Predicting Pulmonary Exacerbations in Cystic Fibrosis Using Inflammation-Based Scoring Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Defintion of PEx
2.3. Scoring Systems
2.4. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Marker and Scores
3.2.1. CRP
3.2.2. Albumin
3.2.3. CRP/Albumin
3.2.4. LMR
3.2.5. NLR
3.2.6. GPS
3.2.7. hs-GPS
3.2.8. Model Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Grasemann, H.; Ratjen, F. Cystic Fibrosis. N. Engl. J. Med. 2023, 389, 1693–1707. [Google Scholar] [CrossRef]
- Naehrig, S.; Chao, C.M.; Naehrlich, L. Cystic Fibrosis. Dtsch. Arztebl. Int. 2017, 114, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Naehrlich, L.; Burkhart, M.; Wosniok, J. Annuel Report 2023. Ger. Cyst. Fibros. Regist. 2024. Available online: https://www.muko.info/fileadmin/user_upload/was_wir_tun/register/berichtsbaende/berichtsband_2023.pdf#page=9.09 (accessed on 17 August 2025).
- Jacobs, D.M.; Ochs-Balcom, H.M.; Noyes, K.; Zhao, J.; Leung, W.Y.; Pu, C.Y.; Murphy, T.F.; Sethi, S. Impact of Pseudomonas aeruginosa Isolation on Mortality and Outcomes in an Outpatient Chronic Obstructive Pulmonary Disease Cohort. Open Forum Infect. Dis. 2020, 7, ofz546. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.B.; Bittner, R.C.; Rosenfeld, M.; Hoffman, L.R.; Redding, G.J.; Goss, C.H. Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am. J. Respir. Crit. Care Med. 2010, 182, 627–632. [Google Scholar] [CrossRef]
- Gill, E.R.; Goss, C.H.; Sagel, S.D.; Wright, M.L.; Horner, S.D.; Zuñiga, J.A. Predicting return of lung function after a pulmonary exacerbation using the cystic fibrosis respiratory symptom diary-chronic respiratory infection symptom scale. BMC Pulm. Med. 2023, 24, 30. [Google Scholar] [CrossRef]
- McLeod, C.; Wood, J.; Tong, A.; Schultz, A.; Norman, R.; Smith, S.; Blyth, C.C.; Webb, S.; Smyth, A.R.; Snelling, T.L. The measurement properties of tests and tools used in cystic fibrosis studies: A systematic review. Eur. Respir. Rev. 2021, 30, 200354. [Google Scholar] [CrossRef]
- Sagel, S.D.; Wagner, B.D.; Anthony, M.M.; Emmett, P.; Zemanick, E.T. Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 857–865. [Google Scholar] [CrossRef]
- Stick, S.M.; Brennan, S.; Murray, C.; Douglas, T.; von Ungern-Sternberg, B.S.; Garratt, L.W.; Gangell, C.L.; De Klerk, N.; Linnane, B.; Ranganathan, S.; et al. Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J. Pediatr. 2009, 155, 623–628.e621. [Google Scholar] [CrossRef]
- Sly, P.D.; Gangell, C.L.; Chen, L.; Ware, R.S.; Ranganathan, S.; Mott, L.S.; Murray, C.P.; Stick, S.M. Risk factors for bronchiectasis in children with cystic fibrosis. N. Engl. J. Med. 2013, 368, 1963–1970. [Google Scholar] [CrossRef]
- O’Brien, C.E.; Price, E.T. The blood neutrophil to lymphocyte ratio correlates with clinical status in children with cystic fibrosis: A retrospective study. PLoS ONE 2013, 8, e77420. [Google Scholar] [CrossRef]
