Large-Scale Saliva-Based Clinical Surveillance Enables Real Time SARS-CoV-2 Outbreak Detection and Genomic Tracking (Arizona, 2020–2023)
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection, Saliva Sample Kit Creation, Distribution, Collection, and Testing
2.2. Affiliate Organization-Invited Testing Programs
2.3. Limit of Detection and Heat Stability Testing of SARS-CoV-2 in Saliva
2.4. Paired NPS and Saliva Sample Collection
2.5. Nucleic Acid Extractions
2.6. RT-PCR Assays
2.7. Participant Demographics Curation
2.8. Next Generation Sequencing of SARS-CoV-2
2.9. Statistical Analysis
3. Results
3.1. Saliva Is a Stable and Reliable Sample Matrix for SARS-CoV-2 Testing
3.2. Participant Demographics of Saliva-Based COVID-19 Surveillance
3.3. Self-Administered Saliva Collection Surveillance Reflects Community COVID-19 Epidemiology
3.4. Randomly Selected Test Participation Detected Infection Outbreaks
3.5. Saliva Sample Collection Enabled Whole Viral Genome Sequencing of Clinical Positives for Genomic Epidemiology Investigations
3.6. Diagnostic Test Failure Allowed Rapid Genotyping of Saliva Samples
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| (S)GTF | (S) Gene Target Failure |
| CDC | Centers for Disease Control and Prevention |
| COVID-19 | Coronavirus disease 2019 |
| EUA | Emergency Use Authorization |
| GISAID | Global Initiative on Sharing All Influenza Data |
| HIPAA | Health Insurance Portability and Accountability Act |
| LOWESS/LOESS | Locally Weighted/Estimated Scatterplot Smoothing |
| NGS | Next-generation sequencing |
| NPA | nasopharyngeal aspirate |
| NPS | nasopharyngeal swab |
| PANGO(LIN) | Phylogenetic Assignment of Named Global Outbreak (Lineages) |
| RT-PCR | reverse transcriptase polymerase chain reaction |
| SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
| VOC | Variant of Concern |
| VOI | Variant of Interest |
| VUM | Variant Under Monitoring |
| WGS | Whole Genomes Sequencing |
| WHO | World Health Organization |
References
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Director-General’s Statement on IHR Emergency Committee on Novel Coronavirus (2019-nCoV). Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-statement-on-ihr-emergency-committee-on-novel-coronavirus-(2019-ncov) (accessed on 1 October 2025).
- World Health Organization. Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic. Available online: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 1 October 2025).
- Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Gavrilov, D.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; et al. Excess Mortality During the Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/excess-mortality-covid (accessed on 1 October 2025).
- Pall, T.; Abroi, A.; Avi, R.; Niglas, H.; Shablinskaja, A.; Pauskar, M.; Jogeda, E.L.; Soeorg, H.; Kallas, E.; Lahesaare, A.; et al. SARS-CoV-2 clade dynamics and their associations with hospitalisations during the first two years of the COVID-19 pandemic. PLoS ONE 2024, 19, e0303176. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.M.; Wolf, L.M.; Bello, G.L.; Maccari, J.G.; Nasi, L.A. Molecular evolution of SARS-CoV-2 from December 2019 to August 2022. J. Med. Virol. 2023, 95, e28366. [Google Scholar] [CrossRef]
- Berkell, M.; Gorska, A.; Smet, M.; Bachelet, D.; Gentilotti, E.; Guedes, M.; Franco-Yusti, A.M.; Mazzaferri, F.; Forero, E.L.; Matheeussen, V.; et al. Quasi-species prevalence and clinical impact of evolving SARS-CoV-2 lineages in European COVID-19 cohorts, January 2020 to February 2022. Eurosurveillance 2025, 30, 2400038. [Google Scholar] [CrossRef]
