Descending Pain Modulation in Fibromyalgia: A Short Review of Mechanisms and Biomarkers
Abstract
1. Introduction
2. Methods
3. Pathophysiology of Pain in Fibromyalgia
3.1. Central Sensitization in Fibromyalgia
3.2. Dysfunction of Descending Pain Modulation in Fibromyalgia
Neuroinflammation and Glial Activation
3.3. Brain Structural and Functional Changes
4. Biomarkers
5. Clinical Implications and Therapeutic Perspectives
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACC | anterior cingulate cortex |
| ACR | American College of Rheumatology |
| BDNF | brain-derived neurotrophic factor |
| CBT | cognitive-behavioral therapy |
| CGRP | calcitonin gene-related peptide |
| CNS | central nervous system |
| CPM | conditioned pain modulation |
| CS | central sensitization |
| CSF | cerebrospinal fluid |
| D | dopamine |
| DNIC | diffuse noxious inhibitory controls |
| DPMS | descending pain modulatory system |
| FM | fibromyalgia |
| fMRI | functional magnetic resonance imaging |
| Glu | glutamate |
| GRM6 | glutamate metabotropic receptor 6 |
| 1H-MRI | proton nuclear magnetic resonance |
| HPA | hypothalamic–pituitary–adrenal axis |
| HRV | heart rate variability |
| 5-HT | serotonin |
| IL | interleukin |
| LC | locus coeruleus |
| miR | micro ribonucleic acid |
| NA | noradrenaline |
| NMDA | N-methyl-d-aspartate |
| NRM | nucleus raphe magnus |
| PAG | periaqueductal gray |
| PET | positron emission tomography |
| PFC | prefrontal cortex |
| QST | quantitative sensory testing |
| RNA | ribonucleic acid |
| RVM | rostral ventromedial medulla |
| SCL6A4 | solute carrier family 6 member |
| SP | substance P |
| SNRIs | serotonin-norepinephrine reuptake inhibitors |
| SPECT | single photon emission computed tomography |
| tDCS | transcranial direct current stimulation |
| TMS | transcranial magnetic stimulation |
| TSPO | 18 kDa Translocator Protein |
References
- Clauw, D.J. Fibromyalgia: A Clinical Review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, L.P. Worldwide epidemiology of fibromyalgia. Curr. Pain Headache Rep. 2013, 17, 356. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Ablin, J.; Fitzcharles, M.A.; Littlejohn, G.; Luciano, J.V.; Usui, C.; Walitt, B. Fibromyalgia syndrome: Under-, over- and misdiagnosis. Clin. Exp. Rheumatol. 2017, 35 (Suppl. 105), S90–S97. [Google Scholar]
- Arnold, L.M.; Crofford, L.J.; Mease, P.J.; Burgess, S.M.; Palmer, S.C.; Abetz, L.; Martin, S.A. Patient perspectives on the impact of fibromyalgia. Patient Prefer. Adherence 2012, 6, 311–320. [Google Scholar] [CrossRef]
- Häuser, W.; Jung, E.; Erbslöh-Möller, B.; Gesmann, M.; Kühn-Becker, H.; Petermann, F.; Tölle, T.; Uçeyler, N.; Sommer, C. Fibromyalgia: Prevalence, characteristics, and treatment in clinical practice. Clin. Exp. Rheumatol. 2017, 35 (Suppl. 105), S61–S70. [Google Scholar]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; et al. The American College of Rheumatology Preliminary Diagnostic Criteria for Fibromyalgia and Measurement of Symptom Severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef]
- White, K.P.; Speechley, M.; Harth, M.; Ostbye, T. Health-related quality of life in patients with fibromyalgia. J. Rheumatol. 2000, 27, 458–464. [Google Scholar]
- McBeth, J.; Macfarlane, G.J. Health-related quality of life and socioeconomic status in fibromyalgia. Arthritis Care Res. 2010, 62, 1439–1446. [Google Scholar]
- Katz, R.S. The impact of fibromyalgia on health status and employment. Arthritis Rheum. 1995, 38, 1467–1474. [Google Scholar]
- Wolfe, F. The fibromyalgia syndrome: A critical review. J. Rheumatol. 1990, 17, 634–646. [Google Scholar]
- Üçeyler, N.; Zeller, D.; Kahn, A.K.; Kewenig, S.; Kittel-Schneider, S.; Schmid, A.; Casanova-Molla, J.; Reiners, K.; Sommer, C. Small fibre pathology in patients with fibromyalgia syndrome. Brain 2013, 136 Pt 6, 1857–1867. [Google Scholar] [CrossRef]