- Eyuboglu, T.Ş.; Aslan, A.T.; Asfuroglu, P.; Kunt, N.; Ersoy, A.; Kose, M.; Unal, G.; Pekcan, S. Neutrophil lymphocyte ratio, mean platelet volume, and immunoreactive trypsinogen as early inflammatory biomarkers for cystic fibrosis in infancy: A retrospective cohort study. Pediatr. Pulmonol. 2023, 58, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Ventura, J.C.; Hauschild, D.B.; Moreira, E.A.M.; Pereira, L.C.R.; Rosa, A.F.; Barbosa, E.; Ludwig-Neto, N.; Rosa, J.S.D.; Fröde, T.S.; Moreno, Y.M.F. C-reactive protein/albumin ratio is associated with lung function among children/adolescents with cystic fibrosis: A three-year longitudinal study. Sao Paulo Med. J. 2018, 136, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.W.H.; Edmondson, C.; Westrupp, N.; Rosenthal, M.; Davies, J.C. Neutrophil-to-lymphocyte ratio as a biomarker of acute pulmonary exacerbations in children with cystic fibrosis: A retrospective cohort study. Arch. Dis. Child. 2024, 109, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Onoda, H.; Imai, N.; Iwaku, A.; Oishi, M.; Tanaka, K.; Fushiya, N.; Koike, K.; Nishino, H.; Matsushima, M.; et al. The Glasgow Prognostic Score, an inflammation based prognostic score, predicts survival in patients with hepatocellular carcinoma. BMC Cancer 2013, 13, 52. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kawada, K.; Obama, K. Inflammation-Related Biomarkers for the Prediction of Prognosis in Colorectal Cancer Patients. Int. J. Mol. Sci. 2021, 22, 8002. [Google Scholar] [CrossRef]
- Wu, T.H.; Tsai, Y.T.; Chen, K.Y.; Yap, W.K.; Luan, C.W. Utility of High-Sensitivity Modified Glasgow Prognostic Score in Cancer Prognosis: A Systemic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 1318. [Google Scholar] [CrossRef]
- Chen, P.; Fang, M.; Wan, Q.; Zhang, X.; Song, T.; Wu, S. High-sensitivity modified Glasgow prognostic score (HS-mGPS) Is superior to the mGPS in esophageal cancer patients treated with chemoradiotherapy. Oncotarget 2017, 8, 99861–99870. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Y.; Sun, Y.; Zhang, J.; Yao, Y.; Shen, Z.; Xiang, D.; He, A. Prognostic value of inflammation-based scores in patients with osteosarcoma. Sci. Rep. 2016, 6, 39862. [Google Scholar] [CrossRef]
- Mandaliya, H.; Jones, M.; Oldmeadow, C.; Nordman, I.I. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl. Lung Cancer Res. 2019, 8, 886–894. [Google Scholar] [CrossRef]
- Sylman, J.L.; Mitrugno, A.; Atallah, M.; Tormoen, G.W.; Shatzel, J.J.; Tassi Yunga, S.; Wagner, T.H.; Leppert, J.T.; Mallick, P.; McCarty, O.J.T. The Predictive Value of Inflammation-Related Peripheral Blood Measurements in Cancer Staging and Prognosis. Front. Oncol. 2018, 8, 78. [Google Scholar] [CrossRef]
- Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J.F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J. Cyst. Fibros. 2015, 14, 419–430. [Google Scholar] [CrossRef]
- Breuer, O.; Caudri, D.; Stick, S.; Turkovic, L. Predicting disease progression in cystic fibrosis. Expert. Rev. Respir. Med. 2018, 12, 905–917. [Google Scholar] [CrossRef]