- Bruno, A.; de Mora, D.; Rojas-Estevez, P.; Ruiz-Moreno, H.A.; Guzman-Otazo, J.; Caceres, O.; Jimenez Vasquez, V.A.; Garces, J.; Olmedo, M.; Franco-Munoz, C.; et al. Genomic surveillance of SARS-CoV-2 in the Andean Community (2020-2024): Integrating regional sequencing efforts from Colombia, Ecuador, Peru, and Bolivia through “ORAS-CONHU” program. Front. Public Health 2025, 13, 1623413. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Jernigan, D.B.; 2019-nCoV CDC Response Team. Initial Public Health Response and Interim Clinical Guidance for the 2019 Novel Coronavirus Outbreak—United States, December 31, 2019-February 4, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 140–146. [Google Scholar] [CrossRef]
- VanBlargan, L.A.; Errico, J.M.; Halfmann, P.J.; Zost, S.J.; Crowe, J.E., Jr.; Purcell, L.A.; Kawaoka, Y.; Corti, D.; Fremont, D.H.; Diamond, M.S. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022, 28, 490–495. [Google Scholar] [CrossRef]
- Hou, C.W.; Williams, S.; Trivino-Soto, G.; Boyle, V.; Rainford, D.; Vicino, S.; Magee, M.; Chung, Y.; LaBaer, J.; Murugan, V. The omicron variant of SARS-CoV-2 drove broadly increased seroprevalence in a public university setting. PLoS Glob. Public Health 2025, 5, e0003893. [Google Scholar] [CrossRef]
- Santos, S.; Humbard, M.; Lambrou, A.S.; Lin, G.; Padilla, Y.; Chaitram, J.; Natrajan, M.S.; Kirking, H.L.; Courtney, S.; Del Guercio, K.; et al. The SARS-CoV-2 test scale-up in the USA: An analysis of the number of tests produced and used over time and their modelled impact on the COVID-19 pandemic. Lancet Public Health 2025, 10, e47–e57. [Google Scholar] [CrossRef]
- Frazee, B.W.; Rodriguez-Hoces de la Guardia, A.; Alter, H.; Chen, C.G.; Fuentes, E.L.; Holzer, A.K.; Lolas, M.; Mitra, D.; Vohra, J.; Dekker, C.L. Accuracy and Discomfort of Different Types of Intranasal Specimen Collection Methods for Molecular Influenza Testing in Emergency Department Patients. Ann. Emerg. Med. 2018, 71, 509–517.e501. [Google Scholar] [CrossRef]
- Azzi, L.; Carcano, G.; Gianfagna, F.; Grossi, P.; Gasperina, D.D.; Genoni, A.; Fasano, M.; Sessa, F.; Tettamanti, L.; Carinci, F.; et al. Saliva is a reliable tool to detect SARS-CoV-2. J. Infect. 2020, 81, e45–e50. [Google Scholar] [CrossRef]
- Uddin, M.K.M.; Shirin, T.; Hossain, M.E.; Alam, A.N.; Ami, J.Q.; Hasan, R.; Miah, M.; Shaly, N.J.; Ahmed, S.; Rahman, S.M.M.; et al. Diagnostic Performance of Self-Collected Saliva Versus Nasopharyngeal Swab for the Molecular Detection of SARS-CoV-2 in the Clinical Setting. Microbiol. Spectr. 2021, 9, e0046821. [Google Scholar] [CrossRef]
- To, K.K.W.; Yip, C.C.Y.; Lai, C.Y.W.; Wong, C.K.H.; Ho, D.T.Y.; Pang, P.K.P.; Ng, A.C.K.; Leung, K.H.; Poon, R.W.S.; Chan, K.H.; et al. Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: A diagnostic validity study. Clin. Microbiol. Infect. 2019, 25, 372–378. [Google Scholar] [CrossRef]
- Butler-Laporte, G.; Lawandi, A.; Schiller, I.; Yao, M.; Dendukuri, N.; McDonald, E.G.; Lee, T.C. Comparison of Saliva and Nasopharyngeal Swab Nucleic Acid Amplification Testing for Detection of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2021, 181, 353–360. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. EUA200010. 2021. Available online: https://www.fda.gov/media/136113/download (accessed on 1 October 2025).
