Metabolic Dysfunction-Associated Steatotic Liver Disease and Sarcopenia: Influence of Habitual Food
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design and Population
2.2. Clinical Evaluation
2.3. Abdominal Ultrasound
2.4. Fibrosis Assessment
2.5. Clinical, Demographic, and Dietary Assessment
2.6. Anthropometric and Clinical Assessment
2.7. Sarcopenia Assessment
2.7.1. Muscle Mass
2.7.2. Muscle Strength
2.7.3. Physical Performance
2.8. Assessment of Physical Activity Level
2.9. Statistical Analysis
3. Results
3.1. Characteristics of the Studied Population
3.2. Characteristic of Dietary Intake vs. Probable Sarcopenia Diagnosis
3.3. Association Between Clinical, Anthropometric, and Dietary Intake Variables According to Probable Sarcopenia Diagnosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Dietrich, P.; Hellerbrand, C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best. Pract. Res. Clin. Gastroenterol. 2014, 28, 637–653. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Hsu, C.S.; Kao, J.H. Sarcopenia and chronic liver diseases. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 1229–1244. [Google Scholar] [CrossRef]
- Joo, S.K.; Kim, W. Interaction between sarcopenia and nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S68–S78. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Rolland, Y.; Sayer, A.A.; Martin, F.C.; Michel, J.-P.; et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Choi, Y.J.; KS, K.; Kwak, J.J.; Park, S.W.; Lee, E.J.; Huh, K.B. Age-related skeletal muscle loss as an independent predictor of NAFLD risk in Korean women with type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 106, S162–S163. [Google Scholar] [CrossRef]
- Hong, H.C.; Hwang, S.Y.; Choi, H.Y.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Relationship between sarcopenia and nonalcoholic fatty liver disease: The Korean Sarcopenic Obesity Study. Hepatology 2014, 59, 1772–1778. [Google Scholar] [CrossRef]
- Vranešić Bender, D.; Nutrizio, M.; Jošić, M.; Ljubas Kelečić, D.; Karas, I.; Premužić, M.; Domislović, V.; Rotim, C.; Krznarić, Ž. Nutritional status and nutrition quality in patients with non-alcoholic fatty liver disease. Acta Clin. Croat. 2017, 56, 625–634. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO); European Association for the Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Corey, K.E.; Lim, J.K. AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2021, 160, 912–918. [Google Scholar] [CrossRef]
- Himoto, T.; Miyatake, K.; Maeba, T.; Masaki, T. Verification of the Nutritional and Dietary Factors Associated with Skeletal Muscle Index in Japanese Patients with Nonalcoholic Fatty Liver Disease. Can. J. Gastroenterol. Hepatol. 2020, 2020, 3576974. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, C.; Ding, Y.; He, J.; Lv, Y.; Chang, Y. Diet was less significant than physical activity in the prognosis of people with sarcopenia and metabolic dysfunction-associated fatty liver diseases: Analysis of the National Health and Nutrition Examination Survey III. Front. Endocrinol. 2023, 14, 1101892. [Google Scholar] [CrossRef]
- Rumack, C.M.; Wilson, S.R.; Charboneau., J.W. Tratado de Ultrassonografia Diagnóstica, 4th ed.; Elsevier: Rio de Janeiro, Brazil, 2012; 2352p. [Google Scholar]
- Vallet-Pichard, A.; Mallet, V.; Nalpas, B.; Verkarre, V.; Nalpas, A.; Dhalluin-Venier, V.; Fontaine, H.; Pol, S. FIB-4: An inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology 2007, 46, 32–36. [Google Scholar] [CrossRef]
- Ministério da Saúde; Fundação Oswaldo Cruz. HepaticAPP. 2019. Available online: https://www.gov.br/pt-br/apps/hepaticapp. (accessed on 21 January 2022).
