segmentation for retinal image using contrast limited adaptive histogram equalization. J. Med. Imaging Health Inform. 2014, 4, 567–576. [Google Scholar] [CrossRef]
- Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K.; et al. U-Net: Deep learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67–70. [Google Scholar] [CrossRef]
- Nazem, F.; Ghasemi, F.; Fassihi, A.; Dehnavi, A.M. 3D U-Net: A voxel-based method in binding site prediction of protein structure. J. Bioinform. Comput. Biol. 2021, 19, 2150006. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016, Proceedings of the 19th International Conference, Athens, Greece, 17–21 October 2016; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Wu, H.; Zhang, J.; Huang, K.; Liang, K.; Yu, Y. Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation. arXiv 2019, arXiv:1903.11816. [Google Scholar] [CrossRef]
- Iandola, F.; Han, S.; Moskewicz, M.; Ashraf, K.; Dally, W.; Keutzer, K. DenseNet: Implementing efficient convnet descriptor pyramids. arXiv 2014, arXiv:1404.1869. [Google Scholar]
- Cai, Y.; Li, Z.; Liu, B.; Sun, H.; He, X. Swin Unet3D: A Three-Dimensional Medical Image Segmentation Network Combining Vision Transformer and Convolution. BMC Med. Inform. Decis. Mak. 2023, 23, 2129. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Zhou, Y. TransUNet: Rethinking the U-Net Architecture Design for Medical Image Segmentation Through the Lens of Transformers. Med. Image Anal. 2024, 91, 103004. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fritts, J.E.; Goldman, S.A. Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Underst. 2008, 110, 260–280. [Google Scholar] [CrossRef]
- Moccia, S.; De Momi, E.; El Hadji, S.; Mattos, L.S. Blood vessel segmentation algorithms—Review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 2018, 158, 71–91. [Google Scholar] [CrossRef]
- Lin, Y.; Su, J.; Li, Y.; Wei, Y.; Yan, H.; Zhang, S.; Luo, J.; Ai, D.; Song, H.; Fan, J.; et al. High-Resolution Boundary Detection for Medical Image Segmentation with Piece-Wise Two-Sample T-Test Augmented Loss. arXiv 2022, arXiv:2211.02419. [Google Scholar]
- Schroeder, W.J.; Avila, L.S.; Hoffman, W. Visualizing with VTK: A tutorial. IEEE Comput. Graph. Appl. 2000, 20, 20–27. [Google Scholar] [CrossRef]
- Tobon-Gomez, C.; Butakoff, C.; Ordas, S.; Aguade, S.; Frangi, A. Comparative study of diverse model building strategies for 3D-ASM segmentation of dynamic gated SPECT data. Proc. SPIE 2007, 6511, 754–763. [Google Scholar]