- Holland, S.C.; Bains, A.; Holland, L.A.; Smith, M.F.; Sullins, R.A.; Mellor, N.J.; Thomas, A.W.; Johnson, N.; Murugan, V.; Lim, E.S. SARS-CoV-2 Delta Variant N Gene Mutations Reduce Sensitivity to the TaqPath COVID-19 Multiplex Molecular Diagnostic Assay. Viruses 2022, 14, 1316. [Google Scholar] [CrossRef]
- Public Health England. Investigation of Novel SARS-CoV-2 Variant: Variant of Concern 202012/01; Public Health England: London, UK, 2020.
- ThermoFisher Scientific. The Next Generation of COVID-19 Testing. Available online: https://www.thermofisher.com/blog/clinical-conversations/the-next-generation-of-covid-19-testing/ (accessed on 1 October 2025).
- Fowle, N.; Garrett, B.; Floyd, O.L.; Collins, J.; Krasnow, A.D.; Islas, M.; Holland, S.C.; Smith, M.F.; Lim, E.S.; Jarrett, N.M.; et al. University-Associated SARS-CoV-2 Omicron BA.2 Infections, Maricopa County, Arizona, USA, 2022. Emerg. Infect. Dis. 2022, 28, 1520–1522. [Google Scholar] [CrossRef]
- Smith, M.F.; Holland, S.C.; Lee, M.B.; Hu, J.C.; Pham, N.C.; Sullins, R.A.; Holland, L.A.; Mu, T.; Thomas, A.W.; Fitch, R.; et al. Baseline Sequencing Surveillance of Public Clinical Testing, Hospitals, and Community Wastewater Reveals Rapid Emergence of SARS-CoV-2 Omicron Variant of Concern in Arizona, USA. mBio 2023, 14, e0310122. [Google Scholar] [CrossRef] [PubMed]
- ARTICnetwork. Artic-nCoV-2019. Available online: https://github.com/artic-network/artic-ncov2019 (accessed on 1 October 2025).
- Krueger, F. Trim Galore. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 1 October 2025).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 3. [Google Scholar] [CrossRef]
- Andrews, S. FastQC. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 October 2025).
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Grubaugh, N.D.; Gangavarapu, K.; Quick, J.; Matteson, N.L.; De Jesus, J.G.; Main, B.J.; Tan, A.L.; Paul, L.M.; Brackney, D.E.; Grewal, S.; et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019, 20, 8. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- O’Toole, A.; Scher, E.; Underwood, A.; Jackson, B.; Hill, V.; McCrone, J.T.; Colquhoun, R.; Ruis, C.; Abu-Dahab, K.; Taylor, B.; et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. 2021, 7, veab064. [Google Scholar] [CrossRef]
- Schaffer, A.A.; Hatcher, E.L.; Yankie, L.; Shonkwiler, L.; Brister, J.R.; Karsch-Mizrachi, I.; Nawrocki, E.P. VADR: Validation and annotation of virus sequence submissions to GenBank. BMC Bioinform. 2020, 21, 211. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.F.; Semenova, E.; Dudas, G.; Hassler, G.W.; Kalinich, C.C.; Kraemer, M.U.G.; Ho, J.; Tegally, H.; Githinji, G.; Agoti, C.N.; et al. Global disparities in SARS-CoV-2 genomic surveillance. Nat. Commun. 2022, 13, 7003. [Google Scholar] [CrossRef] [PubMed]
- Davina-Nunez, C.; Perez, S.; Cabrera-Alvargonzalez, J.J.; Rincon-Quintero, A.; Treinta-Alvarez, A.; Godoy-Diz, M.; Suarez-Luque, S.; Regueiro-Garcia, B. Performance of amplicon and capture based next-generation sequencing approaches for the epidemiological surveillance of Omicron SARS-CoV-2 and other variants of concern. PLoS ONE 2024, 19, e0289188. [Google Scholar] [CrossRef]
- Jung, A.; Droit, L.; Febles, B.; Fronick, C.; Cook, L.; Handley, S.A.; Parikh, B.A.; Wang, D. Tracking the prevalence and emergence of SARS-CoV-2 variants of concern using a regional genomic surveillance program. Microbiol. Spectr. 2024, 12, e0422523. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.L.; Aronson, B.; Railey, A.F.; Ludema, C. If you build it, will they come? Social, economic, and psychological determinants of COVID-19 testing decisions. PLoS ONE 2021, 16, e0252658. [Google Scholar] [CrossRef]
- Thunström, L.; Ashworth, M.; Shogren, J.F.; Newbold, S.; Finnoff, D. Testing for COVID-19: Willful ignorance or selfless behavior? Behav. Public Policy 2020, 5, 135–152. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Emergency Use Authorization (EUA) for Emergency Use of Pfizer-BioNTech COVID-19 Vaccine for the Prevention of COVID-19. 2020. Available online: https://www.fda.gov/media/167211/download (accessed on 1 October 2025).