- Buzzard, M. 24-Hours Dietary Recall and Food Record Methods; Willett, W.C., Ed.; Nutritional Epidemiology, Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Verly Junior, E.; Cesar, C.L.; Fisberg, R.M.; Marchioni, D.M. Within-person variance of the energy and nutrient intake in adolescents: Data adjustment in epidemiological studies. Rev. Bras. De Epidemiol. 2013, 16, 170–177. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- Monteiro, A.C.; Pfrimer, K.; Tremeschin, M.H.; Molina, M.C.; Chiarello, P.; Vannucchi, H. Consumo Alimentar, 1st ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Pinheiro, A.V.B.; Lacerda, E.M.A.; Benzecry, E.H.; Gomes, M.C.S.; Costa, V.M. Tabela Para Avaliação do Consumo Alimentar em Medidas Caseiras, 5th ed.; Atheneu: São Paulo, Brazil, 2005. [Google Scholar]
- NEPA—UNICAMP. Tabela Brasileira de Composição de Alimentos—TACO, 4th ed.; ver e ampl.; NEPA—UNICAMP: Campinas, Brazil, 2011; 161p. [Google Scholar]
- IBGE. Pesquisa de Orçamentos Familiares 2008–2009: Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil/IBGE; IBGE: Rio de Janeiro, Brazil, 2011; p. 351. [Google Scholar]
- Philippi, S.T. Tabela de Composição de Alimentos: Suporte para Decisão Nutricional; Manole: Barueri, Brazil, 2013. [Google Scholar]
- De Carvalho, M.H.C. I Diretriz brasileira de diagnóstico e tratamento da síndrome metabólica. Arq. Bras. De Cardiol. 2005, 84, 3–28. [Google Scholar]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- WHO Consultation on Obesity (1999: Geneva, Switzerland) & World Health Organization. (2000). Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. World Health Organization. Available online: https://iris.who.int/handle/10665/42330 (accessed on 23 March 2022).
- OPAS—Organizacíon Panamericana de La Salud; División de Promoción y Protección de la Salud (HPP). XXXVI Reunión del Comitê Asesor de Investigaciones en Salud—Encuestra Multicêntrica—Salud Bienestar y Envejecimiento (SABE) en America Latina y el Caribe—Washington, D.C.; Organización Panamericana de la Salud: Washington, DC, USA, 2001; 19p, (CIAS 36/2001.5). [Google Scholar]
- World Health Organization. Obesity: Preventing and Managing the Total Epidemic. Report of a WHO Consultation Group. Geneva: WHO; 1997. Available online: https://iris.who.int/handle/10665/63854 (accessed on 23 March 2022).
- IDF. Worldwide Definition of the Metabolic Syndrome|International Diabetes Federation. Epidemiolgy Prev. 2005, 50, 514211. [Google Scholar]
- Sergi, G.; De Rui, M.; Stubbs, B.; Veronese, N.; Manzato, E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin. Exp. Res. 2017, 29, 591–597. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Composition of the ESPEN Working Group. Bioelectrical impedance analysis–part I: A review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Gould, H.; Brennan, S.L.; Kotowicz, M.A.; Nicholson, G.C.; Pasco, J. A Total and appendicular lean mass reference ranges for Australian men and women: The Geelong osteoporosis study. Calcif. Tissue Int. 2014, 94, 363–372. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H.; EFCOVAL Consortium. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65 (Suppl. S1), S87–S89. [Google Scholar] [CrossRef]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiological analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Ferolla, S.M.; Ferrari, T.C.; Lima, M.L.; Reis, T.O.; Tavares, W.C.; Couto, O.F.M.; Vidigal, P.V.; Fausto, M.A.; Couto, C.A. Dietary patterns in Brazilian patients with nonalcoholic fatty liver disease: A cross-sectional study. Clinics 2013, 68, 11–17. [Google Scholar] [CrossRef]