- Tikoo, S.; Malik, N. Detection, segmentation and recognition of face and its features using neural network. arXiv 2017, arXiv:1701.08259. [Google Scholar] [CrossRef]
- Islam, M.; Reza, S.; Iftekharuddin, K.M. Brain Tumor Segmentation and Survival Prediction Using 3D Attention UNet. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Proceedings of the 5th International Workshop, BrainLes 2019, Shenzhen, China, 13 October 2019; Springer: Cham, Switzerland, 2020; pp. 262–272. [Google Scholar]
- Yang, J.; Park, Y.H.; Kim, D.; Lee, D.-H. Pancreatic volume and endocrine function changes following pancreaticoduodenectomy for peri-ampullary neoplasms: A retrospective single-center study utilizing pancreas volumetry. Ann. Hepatobiliary Pancreat. Surg. 2024, 28, 364–370. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, K.G.; Kim, Y.J.; Lim, S.; Park, Y.-H.; Kim, D.; Kang, H.-T.; Lee, D.-H. Distribution and Characteristics of Pancreatic Volume Using Computed Tomography Volumetry. Healthc. Inform. Res. 2020, 26, 321–327. [Google Scholar] [CrossRef]
- Jung, W.; Kim, H.; Kwon, W.; Jang, J.Y. Atrophy of remnant pancreas after pancreatoduodenectomy: Risk factors and effects on quality of life, nutritional status, and pancreatic function. J. Hepatobiliary Pancreat. Sci. 2022, 29, 239–249. [Google Scholar] [CrossRef] [PubMed]





| Pancreaticoduodenectomy | Distal Pancreatectomy | p-Value | |||||
|---|---|---|---|---|---|---|---|
| Total | Male | Female | Total | Male | Female | ||
| Number | 335 (100) | 195 (58.2) | 140 (41.8) | 181 (100) | 88 (48.6) | 93 (51.4) | |
| Age (years) | 65.8 ± 10.2 | 64.7 ± 10.5 | 66.8 ± 9.7 | 60.2 ± 14.1 | 64.0 ± 11.8 | 56.6 ± 15.2 | <0.01 |
| Height (cm) | 161.8 ± 8.6 | 167.3 ± 5.8 | 154.2 ± 5.7 | 161.4 ± 8.3 | 167.1 ± 5.8 | 155.9 ± 6.4 | 0.576 |
| Weight (kg) | 61.2 ± 10.8 | 64.3 ± 10.8 | 56.8 ± 9.2 | 60.5 ± 9.3 | 62.9 ± 9.9 | 58.2 ± 8.0 | 0.421 |
| Body mass index (kg/m2) | 23.3 ± 3.4 | 22.9 ± 3.2 | 23.9 ± 3.5 | 23.2 ± 3.3 | 22.5 ± 3.3 | 24.0 ± 3.2 | 0.736 |
| Hypertension | 159 (47.5) | 79 (40.5) | 80 (57.1) | 82 (45.3) | 45 (51.1) | 37 (39.8) | 0.621 |
| Diabetes mellitus | 101 (30.1) | 60 (30.7) | 41 (29.3) | 55 (30.4) | 32 (36.4) | 23 (24.7) | 0.838 |
| Data Set | Training Model | Sensitivity | Specificity | Precision | Accuracy | DSC | p-Value |
|---|---|---|---|---|---|---|---|
| Pancreaticoduodenectomy | |||||||
| Train | Basic U-net | 0.8934 ± 0.0235 | 0.9959 ± 0.0009 | 0.9042 ± 0.0231 | 0.9920 ± 0.0020 | 0.8936 ± 0.0251 | <0.01 |
| Dense U-net | 0.9202 ± 0.0256 | 0.9960 ± 0.0016 | 0.9098 ± 0.0360 | 0.9933 ± 0.0022 | 0.9114 ± 0.0315 | ||
