Clinical Value of Galectin-9, Soluble TREM-1, and Soluble CD25 Among Critically Ill Patients with Organ Failure in the Emergency Department: A Prospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Collection
2.3. Definitions
2.4. Multiplex Immunoassay
2.5. Statistical Analysis
3. Results
3.1. Flowchart and Baseline Characteristics
3.2. Correlation with Biomarkers and Severity Scores
3.3. Diagnostic Value of Gal-9, sTREM-1, and sCD25
3.4. Prognostic Value of Gal-9, sTREM-1, and sCD25
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AKI | Acute kidney injury |
| APACHE II | Acute Physiology and Chronic Health Evaluation II |
| AUC | Area under the curve |
| CI | Confidence interval |
| CRP | C-reactive protein |
| ED | Emergency department |
| Gal-9 | Galectin-9 |
| HR | Hazard ratio |
| ICUs | Intensive care units |
| IQR | Interquartile range |
| i-SMS | Intelligent Sepsis Management System |
| NIOF | Non-infectious organ failure |
| ns | Not significant |
| PCT | Procalcitonin |
| qSOFA | Quick sepsis-related organ failure assessment |
| ROC | Receiver operating characteristic |
| sCD25 | soluble CD25 |
| SOFA | Sepsis-related organ failure assessment |
| SpO2 | Saturation of percutaneous oxygen |
| SSC | Surviving sepsis campaign |
| sTREM-1 | Soluble triggering receptor expressed on myeloid cells-1 |
| Tim-3 | T cell immunoglobulin and mucin domain 3 |
| TREM-1 | Triggering receptor expressed on myeloid cells-1 |
| WBC | White blood cell |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Song, J.; Park, D.W.; Seok, H.; Ahn, S.; Kim, J.; Park, J.; Cho, H.J.; Moon, S. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: A prospective observational study according to the Sepsis-3 definitions. BMC Infect. Dis. 2022, 22, 8. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, O.H.M.; Lengquist, M.; Spångfors, M.; Annborn, M.; Bergmann, D.; Schulte, J.; Levin, H.; Melander, O.; Frigyesi, A.; Friberg, H. Circulating bioactive adrenomedullin as a marker of sepsis, septic shock and critical illness. Crit. Care 2020, 24, 636. [Google Scholar] [CrossRef]
- Patnaik, R.; Azim, A.; Agarwal, V. Neutrophil CD64 a Diagnostic and Prognostic Marker of Sepsis in Adult Critically Ill Patients: A Brief Review. Indian J. Crit. Care Med. 2020, 24, 1242–1250. [Google Scholar] [CrossRef]
- Song, J.; Park, D.W.; Moon, S.; Cho, H.J.; Park, J.H.; Seok, H.; Choi, W.S. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: A prospective controlled study according to the Sepsis-3 definitions. BMC Infect. Dis. 2019, 19, 968. [Google Scholar] [CrossRef]
- Moar, P.; Tandon, R. Galectin-9 as a biomarker of disease severity. Cell. Immunol. 2021, 361, 104287. [Google Scholar] [CrossRef]
- Chagan-Yasutan, H.; Hanan, F.; Niki, T.; Bai, G.; Ashino, Y.; Egawa, S.; Telan, E.F.O.; Hattori, T. Plasma Osteopontin Levels is Associated with Biochemical Markers of Kidney Injury in Patients with Leptospirosis. Diagnostics 2020, 10, 439. [Google Scholar] [CrossRef] [PubMed]
- Chagan-Yasutan, H.; Ndhlovu, L.C.; Lacuesta, T.L.; Kubo, T.; Leano, P.S.; Niki, T.; Oguma, S.; Morita, K.; Chew, G.M.; Barbour, J.D.; et al. Galectin-9 plasma levels reflect adverse hematological and immunological features in acute dengue virus infection. J. Clin. Virol. 2013, 58, 635–640. [Google Scholar] [CrossRef]