- Oaklander, A.L.; Herzog, Z.D.; Downs, H.M.; Klein, M.M. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia. Pain 2013, 154, 2310–2316. [Google Scholar] [CrossRef]
- Giannoccaro, M.P.; Donadio, V.; Incensi, A.; Avoni, P.; Liguori, R. Small nerve fiber involvement in patients referred for fibromyalgia. Muscle Nerve 2014, 49, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Caro, X.J.; Winter, E.F. Evidence of abnormal epidermal nerve fiber density in fibromyalgia: Clinical and immunologic implications. Arthritis Rheumatol. 2014, 66, 1945–1954. [Google Scholar] [CrossRef]
- Srikuea, R.; Symons, T.B.; Long, D.E.; Lee, J.D.; Shang, Y.; Chomentowski, P.J.; Yu, G.; Crofford, L.J.; Peterson, C.A. Association of fibromyalgia with altered skeletal muscle characteristics which may contribute to postexertional fatigue in postmenopausal women. Arthritis Rheumatol. 2013, 65, 519–528. [Google Scholar] [CrossRef]
- Yunus, M.B. Central sensitivity syndromes: A new paradigm and group nosology for fibromyalgia and overlapping conditions. Arthritis Rheum. 2008, 58, 338–355. [Google Scholar]
- Staud, R. Peripheral and central mechanisms of fatigue in inflammatory and noninflammatory rheumatic diseases. Curr. Rheumatol. Rep. 2012, 14, 539–548. [Google Scholar] [CrossRef]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef] [PubMed]
- Mezhov, V.; Guymer, E.; Littlejohn, G. Central sensitivity and fibromyalgia. Intern. Med. J. 2021, 51, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.E.; Clauw, D.J.; Scott, D.J.; McLean, S.A.; Gracely, R.H.; Zubieta, J.K. Decreased central mu-opioid receptor availability in fibromyalgia. J. Neurosci. 2007, 27, 10000–10006. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.B. Overlapping structural and functional brain changes in patients with long-term exposure to pain and opioid medication. Eur. J. Pain 2016, 20, 993–1004. [Google Scholar]
- Martikainen, I.K. Dopaminergic and serotonergic mechanisms in fibromyalgia. Brain 2014, 137 Pt 3, 819–829. [Google Scholar]
- Fields, H.L. State-dependent opioid control of pain. Nat. Rev. Neurosci. 2004, 5, 565–575. [Google Scholar] [CrossRef]
- Tracey, I.; Mantyh, P.W. The cerebral signature for pain perception and its modulation. Neuron 2007, 55, 377–391. [Google Scholar] [CrossRef]
- Millan, M.J. Descending control of pain. Prog. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef]
- Jensen, K.B. Functional changes in endogenous pain modulation in fibromyalgia: A meta-analysis of neuroimaging studies. Neurosci. Biobehav. Rev. 2015, 51, 98–108. [Google Scholar]
- Napadow, V.; Harris, R.E. What has functional connectivity and chemical neuroimaging in fibromyalgia taught us about the mechanisms and management of ‘centralized’ pain? Arthritis Res. Ther. 2014, 16, 425. [Google Scholar] [CrossRef]
- Fallon, N. Altered brain network connectivity during experimental pain in fibromyalgia patients: A functional MRI study. PLoS ONE 2018, 13, e0198351. [Google Scholar]
- McCarberg, B.H.; Peppin, J.F. Pain pathway pharmacology: A review. Pain Med. 2019, 20 (Suppl. 1), S2–S12. [Google Scholar]
- Kelleher, E.M.; Lange, F.; Wanigasekera, V.; Rathod-Mistry, T.; Nichols, T.; Seymour, B.; Tracey, I.; Segerdahl, A.R.; Irani, A. Brain signatures of nociplastic pain: Fibromyalgia Index and descending modulation at population level. Brain 2025, awaf307. [Google Scholar] [CrossRef]
- Staud, R. Peripheral pain mechanisms in chronic widespread pain. Best Pract. Res. Clin. Rheumatol. 2011, 25, 155–164. [Google Scholar] [CrossRef]
- Harris, R.E.; Sundgren, P.C.; Craig, A.D.; Kirshenbaum, E.; Sen, A.; Napadow, V.; Clauw, D.J. Elevated insular glutamate in fibromyalgia is associated with experimental pain intensity. Arthritis Rheum. 2009, 60, 3146–3152. [Google Scholar] [CrossRef]
- García-Domínguez, M. Fibromyalgia and Inflammation: Unrevealing the Connection. Cells 2025, 14, 271. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef]