- Granados, A.; Petrich, A.; McGeer, A.; Gubbay, J.B. Measuring influenza RNA quantity after prolonged storage or multiple freeze/thaw cycles. J. Virol. Methods 2017, 247, 45–50. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Guidance Documents. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents (accessed on 1 October 2025).
- U.S. Centers for Disease Control and Prevention. SPHERES. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/advanced-molecular-detection/php/spheres/index.html (accessed on 1 October 2025).
- Meng, B.; Kemp, S.A.; Papa, G.; Datir, R.; Ferreira, I.; Marelli, S.; Harvey, W.T.; Lytras, S.; Mohamed, A.; Gallo, G.; et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 2021, 35, 109292. [Google Scholar] [CrossRef]
- Clark, C.; Schrecker, J.; Hardison, M.; Taitel, M.S. Validation of reduced S-gene target performance and failure for rapid surveillance of SARS-CoV-2 variants. PLoS ONE 2022, 17, e0275150. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, K.; Sekizuka, T.; Hashino, M.; Tanaka, R.; Kuroda, M. Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. PLoS ONE 2020, 15, e0239403. [Google Scholar] [CrossRef]
- Ulhuq, F.R.; Barge, M.; Falconer, K.; Wild, J.; Fernandes, G.; Gallagher, A.; McGinley, S.; Sugadol, A.; Tariq, M.; Maloney, D.; et al. Analysis of the ARTIC V4 and V4.1 SARS-CoV-2 primers and their impact on the detection of Omicron BA.1 and BA.2 lineage-defining mutations. Microb. Genom. 2023, 9, mgen000991. [Google Scholar] [CrossRef]
- Schnaubelt, A.T.; Brett-Major, D.M.; Williamson, J.; Barcal, B.; Carstens, J.; Peer, A.; Wiley, M.; Broadhurst, M.J. SARS-CoV-2 genomic surveillance using self-collected saliva specimens during occupational testing programs. Front. Public Health 2025, 13, 1360862. [Google Scholar] [CrossRef]
- Gangavarapu, K.; Latif, A.A.; Mullen, J.L.; Alkuzweny, M.; Hufbauer, E.; Tsueng, G.; Haag, E.; Zeller, M.; Aceves, C.M.; Zaiets, K.; et al. Outbreak.info genomic reports: Scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat. Methods 2023, 20, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.; Meurer, M.; Ovchinnikova, S.; Burk, R.; Denzler, A.; Herbst, K.; Papaioannou, I.A.; Duan, Y.; Jacobs, M.L.; Witte, V.; et al. Scalable RT-LAMP-based SARS-CoV-2 testing for infection surveillance with applications in pandemic preparedness. EMBO Rep. 2023, 24, e57162. [Google Scholar] [CrossRef] [PubMed]
- Carbo, E.C.; Mourik, K.; Boers, S.A.; Munnink, B.O.; Nieuwenhuijse, D.; Jonges, M.; Welkers, M.R.A.; Matamoros, S.; van Harinxma Thoe Slooten, J.; Kraakman, M.E.M.; et al. A comparison of five Illumina, Ion Torrent, and nanopore sequencing technology-based approaches for whole genome sequencing of SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 701–713. [Google Scholar] [CrossRef]