- Federico, A.; Dallio, M.; Caprio, G.G.; Gravina, A.G.; Picascia, D.; Masarone, M.; Persico, M.; Loguercio, C. Qualitative and Quantitative Evaluation of Dietary Intake in Patients with Non-Alcoholic Steatohepatitis. Nutrients 2017, 9, 1074. [Google Scholar] [CrossRef]
- Tajima, R.; Kimura, T.; Enomoto, A.; Yanoshita, K.; Saito, A.; Kobayashi, S.; Masuda, K.; Iida, K. Association between rice, bread, and noodle intake and the prevalence of non-alcoholic fatty liver disease in Japanese middle-aged men and women. Clin. Nutr. 2017, 36, 1601–1608. [Google Scholar] [CrossRef]
- Yari, Z.; Cheraghpour, M.; Aghamohammadi, V.; Alipour, M.; Ghanei, N.; Hekmatdoost, A. Energy-dense nutrient-poor snacks and risk of non-alcoholic fattyliver disease: A case-control study in Iran. BMC Res. Notes 2020, 13, 221. [Google Scholar] [CrossRef]
- Garcês, L.S.; Cunha, C.M.; Lyra, A.C.; Jesus, R.P.; Oliveira, L.P.M. Development of a food frequency questionnaire based on the evaluation of the habitual dietary intake of patients with Non-alcoholic Fatty Liver Disease. Res. Soc. Dev. 2021, 10, e280101623506. [Google Scholar] [CrossRef]
- Crispim, F.G.S.; Elias, M.; Parise, E.R. Dietary intake of patients with Nonalcoholic Fatty Liver Disease: Comparison between the presence and absence of Nonalcoholic Steatohepatitis and Metabolic Syndrome. Rev. Nutr. 2016, 29, 495–505. [Google Scholar] [CrossRef]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Kwak, M.J.; Batchelor, W.B.; Forman, D.E.; et al. Sarcopenia and cardiovascular diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef]
- Santiago, E.C.S.; Roriz, A.K.C.; Ramos, L.B.; Ferreira, A.J.F.; Oliveira, C.C.; Gomes-Neto, M. Comparison of calorie and nutrient intake among elderly with and without sarcopenia: A systematic review and meta-analysis. Nutr. Rev. 2021, 10, 1338–1352. [Google Scholar] [CrossRef]
- Almeida, N.S.; Rocha, R.; de Souza, C.A.; Daltro, C.; de Farias Costa, P.R.; de Oliveira, T.M.; de Oliveira Leite, L.; Cotrim, H.P. Energy and nutrient intake by people with and without sarcopenia diagnosed by the European Working Group on Sarcopenia in Older People: A systematic review and meta-analysis. Nutr. Rev. 2023, 82, 1666–1677. [Google Scholar] [CrossRef]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia-What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef]
- Pillatt, A.P.; Patias, R.S.; Berlezi, E.M.; Schneide, R.H. Which factors are associated with sarcopenia and frailty in elderly persons residing in the community? Rev. Bras. Geriatr. Gerontol. 2018, 21, 781–792. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B. (Eds.) Dietary Reference Intakes for Calcium and Vitamin, D; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- van Dronkelaar, C.; van Velzen, A.; Abdelrazek, M.; van der Steen, A.; Weijs, P.J.M.; Tieland, M. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2018, 19, 6–11. [Google Scholar] [CrossRef]
- IBGE. Analysis of Personal Food Consumption in Brazil: Household Budget Survey (POF) 2017–2018; Brazilian Institute of Geography and Statistics (IBGE): Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Facchini, L.A.; Nunes, B.P.; Motta, J.V.; Tomasi, E.; Silva, S.M.; Thumé, E.; da Silveira, D.S.; Siqueira, F.V.; Dilélio, A.S.; Saes, M.d.O.; et al. Food insecurity in the Northeast and South of Brazil: Magnitude, associated factors, and per capita income patterns for reducing inequities. Cad. Saude Publica 2014, 30, 161–174. [Google Scholar] [CrossRef]