- Shoki, A.H.; Mayer-Hamblett, N.; Wilcox, P.G.; Sin, D.D.; Quon, B.S. Systematic review of blood biomarkers in cystic fibrosis pulmonary exacerbations. Chest 2013, 144, 1659–1670. [Google Scholar] [CrossRef]
- VanDevanter, D.R.; Morris, N.J.; Konstan, M.W. IV-treated pulmonary exacerbations in the prior year: An important independent risk factor for future pulmonary exacerbation in cystic fibrosis. J. Cyst. Fibros. 2016, 15, 372–379. [Google Scholar] [CrossRef]
- Sutharsan, S.; Dillenhoefer, S.; Welsner, M.; Stehling, F.; Brinkmann, F.; Burkhart, M.; Ellemunter, H.; Dittrich, A.M.; Smaczny, C.; Eickmeier, O.; et al. Impact of elexacaftor/tezacaftor/ivacaftor on lung function, nutritional status, pulmonary exacerbation frequency and sweat chloride in people with cystic fibrosis: Real-world evidence from the German CF Registry. Lancet Reg. Health Eur. 2023, 32, 100690. [Google Scholar] [CrossRef]


| All pwCF (n = 131) | With Exacerbations (n = 75) | Without Exacerbations (n = 56) | |||||
|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | p-Value | |
| Age | 34 | 9 | 33.7 | 8.9 | 34.5 | 9.2 | 0.6 |
| BMI | 21.7 | 2.8 | 20.8 | 2.2 | 22.8 | 3.1 | <0.0001 |
| All pwCF (n = 131) | n | % | n | % | n | % | p-value |
| ppFEV1 | <0.0001 | ||||||
| >80% | 44 | 33.6 | 13 | 17.3 | 31 | 55.4 | |
| 79–50% | 46 | 35.1 | 27 | 36.0 | 19 | 33.9 | |
| 49–30% | 35 | 26.7 | 29 | 38.7 | 6 | 10.7 | |
| <30% | 6 | 4.6 | 6 | 8.0 | 0 | 0.0 | |
| Male sex | 74 | 56.5 | 41 | 54.7 | 33 | 58.9 | 0.76 |
| Diabetes mellitus | 46 | 35.1 | 31 | 41.3 | 15 | 26.8 | 0.12 |
| delF508 homocygote | 70 | 53.4 | 42 | 56.0 | 28 | 50.0 | 0.61 |
| CFTR modulator therapy | 20 | 15.3 | 16 | 21.3 | 4 | 7.1 | 0.03 |
| Microbiology | n | % | n | % | n | % | p-value |
| Pseudomonas aeruginoas | 97 | 74.0 | 60 | 80.0 | 37 | 66.1 | 0.11 |
| Stenotrophomonas maltophilia | 25 | 19.1 | 18 | 24.0 | 7 | 12.5 | 0.15 |
| Mycobacterium abscessus | 6 | 4.6 | 5 | 6.7 | 1 | 1.8 | 0.24 |
| Achromobacter xylosoxidans | 14 | 10.7 | 11 | 14.7 | 3 | 5.4 | 0.16 |
| Exacerbations | n | % | n | % | n | % | p-value |
| During baseline period | 64 | 48.9 | 52 | 69.3 | 12 | 21.4 | <0.0001 |
| All pwCF (n = 131) | With Exacerbations (n = 75) | Without Exacerbations (n = 56) | ||||||
|---|---|---|---|---|---|---|---|---|
| n | % | n | % | n | % | p-Value | ||
| GPS | 0 | 83 | 63.4 | 37 | 49.3 | 46 | 82.1 | |
| 1 | 40 | 30.5 | 30 | 40.0 | 10 | 17.9 | ||
| 2 | 8 | 6.1 | 8 | 10.7 | 0 | 0.0 | 0.0001 | |
| hs-GPS | 0 | 36 | 27.5 | 13 | 17.3 | 23 | 41.1 | |
| 1 | 86 | 65.6 | 54 | 72.0 | 32 | 57.1 | ||
| 2 | 9 | 6.9 | 8 | 10.7 | 1 | 1.8 | 0.003 | |
| mean | sd | mean | sd | mean | sd | |||
| Albumin | 4.26 | 0.31 | 4.19 | 0.3 | 4.35 | 0.29 | <0.0001 | |
| CRP(log) [median, IQR] | 0.35 | 0.17; 0.82 | 0.61 | 0.24; 1.36 | 0.21 | 0.12; 0.43 | <0.0001 | |
| CRP/albumin | 0.18 | 0.26 | 0.25 | 0.32 | 0.07 | 0.06 | <0.0001 * | |
| LMR | 3.11 | 1.9 | 2.71 | 0.96 | 3.65 | 2.61 | <0.0001 | |
| NLR | 4.10 | 2.54 | 4.87 | 2.88 | 3.04 | 1.44 | <0.0001 | |