- Lian, Y.N.; Wang, Y.; Zhang, Y.; Yang, C.X. Duloxetine for pain in fibromyalgia in adults: A systematic review and a meta-analysis. Int. J. Neurosci. 2020, 130, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, T.; Filipović, A.; Nikolic, D.; Gimigliano, F.; Stevanov, J.; Hrkovic, M.; Bosanac, I. Fibromyalgia: Understanding, Diagnosis and Modern Approaches to Treatment. J. Clin. Med. 2025, 14, 955. [Google Scholar] [CrossRef]
- Ceko, M.; Bushnell, M.C.; Gracely, R.H. Neurobiology underlying fibromyalgia symptoms. Pain Res. Treat. 2012, 585419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Ichesco, E.; Schmidt-Wilcke, T.; Bhavsar, R.; Clauw, D.J.; Peltier, S.J.; Kim, J.; Napadow, V.; Hampson, J.P.; Kairys, A.E.; Williams, D.A.; et al. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J. Pain 2014, 15, 815–826.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ceko, M.; Bushnell, M.C.; Fitzcharles, M.A.; Schweinhardt, P. Fibromyalgia interacts with age to change the brain. Neuroimage Clin. 2013, 3, 249–260. [Google Scholar] [CrossRef]
- Vecchio, E.; Lombardi, R.; Paolini, M.; Libro, G.; Delussi, M.; Ricci, K.; Quitadamo, S.G.; Gentile, E.; Girolamo, F.; Iannone, F.; et al. Peripheral and central nervous system correlates in fibromyalgia. Eur. J. Pain 2020, 24, 1537–1547. [Google Scholar] [CrossRef]
- Gao, Y.J.; Ji, R.R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 2010, 126, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, R.; Paola, R.D.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schweinhardt, P.; Bushnell, M.C. Pain imaging in health and disease. Trends Neurosci. 2010, 33, 644–654. [Google Scholar]
- Loggia, M.L.; Kim, J.; Gollub, R.L.; Vangel, M.G.; Kirsch, I.; Kong, J.; Wasan, A.D.; Napadow, V. Default mode network connectivity encodes clinical pain: An arterial spin labeling study. Pain 2013, 154, 24–33. [Google Scholar] [CrossRef]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002, 46, 1333–1343. [Google Scholar] [CrossRef]
- Staud, R. Quantitative sensory testing and its relevance in fibromyalgia. Curr. Rheumatol. Rep. 2009, 11, 443–449. [Google Scholar]
- Staud, R. Abnormal pain modulation in patients with spatially distributed chronic pain: Fibromyalgia. Rheum. Dis. Clin. N. Am. 2009, 35, 263–274. [Google Scholar] [CrossRef]
- O’Brien, A.T.; Deitos, A.; Triñanes Pego, Y.; Fregni, F.; Carrillo-de-la-Peña, M.T. Defective Endogenous Pain Modulation in Fibromyalgia: A Meta-Analysis of Temporal Summation and Conditioned Pain Modulation Paradigms. J. Pain 2018, 19, 819–836. [Google Scholar] [CrossRef]
- Staud, R.; Godfrey, M.M.; Stroman, P.W. Fibromyalgia is associated with hypersensitivity but not with abnormal pain modulation: Evidence from QST trials and spinal fMRI. Front. Pain Res. 2023, 4, 1284103. [Google Scholar] [CrossRef]
- Staud, R.; Godfrey, M.M.; Riley, J.L.; Fillingim, R.B. Efficiency of pain inhibition and facilitation of fibromyalgia patients is not different from healthy controls: Relevance of sensitivity-adjusted test stimuli. Br. J. Pain 2023, 17, 182–194. [Google Scholar] [CrossRef]
- Hubbard, C.S.; Lazaridou, A.; Cahalan, C.M.; Kim, J.; Edwards, R.R.; Napadow, V.; Loggia, M.L. Aberrant Salience? Brain Hyperactivation in Response to Pain Onset and Offset in Fibromyalgia. Arthritis Rheumatol. 2020, 72, 1203–1213. [Google Scholar] [CrossRef]
- Staud, R.; Godfrey, M.M.; Robinson, M.E. Fibromyalgia Patients Are Not Only Hypersensitive to Painful Stimuli But Also to Acoustic Stimuli. J. Pain 2021, 22, 914–925. [Google Scholar] [CrossRef]
- Seminowicz, D.A.; Shpaner, M.; Keaser, M.L.; Krauthamer, G.M.; Mantegna, J.; Dumas, J.A.; Newhouse, P.A.; Filippi, C.G.; Keefe, F.J.; Naylor, M.R. Cognitive-behavioral therapy increases prefrontal cortex gray matter in patients with chronic pain. J. Pain 2013, 14, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Heinricher, M.M.; Tavares, I.; Leith, J.; Lumb, B. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res. Rev. 2009, 60, 214–225. [Google Scholar] [CrossRef]