- Silva, F.M.; Giatti, L.; Diniz, M.F.H.S.; Brant, L.C.C.; Barreto, S.M. Dairy product consumption reduces cardiovascular mortality: Results after 8 year follow-up of ELSA-Brasil. Eur. J. Nutr. 2022, 61, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Han, Y.; Zou, T.; Zhu, G.; Xu, K.; Zheng, J.; Zheng, M.; Cheng, X. Sarcopenia Contributes to the Progression of Nonalcoholic Fatty Liver Disease- Related Fibrosis: A Meta-Analysis. Dig. Dis. 2018, 36, 427–436. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, S.U.; Song, K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Han, K.H. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008-2011). Hepatology 2016, 63, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.B.; Huh, Y.; Lee, S.H.; Han, B.; Kim, Y.H.; Kim, D.H.; Kim, S.M.; Choi, Y.S.; Cho, K.H.; Nam, G.E. Association of low muscle strength with metabolic dysfunction-associated fatty liver disease: A nationwide study. World J. Gastroenterol. 2023, 29, 5962–5973. [Google Scholar] [CrossRef]
- Kang, S.; Moon, M.K.; Kim, W.; Koo, B.K. Association between muscle strength and advanced fibrosis in non-alcoholic fatty liver disease: A Korean nationwide survey. J. Cachexia Sarcopenia Muscle 2020, 5, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Almeida, N.S.; Rocha, R.; de Souza, C.A.; Silva, B.B.; Lima, T.; Barbosa, D.S.; da Cruz, A.C.S.; Ribeiro, B.d.R.; Vieira, L.V.; Daltro, C. Prevalence of sarcopenia using different methods in patients with non-alcoholic fatty liver disease. World J. Hepatol. 2022, 14, 1643–1651. [Google Scholar] [CrossRef]
- Freer, C.L.; George, E.S.; Tan, S.Y.; Abbott, G.; Scott, D.; Daly, R.M. Prevalence of sarcopenia and its defining components in non-alcoholic fatty liver disease varies according to the method of assessment and adjustment: Findings from the UK Biobank. Calcif. Tissue Int. 2024, 114, 592–602. [Google Scholar] [CrossRef]
- Amer, J.; Abdoh, Q.; Salous, Z.; Alsoud, E.A.; AbuBaker, S.; Salhab, A.; Badrasawi, M. A cross-sectional study of risk factors associated with sarcopenia in patients with metabolic dysfunction-associated steatotic liver disease. Front. Med. 2025, 12, 1488068. [Google Scholar] [CrossRef]
- Brunt, E.M.; Wong, V.W.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 2015, 1, 15080. [Google Scholar] [CrossRef]
- Steffl, M.; Bohannon, R.W.; Sontakova, L.; Tufano, J.J.; Shiells, K.; Holmerova, I. Relationship between sarcopenia and physical activity in older people: A systematic review and meta-analysis. Clin. Interv. Aging 2017, 12, 835–845. [Google Scholar] [CrossRef]
- Fisberg, R.M.; Marchioni, D.M.; Colucci, A.C. Assessment of food consumption and nutrient intake in clinical practice. Arq. Bras. Endocrinol. Metabol. 2009, 53, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Verly, E., Jr.; Oliveira, D.C.; Fisberg, R.M.; Marchioni, D.M. Performance of statistical methods to correct food intake distribution: Comparison between observed and estimated usual intake. Br. J. Nutr. 2016, 116, 897–903. [Google Scholar] [CrossRef]



| Diagnostics | EWGSOP2, 2019 |
|---|---|
| No sarcopenia | MM + MS + PP adequate |
| Probable sarcopenia | MS insufficient |
| Sarcopenia | MS + MM insufficient |
| Severe sarcopenia | MS + MM + PP insufficient |
| Variables n (%) | Total (n = 74) | No Sarcopenia (n = 53) | Probable Sarcopenia (n = 21) | p Value * | Cramér’s V |