- Mangrum, D.; Niekamp, P. JUE Insight: College student travel contributed to local COVID-19 spread. J. Urban Econ. 2022, 127, 103311. [Google Scholar] [CrossRef]
- Fey, J.M.H.; Bikker, F.J.; Hesse, D. Saliva Collection Methods Among Children and Adolescents: A Scoping Review. Mol. Diagn. Ther. 2024, 28, 15–26. [Google Scholar] [CrossRef]





| Assay | Virus Particles/mL Saliva | Positive/ Total | Average Ct Value (St. dev.) | |||
|---|---|---|---|---|---|---|
| RNAse P | ORF1ab | N Gene | S Gene | |||
| Limit of detection (LOD) | 100,000,000 | 3/3 | 21.81 (0.1) | 18.31 (0.16) | 18.84 (0.17) | 18.36 (0.12) |
| 50,000,000 | 3/3 | 21.76 (0.1) | 19.46 (0.17) | 19.88 (0.06) | 19.44 (0.12) | |
| 25,000,000 | 3/3 | 21.7 (0.22) | 20.45 (0.22) | 20.75 (0.06) | 20.34 (0.13) | |
| 12,500,000 | 3/3 | 21.71 (0.19) | 21.4 (0.2) | 21.67 (0.18) | 21.29 (0.09) | |
| 6,250,000 | 3/3 | 21.72 (0.19) | 22.14 (0.35) | 22.55 (0.12) | 22.01 (0.35) | |
| 3,125,000 | 3/3 | 21.61 (0.13) | 23.11 (0.16) | 23.56 (0.19) | 23.13 (0.21) | |
| 1,562,500 | 3/3 | 21.65 (0.04) | 24.16 (0.2) | 24.46 (0.08) | 24.15 (0.18) | |
| 781,250 | 3/3 | 21.63 (0.2) | 25.28 (0.36) | 25.42 (0.19) | 25.3 (0.27) | |
| 390,625 | 3/3 | 21.68 (0.12) | 25.83 (0.2) | 26.39 (0.1) | 25.89 (0.18) | |
| 195,313 | 3/3 | 21.67 (0.11) | 27.04 (0.11) | 27.48 (0.1) | 27.25 (0.07) | |
| 97,656 | 3/3 | 21.53 (0.19) | 27.59 (0.27) | 28.38 (0.16) | 27.84 (0.48) | |
| 48,828 | 3/3 | 21.53 (0.1) | 28.35 (0.57) | 29.93 (0.81) | 29.76 (0.92) | |
| 24,414 | 2/3 | 21.49 (0.25) | 30.9 (2.39) | 31.99 (0.82) | 31.3 (0.77) | |
| 12,207 | 3/3 | 21.5 (0.39) | 31.68 (0.48) | 37.3 (0.82) | 35.49 (2.09) | |
| 6103 | 1/3 | 21.62 (0.04) | 35.15 | - | 36.65 | |
| 3052 | 0/3 | 21.78 (0.21) | - | - | - | |
| Confirmation | 12,500 (1× LOD) | 24/24 | 22.89 (0.22) | 30.36 (0.61) | 30.78 (0.49) | 30.54 (0.75) |
| 25,000 (2× LOD) | 24/24 | 22.71 (0.26) | 29.35 (0.54) | 29.83 (0.55) | 29.38 (0.73) | |
| 50,000 (4× LOD) | 24/24 | 22.68 (0.36) | 28.03 (1.3) | 28.5 (1.36) | 28.08 (1.43) | |
| 100,000 (8× LOD) | 24/24 | 22.48 (0.7) | 26.91 (1.49) | 27.65 (0.71) | 26.8 (2.17) | |
| 200,000 (16× LOD) | 24/24 | 22.85 (0.19) | 26.25 (0.51) | 26.89 (0.24) | 26.08 (0.54) | |
| 400,000 (32× LOD) | 24/24 | 22.78 (0.29) | 25.14 (0.92) | 26.01 (0.38) | 25.03 (0.88) | |
| NPS | |||
|---|---|---|---|
| Positive | Negative | ||
| Saliva | Positive | 19 | 1 |
| Negative | 1 | 127 | |
| Total | 20 | 128 | |
| No. | % | |
|---|---|---|
| Total tests | 1,434,873 | |