| Model | n | Events | OR (95% CI) | β | SE | z-Value | p-Value | AIC | AUC (95% CI) | AUC (Optimism-Corrected 95% CI) | Optimism |
|---|---|---|---|---|---|---|---|---|---|---|---|
| log (CRP) | 131 | 75 | 2.23 (1.32–3.95) | 0.80 | 0.28 | 2.9 | 0.004 | 143.8 | 0.865 (0.803–0.926) | 0.807 (0.788–0.851) | 0.057 |
| Albumin | 131 | 75 | 0.35 (0.06–1.69) | −1.05 | 0.84 | −1.27 | 0.206 | 151.4 | 0.838 (0.771–0.905) | 0.774 (0.772–0.827) | 0.063 |
| CRP/albumin | 131 | 75 | 1.08 (1.03–1.15) | 0.08 | 0.03 | 2.76 | 0.006 | 140.1 | 0.868 (0.808–0.929) | 0.814 (0.800–0.860) | 0.055 |
| LMR | 131 | 75 | 0.51 (0.29–0.87) | −0.67 | 0.28 | −2.37 | 0.018 | 146.3 | 0.846 (0.782–0.911) | 0.786 (0.784–0.839) | 0.061 |
| NLR | 131 | 75 | 1.52 (1.12–2.21) | 0.42 | 0.17 | 2.44 | 0.015 | 145 | 0.855 (0.792–0.917) | 0.796 (0.792–0.843) | 0.058 |
| GPS | 131 | 75 | 2.75 (1.10–7.57) | 1.01 | 0.49 | 2.07 | 0.038 | 148.4 | 0.846 (0.778–0.914) | 0.786 (0.781–0.839) | 0.060 |
| hs-GPS | 131 | 75 | 2.17 (0.89–5.50) | 0.77 | 0.46 | 1.68 | 0.093 | 150.1 | 0.840 (0.774–0.906) | 0.777 (0.778–0.830) | 0.063 |
| Model | Threshold | Sensitivity | Specificity | PPV (95% CI) | NPV (95% CI) |
|---|---|---|---|---|---|
| CRP(log) | 0.53 | 0.84 | 0.77 | 0.829 (0.73–0.90 | 0.78 (0.66–0.87) |
| Albumin | 0.31 | 0.97 | 0.54 | 0.74 (0.64–0.81) | 0.94 (0.80–0.98) |
| CRP/albumin | 0.42 | 0.91 | 0.68 | 0.79 (0.69–0.86) | 0.84 (0.71–0.92) |
| LMR | 0.43 | 0.87 | 0.66 | 0.77 (0.67–0.85) | 0.79 (0.65–0.88) |
| NLR | 0.38 | 0.92 | 0.59 | 0.75 (0.65–0.83) | 0.85 (0.70–0.93) |
| GPS | 0.42 | 0.91 | 0.70 | 0.80 (0.70–0.87) | 0.85 (0.72–0.92) |
| hs-GPS | 0.39 | 0.91 | 0.64 | 0.77 (0.67–0.85) | 0.84 (0.70–0.92) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reitmeier, R.S.; Götschke, M.; Walter, J.; Götschke, J.; Schlatzer, J.; Kauffmann-Guerrero, D.; Behr, J.; Tufman, A.; Mertsch, P. Predicting Pulmonary Exacerbations in Cystic Fibrosis Using Inflammation-Based Scoring Systems. Diagnostics 2025, 15, 2761. https://doi.org/10.3390/diagnostics15212761
Reitmeier RS, Götschke M, Walter J, Götschke J, Schlatzer J, Kauffmann-Guerrero D, Behr J, Tufman A, Mertsch P. Predicting Pulmonary Exacerbations in Cystic Fibrosis Using Inflammation-Based Scoring Systems. Diagnostics. 2025; 15(21):2761. https://doi.org/10.3390/diagnostics15212761
Chicago/Turabian StyleReitmeier, Raphael S., Melanie Götschke, Julia Walter, Jeremias Götschke, Julian Schlatzer, Diego Kauffmann-Guerrero, Jürgen Behr, Amanda Tufman, and Pontus Mertsch. 2025. "Predicting Pulmonary Exacerbations in Cystic Fibrosis Using Inflammation-Based Scoring Systems" Diagnostics 15, no. 21: 2761. https://doi.org/10.3390/diagnostics15212761
APA StyleReitmeier, R. S., Götschke, M., Walter, J., Götschke, J., Schlatzer, J., Kauffmann-Guerrero, D., Behr, J., Tufman, A., & Mertsch, P. (2025). Predicting Pulmonary Exacerbations in Cystic Fibrosis Using Inflammation-Based Scoring Systems. Diagnostics, 15(21), 2761. https://doi.org/10.3390/diagnostics15212761