| Residual U-net | 0.8676 ± 0.0184 | 0.9945 ± 0.0008 | 0.8641 ± 0.0164 | 0.9904 ± 0.0014 | 0.8590 ± 0.0192 | ||
| Residual Dense U-net | 0.8635 ± 0.0204 | 0.9940 ± 0.0003 | 0.8697 ± 0.0060 | 0.9886 ± 0.0012 | 0.8565 ± 0.0156 | ||
| Trans U-net | 0.8194 ± 0.0204 | 0.9975 ± 0.0004 | 0.8139 ± 0.0229 | 0.9951 ± 0.0004 | 0.8163 ± 0.0132 | ||
| Swin U-net | 0.8425 ± 0.0273 | 0.9978 ± 0.0003 | 0.8352 ± 0.0206 | 0.9957 ± 0.0005 | 0.8387 ± 0.0204 | ||
| Validation | Basic U-net | 0.7240 ± 0.0180 | 0.9937 ± 0.0029 | 0.8157 ± 0.0208 | 0.9807 ± 0.0009 | 0.7348 ± 0.0078 | <0.01 |
| Dense U-net | 0.7418 ± 0.0206 | 0.9918 ± 0.0011 | 0.8058 ± 0.0193 | 0.9809 ± 0.0009 | 0.7419 ± 0.0079 | ||
| Residual U-net | 0.6866 ± 0.0188 | 0.9904 ± 0.0009 | 0.7707 ± 0.0197 | 0.9773 ± 0.0007 | 0.6889 ± 0.0059 | ||
| Residual Dense U-net | 0.7737 ± 0.0123 | 0.9916 ± 0.0010 | 0.8123 ± 0.0227 | 0.9820 ± 0.0006 | 0.7663 ± 0.0070 | ||
| Trans U-net | 0.7107 ± 0.0233 | 0.9966 ± 0.0005 | 0.7398 ± 0.0338 | 0.9928 ± 0.0003 | 0.7240 ± 0.0062 | ||
| Swin U-net | 0.7681 ± 0.0187 | 0.9973 ± 0.0001 | 0.7898 ± 0.0106 | 0.9942 ± 0.0003 | 0.7786 ± 0.0077 | ||
| Test | Basic U-net | 0.7235 ± 0.0206 | 0.9924 ± 0.0013 | 0.8139 ± 0.0243 | 0.9808 ± 0.0008 | 0.7330 ± 0.0023 | <0.01 |
| Dense U-net | 0.7423 ± 0.0219 | 0.9917 ± 0.0015 | 0.8024 ± 0.0309 | 0.9809 ± 0.0007 | 0.7409 ± 0.0057 | ||
| Residual U-net | 0.6730 ± 0.0217 | 0.9909 ± 0.0011 | 0.7710 ± 0.0201 | 0.9770 ± 0.0009 | 0.6822 ± 0.0094 | ||
| Residual Dense U-net | 0.7750 ± 0.0133 | 0.9913 ± 0.0011 | 0.8116 ± 0.0237 | 0.9818 ± 0.0005 | 0.7655 ± 0.0052 | ||
| Trans U-net | 0.7095 ± 0.0273 | 0.9966 ± 0.0044 | 0.7385 ± 0.0211 | 0.9928 ± 0.0004 | 0.7231 ± 0.0081 | ||
| Swin U-net | 0.7693 ± 0.0215 | 0.9972 ± 0.0002 | 0.7892 ± 0.0178 | 0.9942 ± 0.0003 | 0.7787 ± 0.0062 | ||
| Distal Pancreatectomy | |||||||
| Train | Basic U-net | 0.9336 ± 0.0316 | 0.9958 ± 0.0027 | 0.9175 ± 0.0506 | 0.9932 ±0.0041 | 0.9213 ± 0.0462 | <0.05 |
| Dense U-net | 0.9208 ± 0.0258 | 0.9960 ± 0.0013 | 0.9175 ± 0.0258 | 0.9928 ± 0.0023 | 0.9151 ± 0.0278 | ||
| Residual U-net | 0.8992 ± 0.0082 | 0.9946 ± 0.0006 | 0.8913 ± 0.0110 | 0.9907 ± 0.0008 | 0.8900 ± 0.0099 | ||
| Residual Dense U-net | 0.8869 ± 0.0198 | 0.9943 ± 0.0011 | 0.8893 ± 0.0169 | 0.9896 ± 0.0019 | 0.8806 ± 0.0203 | ||
| Trans U-net | 0.8553 ± 0.0123 | 0.9966 ± 0.0007 | 0.8708 ± 0.0241 | 0.9929 ± 0.0005 | 0.8627 ± 0.0091 | ||
| Swin U-net | 0.8777 ± 0.0145 | 0.9969 ± 0.0006 | 0.8832 ± 0.0203 | 0.9938 ± 0.0007 | 0.8806 ± 0.0125 | ||