- Dembele, B.P.; Chagan-Yasutan, H.; Niki, T.; Ashino, Y.; Tangpukdee, N.; Shinichi, E.; Krudsood, S.; Kano, S.; Hattori, T. Plasma levels of Galectin-9 reflect disease severity in malaria infection. Malar. J. 2016, 15, 403. [Google Scholar] [CrossRef] [PubMed]
- Padilla, S.T.; Niki, T.; Furushima, D.; Bai, G.; Chagan-Yasutan, H.; Telan, E.F.; Tactacan-Abrenica, R.J.; Maeda, Y.; Solante, R.; Hattori, T. Plasma Levels of a Cleaved Form of Galectin-9 Are the Most Sensitive Biomarkers of Acquired Immune Deficiency Syndrome and Tuberculosis Coinfection. Biomolecules 2020, 10, 1495. [Google Scholar] [CrossRef]
- Bouchon, A.; Dietrich, J.; Colonna, M. Cutting edge: Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 2000, 164, 4991–4995. [Google Scholar] [CrossRef]
- Cohen, J. TREM-1 in sepsis. Lancet 2001, 358, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Şen, S.; Kamit, F.; İşgüder, R.; Yazıcı, P.; Bal, Z.; Devrim, İ.; Bayram, S.N.; Karapınar, B.; Anıl, A.B.; Vardar, F. Surface TREM-1 as a Prognostic Biomarker in Pediatric Sepsis. Indian J. Pediatr. 2021, 88, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Jedynak, M.; Siemiatkowski, A.; Mroczko, B.; Groblewska, M.; Milewski, R.; Szmitkowski, M. Soluble TREM-1 Serum Level can Early Predict Mortality of Patients with Sepsis, Severe Sepsis and Septic Shock. Arch. Immunol. Ther. Exp. 2018, 66, 299–306. [Google Scholar] [CrossRef]
- Su, L.; Liu, D.; Chai, W.; Liu, D.; Long, Y. Role of sTREM-1 in predicting mortality of infection: A systematic review and meta-analysis. BMJ Open 2016, 6, e010314. [Google Scholar] [CrossRef]
- Huang, C.M.; Xu, X.J.; Qi, W.Q.; Ge, Q.M. Prognostic significance of soluble CD25 in patients with sepsis: A prospective observational study. Clin. Chem. Lab. Med. 2022, 60, 952–958. [Google Scholar] [CrossRef]
- Cho, E.; Lee, J.H.; Lim, H.J.; Oh, S.W.; Jo, S.K.; Cho, W.Y.; Kim, H.K.; Lee, S.Y. Soluble CD25 is increased in patients with sepsis-induced acute kidney injury. Nephrology 2014, 19, 318–324. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Johnson, A.; Venable, A.; Griswold, J.; Pappas, D. Combined CD25, CD64, and CD69 biomarker panel for flow cytometry diagnosis of sepsis. Talanta 2019, 191, 216–221. [Google Scholar] [CrossRef]
- Shih, Y.; Chen, S.; Huang, J.; Chen, Y.; Zhu, Z.; Zhao, Q.; Zhao, X.; Xue, F.; Xiang, J.; Chen, X.; et al. Serum level of galectin-9 as a potential biomarker for high risk of malignancy in dermatomyositis. Rheumatology 2024, 63, 251–258. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, L.; Zhu, X. Correlation of serum H-FABP, sTREM-1, and HMGB1 levels with severity and prognosis of sepsis. Am. J. Transl. Res. 2024, 16, 5846–5855. [Google Scholar] [CrossRef]
- Duan, Y.; Li, P.; Liang, Y.; Chen, Y. Diagnostic value of sTREM-1, sCD25, sCD40L and sCD130 in late-onset neonatal sepsis. J. Infect. Chemother. 2025, 31, 102684. [Google Scholar] [CrossRef] [PubMed]
- Plebani, M. Why C-reactive protein is one of the most requested tests in clinical laboratories? Clin. Chem. Lab. Med. 2023, 61, 1540–1545. [Google Scholar] [CrossRef] [PubMed]