| Negative tests | 1,329,621 | 92.7% |
| Positive tests | 94,330 | 6.6% |
| NGS sequenced | 69,595 | 73.8% 1 |
| Deposited into GISAID | 54,040 | 77.6% 2 |
| Invalid tests | 10,922 | 0.8% |
| Characteristics | No. | (%) |
|---|---|---|
| Total unique participants | 366,681 | |
| Sex | ||
| Male | 186,090 | (50.7) |
| Female | 176,649 | (48.2) |
| Unknown/Invalid or no answer | 3942 | (1.1) |
| Race | ||
| White | 202,398 | (55.2) |
| Black or African American | 20,742 | (5.7) |
| Asian | 16,355 | (4.5) |
| American Indian or Alaska Native | 13,428 | (3.7) |
| Native Hawaiian or other Pacific Islander | 1435 | (0.4) |
| Other | 34,149 | (9.3) |
| Unknown/Declined/Invalid or no answer | 77,957 | (21.3) |
| Ethnicity | ||
| Not Hispanic or Latino | 225,704 | (61.6) |
| Hispanic or Latino | 80,244 | (21.9) |
| Unknown/Declined/Invalid or no answer | 60,733 | (16.6) |
| Age at first test | ||
| 0–17 | 33,346 | (9.1) |
| 18–21 | 77,053 | (21) |
| 22–29 | 74,638 | (20.4) |
| 30–39 | 64,335 | (17.5) |
| 40–49 | 45,621 | (12.4) |
| 50–59 | 36,209 | (9.9) |
| 60+ | 34,486 | (9.4) |
| Invalid or no answer | 993 | (0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland, S.C.; ABCTL Diagnostic Testing and Sequencing Teams; Shoemaker, I.; Rosov, T.; Compton, C.C.; LaBaer, J.; Lim, E.S.; Murugan, V. Large-Scale Saliva-Based Clinical Surveillance Enables Real Time SARS-CoV-2 Outbreak Detection and Genomic Tracking (Arizona, 2020–2023). Diagnostics 2025, 15, 2663. https://doi.org/10.3390/diagnostics15202663
Holland SC, ABCTL Diagnostic Testing and Sequencing Teams, Shoemaker I, Rosov T, Compton CC, LaBaer J, Lim ES, Murugan V. Large-Scale Saliva-Based Clinical Surveillance Enables Real Time SARS-CoV-2 Outbreak Detection and Genomic Tracking (Arizona, 2020–2023). Diagnostics. 2025; 15(20):2663. https://doi.org/10.3390/diagnostics15202663
Chicago/Turabian StyleHolland, Steven C., ABCTL Diagnostic Testing and Sequencing Teams, Ian Shoemaker, Theresa Rosov, Carolyn C. Compton, Joshua LaBaer, Efrem S. Lim, and Vel Murugan. 2025. "Large-Scale Saliva-Based Clinical Surveillance Enables Real Time SARS-CoV-2 Outbreak Detection and Genomic Tracking (Arizona, 2020–2023)" Diagnostics 15, no. 20: 2663. https://doi.org/10.3390/diagnostics15202663
APA StyleHolland, S. C., ABCTL Diagnostic Testing and Sequencing Teams, Shoemaker, I., Rosov, T., Compton, C. C., LaBaer, J., Lim, E. S., & Murugan, V. (2025). Large-Scale Saliva-Based Clinical Surveillance Enables Real Time SARS-CoV-2 Outbreak Detection and Genomic Tracking (Arizona, 2020–2023). Diagnostics, 15(20), 2663. https://doi.org/10.3390/diagnostics15202663