| Validation | Basic U-net | 0.7633 ± 0.0478 | 0.9905 ± 0.0035 | 0.8092 ± 0.0532 | 0.9783 ± 0.0063 | 0.7603 ± 0.0465 | <0.05 |
| Dense U-net | 0.7673 ± 0.0480 | 0.9910 ± 0.0037 | 0.8182 ± 0.0580 | 0.9789 ± 0.0065 | 0.7676 ± 0.0496 | ||
| Residual U-net | 0.7352 ± 0.0433 | 0.9894 ± 0.0034 | 0.7865 ± 0.0514 | 0.9758 ± 0.0060 | 0.7320 ± 0.0420 | ||
| Residual Dense U-net | 0.7908 ± 0.0461 | 0.9905 ± 0.0040 | 0.8185 ± 0.0610 | 0.9797 ± 0.0068 | 0.7833 ± 0.0528 | ||
| Trans U-net | 0.6959 ± 0.0628 | 0.9926 ± 0.0013 | 0.7155 ± 0.0459 | 0.9849 ± 0.0027 | 0.7052 ± 0.0471 | ||
| Swin U-net | 0.7595 ± 0.0724 | 0.9938 ± 0.0014 | 0.7784 ± 0.0564 | 0.9882 ± 0.0030 | 0.7987 ± 0.0619 | ||
| Test | Basic U-net | 0.7806 ± 0.0321 | 0.9924 ± 0.0013 | 0.8356 ± 0.0184 | 0.9814 ± 0.0014 | 0.7815 ± 0.0155 | <0.05 |
| Dense U-net | 0.7912 ± 0.0252 | 0.9928 ± 0.0008 | 0.8461 ± 0.0187 | 0.9821 ± 0.0010 | 0.7941 ± 0.0085 | ||
| Residual U-net | 0.7600 ± 0.0246 | 0.9910 ± 0.0009 | 0.8114 ± 0.0227 | 0.9789 ± 0.0014 | 0.7575 ± 0.0102 | ||
| Residual Dense U-net | 0.8166 ± 0.0297 | 0.9921 ± 0.0018 | 0.8449 ± 0.0296 | 0.9827 ± 0.0009 | 0.8086 ± 0.0091 | ||
| Trans U-net | 0.7393 ± 0.0353 | 0.9931 ± 0.0007 | 0.7321 ± 0.0231 | 0.9860 ± 0.0008 | 0.7250 ± 0.0165 | ||
| Swin U-net | 0.7839 ± 0.0184 | 0.9950 ± 0.0004 | 0.8060 ± 0.0153 | 0.9896 ± 0.0006 | 0.8132 ± 0.0101 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.J.; Lee, J.; Park, Y.-H.; Yang, J.; Kim, D.; Kim, K.G.; Lee, D.-H. Deep Learning Model for Volume Measurement of the Remnant Pancreas After Pancreaticoduodenectomy and Distal Pancreatectomy. Diagnostics 2025, 15, 2834. https://doi.org/10.3390/diagnostics15222834
Kim YJ, Lee J, Park Y-H, Yang J, Kim D, Kim KG, Lee D-H. Deep Learning Model for Volume Measurement of the Remnant Pancreas After Pancreaticoduodenectomy and Distal Pancreatectomy. Diagnostics. 2025; 15(22):2834. https://doi.org/10.3390/diagnostics15222834
Chicago/Turabian StyleKim, Young Jae, Juhui Lee, Yeon-Ho Park, Jaehun Yang, Doojin Kim, Kwang Gi Kim, and Doo-Ho Lee. 2025. "Deep Learning Model for Volume Measurement of the Remnant Pancreas After Pancreaticoduodenectomy and Distal Pancreatectomy" Diagnostics 15, no. 22: 2834. https://doi.org/10.3390/diagnostics15222834
APA StyleKim, Y. J., Lee, J., Park, Y.-H., Yang, J., Kim, D., Kim, K. G., & Lee, D.-H. (2025). Deep Learning Model for Volume Measurement of the Remnant Pancreas After Pancreaticoduodenectomy and Distal Pancreatectomy. Diagnostics, 15(22), 2834. https://doi.org/10.3390/diagnostics15222834