- Luzzani, A.; Polati, E.; Dorizzi, R.; Rungatscher, A.; Pavan, R.; Merlini, A. Comparison of procalcitonin and C-reactive protein as markers of sepsis. Crit. Care Med. 2003, 31, 1737–1741. [Google Scholar] [CrossRef] [PubMed]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Tan, M.; Lu, Y.; Jiang, H.; Zhang, L. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysis. J. Cell. Biochem. 2019, 120, 5852–5859. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, Z.; Li, Y.; Zhao, J.; Wu, S.; Gou, S.; Wu, H. Prognostic accuracy of the serum lactate level, the SOFA score and the qSOFA score for mortality among adults with Sepsis. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 51. [Google Scholar] [CrossRef]
- Kadowaki, T.; Morishita, A.; Niki, T.; Hara, J.; Sato, M.; Tani, J.; Miyoshi, H.; Yoneyama, H.; Masaki, T.; Hattori, T.; et al. Galectin-9 prolongs the survival of septic mice by expanding Tim-3-expressing natural killer T cells and PDCA-1+ CD11c+ macrophages. Crit. Care 2013, 17, R284. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, D.; Wang, H.; Jin, W.; Li, X.; Hu, Y.; Qin, Y.; Kong, D.; Li, G.; Ellen, A.; et al. Galectin-9 Mediates the Therapeutic Effect of Mesenchymal Stem Cells on Experimental Endotoxemia. Front. Cell Dev. Biol. 2022, 10, 700702. [Google Scholar] [CrossRef]
- Jayaraman, P.; Sada-Ovalle, I.; Beladi, S.; Anderson, A.C.; Dardalhon, V.; Hotta, C.; Kuchroo, V.K.; Behar, S.M. Tim3 binding to galectin-9 stimulates antimicrobial immunity. J. Exp. Med. 2010, 207, 2343–2354. [Google Scholar] [CrossRef]
- Yasinska, I.M.; Sakhnevych, S.S.; Pavlova, L.; Teo Hansen Selnø, A.; Teuscher Abeleira, A.M.; Benlaouer, O.; Gonçalves Silva, I.; Mosimann, M.; Varani, L.; Bardelli, M.; et al. The Tim-3-Galectin-9 Pathway and Its Regulatory Mechanisms in Human Breast Cancer. Front. Immunol. 2019, 10, 1594. [Google Scholar] [CrossRef]
- Elahi, S.; Niki, T.; Hirashima, M.; Horton, H. Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection. Blood 2012, 119, 4192–4204. [Google Scholar] [CrossRef]
- Kung, C.T.; Su, C.M.; Hsiao, S.Y.; Chen, F.C.; Lai, Y.R.; Huang, C.C.; Lu, C.H. The Prognostic Value of Serum Soluble TREM-1 on Outcome in Adult Patients with Sepsis. Diagnostics 2021, 11, 1979. [Google Scholar] [CrossRef]
- Jedynak, M.; Siemiatkowski, A.; Milewski, R.; Mroczko, B.; Szmitkowski, M. Diagnostic effectiveness of soluble triggering receptor expressed on myeloid cells-1 in sepsis, severe sepsis and septic shock. Arch. Med. Sci. 2019, 15, 713–721. [Google Scholar] [CrossRef]
- Brenner, T.; Uhle, F.; Fleming, T.; Wieland, M.; Schmoch, T.; Schmitt, F.; Schmidt, K.; Zivkovic, A.R.; Bruckner, T.; Weigand, M.A.; et al. Soluble TREM-1 as a diagnostic and prognostic biomarker in patients with septic shock: An observational clinical study. Biomarkers 2017, 22, 63–69. [Google Scholar] [CrossRef]
- Su, L.; Han, B.; Liu, C.; Liang, L.; Jiang, Z.; Deng, J.; Yan, P.; Jia, Y.; Feng, D.; Xie, L. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: A prospective cohort study. BMC Infect. Dis. 2012, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Obregon, S.; Azkargorta, M.; Seijas, I.; Pilar-Orive, J.; Borrego, F.; Elortza, F.; Boyano, M.D.; Astigarraga, I. Identification of a panel of serum protein markers in early stage of sepsis and its validation in a cohort of patients. J. Microbiol. Immunol. Infect. 2018, 51, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Wagatsuma, T.; Toyama, H.; Ejima, Y.; Hoshi, K.; Shibusawa, M.; Kato, M.; Kurosawa, S. Sepsis is characterized by the increases in percentages of circulating CD4+CD25+ regulatory T cells and plasma levels of soluble CD25. Tohoku J. Exp. Med. 2008, 216, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Llewelyn, M.J.; Berger, M.; Gregory, M.; Ramaiah, R.; Taylor, A.L.; Curdt, I.; Lajaunias, F.; Graf, R.; Blincko, S.J.; Drage, S.; et al. Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care. Crit. Care 2013, 17, R60. [Google Scholar] [CrossRef]