- Fields, H.L.; Basbaum, A.I. Central nervous system mechanisms of pain modulation. In Wall and Melzack’s Textbook of Pain, 6th ed.; McMahon, S.B., Koltzenburg, M., Tracey, I., Turk, D.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Aston-Jones, G.; Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care 2014, 8, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Gil-Ugidos, A.; Vázquez-Millán, A.; Samartin-Veiga, N.; Carrillo-de-la-Peña, M.T. Conditioned pain modulation (CPM) paradigm type affects its sensitivity as a biomarker of fibromyalgia. Sci. Rep. 2024, 14, 7798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Staud, R.; Domingo, M. Evidence for abnormal pain processing in fibromyalgia syndrome. Curr. Rheumatol. Rep. 2003, 5, 216–222. [Google Scholar] [CrossRef]
- Yarnitsky, D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): Its relevance for acute and chronic pain states. Curr. Opin. Anaesthesiol. 2010, 23, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Le Bars, D.; Dickenson, A.H.; Besson, J.M. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 1979, 6, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Potvin, S.; Larouche, A.; Normand, E.; de Souza, J.B.; Gaumond, I.; Marchand, S.; Grignon, S. No relationship between the ins del polymorphism of the serotonin transporter promoter and pain perception in fibromyalgia patients and healthy controls. Eur. J. Pain 2010, 14, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Caumo, W.; Deitos, A.; Carvalho, S.; Leite, J.; Carvalho, F.; Dussán-Sarria, J.A.; Lopes Tarragó Mda, G.; Souza, A.; Torres, I.L.; Fregni, F. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology. Front. Hum. Neurosci. 2016, 10, 357. [Google Scholar] [CrossRef]
- Hilgenberg-Sydney, P.B.; Kowacs, P.A.; Conti, P.C. Somatosensory evaluation in Dysfunctional Syndrome patients. J. Oral Rehabil. 2016, 43, 89–95. [Google Scholar] [CrossRef]
- Potvin, S.; Larouche, A.; Normand, E.; de Souza, J.B.; Gaumond, I.; Grignon, S.; Marchand, S. DRD3 Ser9Gly polymorphism is related to thermal pain perception and modulation in chronic widespread pain patients and healthy controls. J. Pain 2009, 10, 969–975. [Google Scholar] [CrossRef]
- Jensen, K.B.; Kosek, E.; Petzke, F.; Carville, S.; Fransson, P.; Marcus, H.; Williams, S.C.; Choy, E.; Giesecke, T.; Mainguy, Y.; et al. Evidence of dysfunctional pain inhibition in fibromyalgia: Altered fMRI responses to conditioning stimuli. Arthritis Rheum. 2012, 64, 465–474. [Google Scholar]
- Napadow, V.; LaCount, L.; Park, K.; As-Sanie, S.; Clauw, D.J.; Harris, R.E. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010, 62, 2545–2555. [Google Scholar] [CrossRef]
- Becker, S.; Schweinhardt, P. Dysfunctional neurotransmitter systems in fibromyalgia, their role in central stress circuitry and pharmacological actions on these systems. Pain Res. Treat. 2012, 741746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naylor, J.C. Norepinephrine and serotonin in chronic pain. Curr. Opin. Neurobiol. 2021, 67, 23–31. [Google Scholar]
- Moont, R. Deficient serotonin activity and increased pain sensitivity in fibromyalgia. J. Pain Res. 2013, 6, 45–56. [Google Scholar]
- Meeus, M.; Nijs, J. Central sensitization: A biopsychosocial explanation for chronic widespread pain in fibromyalgia and chronic fatigue syndrome. Clin. Rheumatol. 2007, 26, 465–473. [Google Scholar] [CrossRef]
- Wood, P.B. Role of central dopamine in pain and analgesia. Expert Rev. Neurother. 2008, 8, 781–797. [Google Scholar] [CrossRef]
- Russell, I.J. Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis Rheum. 1994, 37, 1593–1601. [Google Scholar] [CrossRef]