|---|---|---|---|---|---|
| Female sex | 55 (74.3) | 40 (75.5) | 15 (71.4) | 0.72 | 0.42 |
| Physically active | 47 (65.3) | 36 (70.6) | 11 (52.4) | 0.17 | 0.174 |
| Nutritional monitoring | 44 (60.3) | 31 (59.6) | 13 (61.9) | 0.86 | 0.021 |
| BMI (kg/m2) | |||||
| Eutrophy | 11 (14.9) | 8 (15.1) | 3 (14.3) | 0.99 | 0.015 |
| Overweight | 17 (23.0) | 12 (22.6) | 5 (23.8) | ||
| Obesity | 46 (62.2) | 33 (62.3) | 13 (61.9) | ||
| High WC (cm) *** | 63 (87.5) | 46 (86.8) | 17 (89.5) | 1.00 ** | 0.036 |
| Metabolic syndrome | 48 (64.9) | 34 (64.2) | 14 (66.7) | 0.84 | 0.024 |
| Degree of steatosis | |||||
| Grade I | 26 (35.1) | 22 (41.5) | 4 (19.0) | 0.10 ** | 0.220 |
| Grade II and III | 48 (64.4) | 31 (58.5) | 17 (81.0) | ||
| Degree of fibrosis by FIB-4 | |||||
| Absence of advanced fibrosis (F0/F1/F2) | 51 (69.9) | 38 (73.1) | 13 (61.9) | 0.27 | 0.191 |
| Presence of advanced fibrosis (F3/F4) | 5 (6.8) | 2 (3.8) | 3 (14.3) | ||
| Indeterminate | 17 (23.3) | 12 (23.1) | 5 (23.8) |
| Variables ** | No Sarcopenia Me [IQR 25; 75] | Probable Sarcopenia Me [IQR 25; 75] | p Value *** | r | PS |
|---|---|---|---|---|---|
| Energy (kcal) | 1587.5 [1441.0; 1902.1] | 1511.8 [1344.1; 1878.] | 1.00 | 0.114 | 0.573 |
| Energy (kcal/kg weight/day) | 20.2 [16.1; 23.5] | 19.0 [16.7; 23.3] | 0.60 | 0.038 | 0.525 |
| Carbohydrates (g) | 199.4 [173.7; 217.8] | 194.1 [178.3; 251.3] | 0.60 | 0.030 | 0.519 |
| Protein (g/kg body weight/day) | 0.8 [0.7; 1.0] | 0.7 [0.6; 0.8] | 0.52 | 0.188 | 0.621 |
| Total fats (g) | 64.1 [57.0; 78.9] | 58.8 [49.5; 72.5] | 0.60 | 0.174 | 0.612 |
| Saturated fats (g) | 21.1 [18.6; 26.1] | 19.1 [15.0; 23.4] | 0.12 | 0.242 | 0.656 |
| Monounsaturated fats (g) | 21.3 [18.0; 27.7] | 20.0 [16.4; 25.6] | 0.60 | 0.105 | 0.568 |
| Polyunsaturated fats (g) | 16.0 [13.0; 19.1] | 13.8 [11.6; 17.3] | 0.30 | 0.182 | 0.617 |
| Dietary Fiber (g) | 22.0 [18.0; 25.4] | 22.1 [18.0; 25.3] | 1.00 | 0.031 | 0.520 |
| Calcium (mg) | 512.6 [444.5; 675.0] | 451.8 [389.8; 584.9] | 0.04 | 0.210 | 0.635 |
| Iron (mg) | 8.9 [7.2; 10.6] | 9.0 [7.7; 11.0] | 1.00 | 0.056 | 0.536 |
| Phosphorus (mg) | 970.7 [810.4; 1132.7] | 929.3 [755.40; 1086.5] | 0.60 | 0.134 | 0.587 |
| Selenium (µg) | 74.9 [61.9; 94.7] | 69.5 [59.6; 89.5] | 1.00 | 0.076 | 0.549 |
| Zinc (mg) | 8.6 [7.1; 10.7] | 8.5 [7.4; 11.4] | 1.00 | 0.066 | 0.542 |
| Magnesium (mg) | 229.5 [201.6; 287.7] | 229.3 [190.9; 266.7] | 1.00 | 0.104 | 0.567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, N.S.; Rocha, R.; Daltro, C.; Cotrim, H.P. Metabolic Dysfunction-Associated Steatotic Liver Disease and Sarcopenia: Influence of Habitual Food. Diagnostics 2025, 15, 2711. https://doi.org/10.3390/diagnostics15212711
Almeida NS, Rocha R, Daltro C, Cotrim HP. Metabolic Dysfunction-Associated Steatotic Liver Disease and Sarcopenia: Influence of Habitual Food. Diagnostics. 2025; 15(21):2711. https://doi.org/10.3390/diagnostics15212711
Chicago/Turabian StyleAlmeida, Naiade S., Raquel Rocha, Carla Daltro, and Helma P. Cotrim. 2025. "Metabolic Dysfunction-Associated Steatotic Liver Disease and Sarcopenia: Influence of Habitual Food" Diagnostics 15, no. 21: 2711. https://doi.org/10.3390/diagnostics15212711
APA StyleAlmeida, N. S., Rocha, R., Daltro, C., & Cotrim, H. P. (2025). Metabolic Dysfunction-Associated Steatotic Liver Disease and Sarcopenia: Influence of Habitual Food. Diagnostics, 15(21), 2711. https://doi.org/10.3390/diagnostics15212711