- Trancă, S.; Oever, J.T.; Ciuce, C.; Netea, M.; Slavcovici, A.; Petrișor, C.; Hagău, N. sTREM-1, sIL-2Rα, and IL-6, but not sCD163, might predict sepsis in polytrauma patients: A prospective cohort study. Eur. J. Trauma Emerg. Surg. 2017, 43, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Chen, J.; Wei, Y.; Liu, Y.; Yuan, K.; Chen, J.; He, M.; Liu, N. Multi-marker approach using C-reactive protein, procalcitonin, neutrophil CD64 index for the prognosis of sepsis in intensive care unit: A retrospective cohort study. BMC Infect. Dis. 2022, 22, 662. [Google Scholar] [CrossRef] [PubMed]
- Tocu, G.; Mihailov, R.; Serban, C.; Stefanescu, B.I.; Tutunaru, D.; Firescu, D. The Contribution of Procalcitonin, C-Reactive Protein and Interleukin-6 in the Diagnosis and Prognosis of Surgical Sepsis: An Observational and Statistical Study. J. Multidiscip. Healthc. 2023, 16, 2351–2359. [Google Scholar] [CrossRef] [PubMed]




| Variable | NIOF (n = 331) | Sepsis (n = 266) | Septic Shock (n = 189) | p-Value |
|---|---|---|---|---|
| Age, median (IQR) | 67 (51–82) | 77 (69–84) | 79 (68–84) | <0.001 |
| Male, n (%) | 181 (54.7) | 154 (57.9) | 109 (57.7) | 0.684 |
| Charlson’s morbidity index, median (IQR) | 5 (3–7) | 6 (5–8) | 6 (5–8) | <0.001 |
| Past medical history, n (%) | ||||
| Myocardial infarction | 11 (3.3) | 7 (2.6) | 1 (0.5) | 0.131 |
| Chronic heart disease | 28 (8.5) | 25 (9.4) | 17 (9.0) | 0.922 |
| Peripheral vascular disease | 161 (48.6) | 138 (51.9) | 107 (56.6) | 0.215 |
| Cerebrovascular disease | 74 (22.4) | 101 (38.0) | 78 (41.3) | <0.001 |
| Dementia | 42 (12.7) | 57 (21.4) | 51 (27.0) | <0.001 |
| COPD | 27 (8.2) | 34 (12.8) | 17 (9.0) | 0.152 |
| Diabetes | 90 (27.2) | 106 (39.8) | 66 (34.9) | 0.004 |
| Connective tissue disease | 3 (0.9) | 7 (2.6) | 6 (3.2) | 0.148 |
| Peptic ulcer disease | 18 (5.4) | 13 (4.9) | 6 (3.2) | 0.496 |
| Liver disease | 38 (11.5) | 9 (3.4) | 13 (6.9) | 0.001 |
| Hemiplegia | 27 (8.2) | 68 (25.6) | 55 (29.1) | <0.001 |
| Chronic kidney disease (stage ≥ 3) | 31 (9.4) | 20 (7.5) | 12 (6.3) | 0.445 |
| Malignancy | 73 (22.1) | 57 (21.4) | 38 (20.1) | 0.873 |
| Vital signs, median (IQR) | ||||
| Systolic blood pressure (mmHg) | 100 (91–145) | 104 (91–139) | 91 (80–115) | <0.001 |
| Diastolic blood pressure (mmHg) | 64 (53–85) | 63 (54–79) | 55 (48–69) | <0.001 |
| Heart rate (rate/min) | 98 (80–119) | 108 (89–124) | 110 (88–128) | <0.001 |
| Respiratory rate (breath/min) | 24 (22–26) | 24 (20–28) | 24 (20–30) | 0.265 |
| Body temperature (°C) | 36.5 (36.0–37.0) | 37.2 (36.4–38.2) | 36.9 (36.1–38.0) | <0.001 |
| SpO2 (%) | 97 (93–99) | 96 (93–99) | 93 (86–97) | <0.001 |
| Vasopressor administration, n (%) | 53 (16.0) | 32 (12.0) | 121 (64.0) | <0.001 |
| Platelet (×109/L), median (IQR) | 209 (157–289) | 206 (138–287) | 186 (117–245) | 0.001 |
| Bilirubin (mg/L), median (IQR) | 5.60 (3.10–10.80) | 6.50 (4.00–10.80) | 6.90 (4.90–12.90) | 0.002 |