- Arnold, L.M. Pharmacotherapy for fibromyalgia. Expert Rev. Neurother. 2013, 14, 1147–1157. [Google Scholar]
- Truini, A.; Tinelli, E.; Gerardi, M.C.; Calistri, V.; Iannuccelli, C.; La Cesa, S.; Tarsitani, L.; Mainero, C.; Sarzi-Puttini, P.; Cruccu, G.; et al. Abnormal resting state functional connectivity of the periaqueductal grey in patients with fibromyalgia. Clin. Exp. Rheumatol. 2016, 34 (Suppl. 96), S129–S133. [Google Scholar] [PubMed]
- Fallon, N.; Chiu, Y.; Nurmikko, T.; Stancak, A. Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients. PLoS ONE 2016, 11, e0159198. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov. 2014, 13, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Findeisen, K.; Guymer, E.; Littlejohn, G. Neuroinflammatory and Immunological Aspects of Fibromyalgia. Brain Sci. 2025, 15, 206. [Google Scholar] [CrossRef]
- Bäckryd, E. Evidence of central inflammation in fibromyalgia—Increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 2017, 313, 101–107. [Google Scholar]
- Kosek, E. Neuroinflammation in fibromyalgia. Neurosci. Lett. 2016, 650, 14–22. [Google Scholar]
- Niddam, D.M. Elevated inflammatory markers in fibromyalgia syndrome. Clin. Rheumatol. 2020, 39, 765–771. [Google Scholar]
- Martinez-Lavin, M. The role of neuroinflammation in fibromyalgia. Curr. Rheumatol. Rep. 2017, 19, 35. [Google Scholar]
- Mueller, C.; Fang, Y.D.; Jones, C.; McConathy, J.E.; Raman, F.; Lapi, S.E.; Younger, J.W. Evidence of neuroinflammation in fibromyalgia syndrome: A [18F]DPA-714 positron emission tomography study. Pain 2023, 164, 2285–2295. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, D.S.; Forsberg, A.; Sandström, A.; Bergan, C.; Kadetoff, D.; Protsenko, E.; Lampa, J.; Lee, Y.C.; Höglund, C.O.; Catana, C.; et al. Brain glial activation in fibromyalgia—A multi-site positron emission tomography investigation. Brain Behav. Immun. 2019, 75, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Wilcke, T. Neuroinflammation in fibromyalgia. J. Pain Res. 2017, 10, 25–31. [Google Scholar]
- Younger, J. Low-dose naltrexone for fibromyalgia: A randomized controlled trial. Arthritis Rheum. 2013, 65, 529–538. [Google Scholar] [CrossRef]
- Burgmer, M. Structural brain alterations in fibromyalgia: A voxel-based morphometry study. Pain 2009, 146, 434–439. [Google Scholar]
- Lutz, J. Fibromyalgia syndrome: Gray matter decrease in the pain-matrix. Brain 2008, 131 Pt 4, 940–947. [Google Scholar]
- Kuchinad, A.; Schweinhardt, P.; Seminowicz, D.A.; Wood, P.B.; Chizh, B.A.; Bushnell, M.C. Accelerated brain gray matter loss in fibromyalgia patients: Premature aging of the brain? J. Neurosci. 2007, 27, 4004–4007. [Google Scholar] [CrossRef]
- Kim, J. White matter abnormalities in fibromyalgia: A diffusion tensor imaging study. Pain 2015, 156, 2315–2325. [Google Scholar]
- Cagnie, B. Central sensitization in fibromyalgia: A systematic review on structural and functional brain MRI. Semin. Arthritis Rheum. 2014, 44, 335–344. [Google Scholar] [CrossRef]
- Sandström, A.; Ellerbrock, I.; Tour, J.; Kadetoff, D.; Jensen, K.; Kosek, E. Dysfunctional Activation of the Dorsolateral Prefrontal Cortex During Pain Anticipation Is Associated With Altered Subsequent Pain Experience in Fibromyalgia Patients. J. Pain 2023, 24, 1731–1743. [Google Scholar] [CrossRef]
- Jensen, K.B. Altered brain connectivity in fibromyalgia correlates with cognitive symptoms. Pain 2013, 154, 2455–2464. [Google Scholar]
- Pomares, F.B.; Funck, T.; Feier, N.A.; Roy, S.; Daigle-Martel, A.; Ceko, M.; Narayanan, S.; Araujo, D.; Thiel, A.; Stikov, N.; et al. Histological Underpinnings of Grey Matter Changes in Fibromyalgia Investigated Using Multimodal Brain Imaging. J. Neurosci. 2017, 37, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Favretti, M.; Iannuccelli, C.; Di Franco, M. Pain Biomarkers in Fibromyalgia Syndrome: Current Understanding and Future Directions. Int. J. Mol. Sci. 2023, 24, 10443. [Google Scholar] [CrossRef]
- Tapia-Haro, R.M.; Molina, F.; Rus, A.; Casas-Barragán, A.; Correa-Rodríguez, M.; Aguilar-Ferrándiz, M.E. Serum VEGF and CGRP Biomarkers: Relationships with Pain Intensity, Electric Pain, Pressure Pain Threshold, and Clinical Symptoms in Fibromyalgia—An Observational Study. Int. J. Mol. Sci. 2023, 24, 15533. [Google Scholar] [CrossRef]
- Ahmad, B.; Barkana, B.D. Pain and the Brain: A Systematic Review of Methods, EEG Biomarkers, Limitations, and Future Directions. Neurol. Int. 2025, 17, 46. [Google Scholar] [CrossRef]
- Cambay, V.Y.; Hafeez Baig, A.; Aydemir, E.; Tuncer, T.; Dogan, S. Minimum and Maximum Pattern-Based Self-Organized Feature Engineering: Fibromyalgia Detection Using Electrocardiogram Signals. Diagnostics 2024, 14, 2708. [Google Scholar] [CrossRef]
- Potvin, S.; Marchand, S. Pain facilitation and pain inhibition during conditioned pain modulation in fibromyalgia and in healthy controls. Pain 2016, 157, 1704–1710. [Google Scholar] [CrossRef]
- Kosek, E.; Cohen, M.; Baron, R.; Gebhart, G.F.; Mico, J.A.; Rice, A.S.C.; Rief, W.; Sluka, A.K. Do we need a third mechanistic descriptor for chronic pain states? Pain 2016, 157, 1382–1386. [Google Scholar] [CrossRef]
- Lewis, G.N.; Heales, L.; Rice, D.A.; Rome, K.; McNair, P.J. Reliability of the conditioned pain modulation paradigm to assess endogenous inhibitory pain pathways. Pain Res. Manag. 2012, 17, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Flodin, P.; Martinsen, S.; Löfgren, M.; Bileviciute-Ljungar, I.; Kosek, E.; Fransson, P. Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. Brain Connect 2014, 4, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Loggia, M.L.; Chonde, D.B.; Akeju, O.; Arabasz, G.; Catana, C.; Edwards, R.R.; Hill, E.; Hsu, S.; Izquierdo-Garcia, D.; Ji, R.R.; et al. Evidence for brain glial activation in chronic pain patients. Brain 2015, 138 Pt 3, 604–615. [Google Scholar] [CrossRef]
- Bazzichi, L.; Rossi, A.; Massimetti, G.; Giannaccini, G.; Giuliano, T.; De Feo, F.; Ciapparelli, A.; Dell’Osso, L.; Bombardieri, S. Cytokine patterns in fibromyalgia and their correlation with clinical manifestations. Clin. Exp. Rheumatol. 2007, 25, 225–230. [Google Scholar]
- O’Mahony, L.F.; Srivastava, A.; Mehta, P.; Ciurtin, C. Is fibromyalgia associated with a unique cytokine profile? A systematic review and meta-analysis. Rheumatology 2021, 60, 2602–2614. [Google Scholar] [CrossRef] [PubMed]
- Haas, L.; Portela, L.V.; Böhmer, A.E.; Oses, J.P.; Lara, D.R. Increased plasma levels of brain derived neurotrophic factor (BDNF) in patients with fibromyalgia. Neurochem. Res. 2010, 35, 830–834. [Google Scholar] [CrossRef]
- Uçeyler, N.; Valenza, R.; Stock, M.; Schedel, R.; Sprotte, G.; Sommer, C. Reduced levels of antiinflammatory cytokines in patients with chronic widespread pain. Arthritis Rheum. 2006, 54, 2656–2664. [Google Scholar] [CrossRef]
- Fayed, N.; Garcia-Campayo, J.; Magallón, R.; Andrés-Bergareche, H.; Luciano, J.V.; Andres, E.; Beltrán, J. Localized 1H-NMR spectroscopy in patients with fibromyalgia: A controlled study of changes in cerebral glutamate/glutamine, inositol, choline, and N-acetylaspartate. Arthritis Res. Ther. 2010, 12, R134. [Google Scholar] [CrossRef]
- Feraco, P.; Bacci, A.; Pedrabissi, F.; Passamonti, L.; Zampogna, G.; Pedrabissi, F.; Malavolta, N.; Leonardi, M. Metabolic abnormalities in pain-processing regions of patients with fibromyalgia: A 3T MR spectroscopy study. AJNR Am. J. Neuroradiol. 2011, 32, 1585–1590. [Google Scholar] [CrossRef]
- Menzies, V.; Lyon, D.E.; Archer, K.J.; Zhou, Q.; Brumelle, J.; Jones, K.H.; Gao, G.; York, T.P.; Jackson-Cook, C. Epigenetic alterations and an increased frequency of micronuclei in women with fibromyalgia. Nurs. Res. Pract. 2013, 2013, 795784. [Google Scholar] [CrossRef] [PubMed]