| Creatinine (mg/L), median (IQR) | 11.20 (8.00–19.30) | 12.30 (8.00–20.40) | 15.70 (10.40–24.00) | <0.001 |
| WBC (×109/L), median (IQR) | 10.9 (8.0–15.5) | 12.2 (8.2–18.7) | 11.0 (6.6–16.9) | 0.016 |
| Length of hospital stay (days), median (IQR) | 12 (6–20) | 13 (8–23) | 16 (9–31) | 0.002 |
| Biomarker | AUC (95% CI) | p-Value | Cut-Off Value | Sensitivity | Specificity |
|---|---|---|---|---|---|
| Gal-9 | |||||
| NIOF vs. * Sepsis | 0.638 (0.599–0.678) | <0.001 | 9719.78 (ng/L) | 76.3% | 47.4% |
| Sepsis vs. Septic shock | 0.614 (0.562–0.667) | <0.001 | 15,735.11 (ng/L) | 57.1% | 62.0% |
| sTREM-1 | |||||
| NIOF vs. * Sepsis | 0.655 (0.616–0.695) | <0.001 | 327.19 (ng/L) | 82.0% | 46.2% |
| Sepsis vs. Septic shock | 0.624 (0.572–0.676) | <0.001 | 555.93 (ng/L) | 64.0% | 56.0% |
| sCD25 | |||||
| NIOF vs. * Sepsis | 0.746 (0.710–0.781) | <0.001 | 910.11 (ng/L) | 74.3% | 66.5% |
| Sepsis vs. Septic shock | 0.607 (0.555–0.660) | <0.001 | 1560.53 (ng/L) | 56.6% | 63.5% |
| CRP | |||||
| NIOF vs. * Sepsis | 0.843 (0.814–0.873) | <0.001 | 36.95 (mg/L) | 81.1% | 78.9% |
| Sepsis vs. Septic shock | 0.559 (0.505–0.613) | 0.032 | 227.35 (mg/L) | 23.3% | 89.1% |
| Lactate | |||||
| NIOF vs. * Sepsis | 0.519 (0.478–0.560) | 0.361 | 2.12 (mmol/L) | 65.9% | 40.8% |
| Sepsis vs. Septic shock | 0.751 (0.707–0.795) | <0.001 | 2.10 (mmol/L) | 91.5% | 50.4% |
| Biomarker | All Patients (n = 786) | NIOF (n = 331) | * Sepsis (n = 455) | |||
|---|---|---|---|---|---|---|
| Multivariable HR (95% CI) | p-Value | Multivariable HR (95% CI) | p-Value | Multivariable HR (95% CI) | p-Value | |
| Gal-9 | - | ** ns | - | ns | - | ns |
| sTREM-1 | - | ns | 1.001 (1.000–1.001) | 0.013 | - | ns |
| sCD25 | 1.000 (1.000–1.000) | <0.001 | 1.000 (1.000–1.000) | 0.046 | 1.000 (1.000–1.000) | 0.040 |
| CRP | 1.020 (1.008–1.033) | 0.001 | - | ns | - | ns |
| Lactate | 1.126 (1.100–1.154) | <0.001 | 1.107 (1.069–1.146) | <0.001 | 1.178 (1.131–1.227) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, U.; Lee, S.; Han, K.S.; Kim, S.J.; Lee, S.; Park, D.W.; Song, J. Clinical Value of Galectin-9, Soluble TREM-1, and Soluble CD25 Among Critically Ill Patients with Organ Failure in the Emergency Department: A Prospective Observational Study. Diagnostics 2025, 15, 2677. https://doi.org/10.3390/diagnostics15212677
Kim U, Lee S, Han KS, Kim SJ, Lee S, Park DW, Song J. Clinical Value of Galectin-9, Soluble TREM-1, and Soluble CD25 Among Critically Ill Patients with Organ Failure in the Emergency Department: A Prospective Observational Study. Diagnostics. 2025; 15(21):2677. https://doi.org/10.3390/diagnostics15212677
Chicago/Turabian StyleKim, Uihwan, Sijin Lee, Kap Su Han, Su Jin Kim, Sungwoo Lee, Dae Won Park, and Juhyun Song. 2025. "Clinical Value of Galectin-9, Soluble TREM-1, and Soluble CD25 Among Critically Ill Patients with Organ Failure in the Emergency Department: A Prospective Observational Study" Diagnostics 15, no. 21: 2677. https://doi.org/10.3390/diagnostics15212677
APA StyleKim, U., Lee, S., Han, K. S., Kim, S. J., Lee, S., Park, D. W., & Song, J. (2025). Clinical Value of Galectin-9, Soluble TREM-1, and Soluble CD25 Among Critically Ill Patients with Organ Failure in the Emergency Department: A Prospective Observational Study. Diagnostics, 15(21), 2677. https://doi.org/10.3390/diagnostics15212677