- Bjersing, J.L.; Bokarewa, M.I.; Mannerkorpi, K. Profile of circulating microRNAs in fibromyalgia and their relation to symptom severity: An exploratory study. Rheumatol. Int. 2015, 35, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, F.; Karaca, Z.; Unluhizarci, K.; Kelestimur, F. The hypothalamo-pituitary-adrenal axis in chronic fatigue syndrome and fibromyalgia syndrome. Stress 2007, 10, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Riva, R.; Mork, P.J.; Westgaard, R.H.; Rø, M.; Lundberg, U. Fibromyalgia syndrome is associated with hypocortisolism. Int. J. Behav. Med. 2010, 17, 223–233. [Google Scholar] [CrossRef]
- Xiao, Y.; Haynes, W.L.; Michalek, J.E.; Russell, I.J. Elevated serum high-sensitivity C-reactive protein levels in fibromyalgia syndrome patients correlate with body mass index, interleukin-6, interleukin-8, erythrocyte sedimentation rate. Rheumatol. Int. 2013, 33, 1259–1264. [Google Scholar] [CrossRef]
- Zetterman, T.; Markkula, R.; Kalso, E. Elevated highly sensitive C-reactive protein in fibromyalgia associates with symptom severity. Rheumatol. Adv. Pract. 2022, 6, rkac053. [Google Scholar] [CrossRef]
- Sanada, K.; Díez, M.A.; Valero, M.S.; Pérez-Yus, M.C.; Demarzo, M.M.; García-Toro, M.; García-Campayo, J. Effects of non-pharmacological interventions on inflammatory biomarker expression in patients with fibromyalgia: A systematic review. Arthritis Res. Ther. 2015, 17, 272. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M. Efficacy of duloxetine in patients with fibromyalgia: A randomized controlled trial. JAMA 2004, 291, 109–116. [Google Scholar]
- Goldenberg, D.L. Pharmacologic treatment of fibromyalgia syndrome. JAMA 2004, 292, 2388–2395. [Google Scholar] [CrossRef]
- Younger, J.; Mackey, S. Fibromyalgia symptoms are reduced by low-dose naltrexone: A pilot study. Pain Med. 2009, 10, 663–672. [Google Scholar] [CrossRef]
- Bruun, K.D.; Christensen, R.; Amris, K.; Blichfeldt-Eckhardt, M.R.; Bye-Møller, L.; Henriksen, M.; Alkjaer, T.; Toft, P.; Holsgaard-Larsen, A.; Vaegter, H.B. Effect of Naltrexone on Spinal and Supraspinal Pain Mechanisms and Functional Capacity in Women with Fibromyalgia: Exploratory Outcomes from the Randomized Placebo-Controlled FINAL Trial. CNS Drugs 2025, 39, 685–692. [Google Scholar] [CrossRef]
- Häuser, W. Efficacy of exercise in patients with fibromyalgia syndrome: A systematic review and meta-analysis of randomized controlled trials. Arthritis Res. Ther. 2010, 12, R79. [Google Scholar] [CrossRef]
- Thieme, K. Cognitive-behavioral therapy for fibromyalgia syndrome: A systematic review and meta-analysis of randomized controlled trials. Arthritis Rheum. 2006, 55, 300–312. [Google Scholar]
- Mhalla, A. Repetitive transcranial magnetic stimulation in fibromyalgia: A randomized controlled trial. Brain 2010, 133 Pt 12, 3282–3293. [Google Scholar]
- Silva, V.A.; Baptista, A.F.; Fonseca, A.S.; Carneiro, A.M.; Brunoni, A.R.; Carrilho, P.E.M.; Lins, C.C.; Kubota, G.T.; Fernandes, A.; Lapa, J.D.S.; et al. Motor cortex repetitive transcranial magnetic stimulation in fibromyalgia: A multicentre randomised controlled trial. Br. J. Anaesth. 2025, 134, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Velickovic, Z.; Radunovic, G. Repetitive Transcranial Magnetic Stimulation in Fibromyalgia: Exploring the Necessity of Neuronavigation for Targeting New Brain Regions. J. Pers. Med. 2024, 14, 662. [Google Scholar] [CrossRef]
- Fang, H.; Hou, Q.; Zhang, W.; Su, Z.; Zhang, J.; Li, J.; Lin, J.; Wang, Z.; Yu, X.; Yang, Y.; et al. Fecal Microbiota Transplantation Improves Clinical Symptoms of Fibromyalgia: An Open-Label, Randomized, Nonplacebo-Controlled Study. J. Pain 2024, 25, 104535. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Haddad, M.; Haddad, R.; Kesten, I.; Hoffman, T.; Laan, R.; Westfall, S.; Defaye, M.; Abdullah, N.S.; Wong, C.; et al. The gut microbiota promotes pain in fibromyalgia. Neuron 2025, 113, 2161–2175.e3. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, D.; Zhang, M.; Teng, Y.; Huang, Y. Causal association between gut microbiota and fibromyalgia: A Mendelian randomization study. Front. Microbiol. 2023, 14, 1305361. [Google Scholar] [CrossRef] [PubMed]
- Marum, A.P.; Moreira, C.; Saraiva, F.; Tomas-Carus, P.; Sousa-Guerreiro, C. A low fermentable oligo-di-mono saccharides and polyols (FODMAP) diet reduced pain and improved daily life in fibromyalgia patients. Scand. J. Pain 2016, 13, 166–172. [Google Scholar] [CrossRef]
- Nhu, N.T.; Chen, D.Y.; Yang, Y.S.H.; Lo, Y.C.; Kang, J.H. Associations Between Brain-Gut Axis and Psychological Distress in Fibromyalgia: A Microbiota and Magnetic Resonance Imaging Study. J. Pain 2024, 25, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Harte, S.E. Biomarkers in fibromyalgia: Present and future directions. Curr. Pain Headache Rep. 2018, 22, 56. [Google Scholar]
- Kamaly, N.A.; Kamel, A.S.; Sadik, N.A.; Shahin, N.N. Milnacipran and Vanillin Alleviate Fibromyalgia-Associated Depression in Reserpine-Induced Rat Model: Role of Wnt/β-Catenin Signaling. Mol. Neurobiol. 2025, 62, 7682–7705. [Google Scholar] [CrossRef]
- Arnold, L.M.; Clauw, D.J. Challenges of implementing fibromyalgia treatment guidelines in current clinical practice. Postgrad. Med. 2017, 129, 709–714. [Google Scholar] [CrossRef]
- Macfarlane, G.J.; Kronisch, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J.; et al. EULAR revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 2017, 76, 318–328. [Google Scholar] [CrossRef]
- Kundakci, B.; Hall, M.; Atzeni, F.; Branco, J.; Buskila, D.; Clauw, D.; Crofford, L.J.; Fitzcharles, M.A.; Georgopoulos, V.; Gerwin, R.D.; et al. International, multidisciplinary Delphi consensus recommendations on non-pharmacological interventions for fibromyalgia. Semin. Arthritis Rheum. 2022, 57, 152101. [Google Scholar] [CrossRef]
- Murphy, A.E.; Minhas, D.; Clauw, D.J.; Lee, Y.C. Identifying and Managing Nociplastic Pain in Individuals With Rheumatic Diseases: A Narrative Review. Arthritis Care Res. 2023, 75, 2215–2222. [Google Scholar] [CrossRef] [PubMed]


| Category | Example Biomarkers | Relation with Descending Pain Modulation |
|---|---|---|
| Functional | CPM | Allow direct measure of endogenous inhibitory system |
| Neuroimaging | TSPO-PET; fMRI | Indicators of neuroinflammation and cortical dysregulation |
| Neurochemical | BDNF; SP; 5-HT | Indicators of excitatory and inhibitory neurotransmission |
| Immunological | IL-6; IL-8; IL-10 | Indicators of neuroimmune involvement and sensitization |
| Epigenetic | GRM6; BDNF; miR | Indicators of genetic regulation of DPMS |
| Hypothalamic–pituitary–adrenal axis control | Cortisol | Indicators of systemic dysregulation affecting pain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, B.D.; Torres, S.; Costa-Pereira, J.T.; Pozza, D.H.; Tavares, I. Descending Pain Modulation in Fibromyalgia: A Short Review of Mechanisms and Biomarkers. Diagnostics 2025, 15, 2702. https://doi.org/10.3390/diagnostics15212702
Carneiro BD, Torres S, Costa-Pereira JT, Pozza DH, Tavares I. Descending Pain Modulation in Fibromyalgia: A Short Review of Mechanisms and Biomarkers. Diagnostics. 2025; 15(21):2702. https://doi.org/10.3390/diagnostics15212702
Chicago/Turabian StyleCarneiro, Bruno Daniel, Sandra Torres, José Tiago Costa-Pereira, Daniel Humberto Pozza, and Isaura Tavares. 2025. "Descending Pain Modulation in Fibromyalgia: A Short Review of Mechanisms and Biomarkers" Diagnostics 15, no. 21: 2702. https://doi.org/10.3390/diagnostics15212702
APA StyleCarneiro, B. D., Torres, S., Costa-Pereira, J. T., Pozza, D. H., & Tavares, I. (2025). Descending Pain Modulation in Fibromyalgia: A Short Review of Mechanisms and Biomarkers. Diagnostics, 15(21), 2702. https://doi.org/10.3390/diagnostics15212702

