Basophil Activation Test in IgE-Mediated Wheat Allergy: Diagnostic and Clinical Applications—A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Clinical Phenotypes and Immunological Basis of Wheat Allergy
4. Diagnosis of IgE-Mediated Wheat Allergy
5. Basophil Activation Test Methodology
6. Clinical Applications of the BAT in Wheat Allergy
6.1. Diagnostic Utility of BAT in Wheat Allergy
6.2. Component-Resolved Sensitization Profiles Revealed by the BAT
6.3. Predictive Value of BAT Parameters for Reaction Severity
6.4. Emerging Wheat Allergens and Novel BAT Stimuli
6.5. BAT as a Biomarker for Biologic and Immunotherapy Monitoring
6.6. Guiding Dietary Reintroduction with BAT Suppression Thresholds
7. Limitations
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, W.; Wai, C.Y.Y.; Sit, J.K.C.; Cheng, N.S.; Leung, C.W.M.; Leung, T.F. Routinely Used and Emerging Diagnostic and Immunotherapeutic Approaches for Wheat Allergy. Biomedicines 2024, 12, 1549. [Google Scholar] [CrossRef] [PubMed]
- Gabler, A.M.; Gebhard, J.; Norwig, M.-C.; Eberlein, B.; Biedermann, T.; Brockow, K.; Scherf, K.A. Basophil Activation to Gluten and Non-Gluten Proteins in Wheat-Dependent Exercise-Induced Anaphylaxis. Front. Allergy 2022, 3, 822554. [Google Scholar] [CrossRef]
- Matsuo, H.; Yokooji, T.; Taogoshi, T. Common food allergens and their IgE-binding epitopes. Allergol. Int. 2015, 64, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Chinuki, Y.; Morita, E. Wheat-Dependent Exercise-Induced Anaphylaxis Sensitized with Hydrolyzed Wheat Protein in Soap. Allergol. Int. 2012, 61, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.A.; Agache, I.; Angier, E.; Arasi, S.; Ballmer-Weber, B.; Beyer, K.; Bird, J.A.; Chinthrajah, R.S.; Ebisawa, M.; Fernandez-Rivas, M.; et al. AAAAI–EAACI PRACTALL: Standardizing oral food challenges—2024 Update. Pediatr. Allergy Immunol. 2024, 35, e14276. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.F.; Riggioni, C.; Agache, I.; Akdis, C.A.; Akdis, M.; Alvarez-Perea, A.; Alvaro-Lozano, M.; Ballmer-Weber, B.; Barni, S.; Beyer, K.; et al. EAACI guidelines on the diagnosis of IgE-mediated food allergy. Allergy 2023, 78, 3057–3076. [Google Scholar] [CrossRef]
- Jutel, M.; Agache, I.; Zemelka-Wiacek, M.; Akdis, M.; Chivato, T.; Del Giacco, S.; Gajdanowicz, P.; Eguiluz Gracia, I.; Klimek, L.; Lauerma, A.; et al. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy 2023, 78, 2851–2874. [Google Scholar] [CrossRef]
- Golden, D.B.K.; Wang, J.; Waserman, S.; Akin, C.; Campbell, R.L.; Ellis, A.K.; Greenhawt, M.; Lang, D.M.; Ledford, D.K.; Lieberman, J.; et al. Anaphylaxis: A 2023 practice parameter update. Ann. Allergy Asthma Immunol. 2024, 132, 124–176. [Google Scholar] [CrossRef]
- Christensen, J.; Eller, E.; Mortz, C.G.; Bindslev-Jensen, C. Patterns of suspected wheat-related allergy: A retrospective single-centre case note review in 156 patients. Clin. Transl. Allergy 2014, 4, 39. [Google Scholar] [CrossRef]
- Srisuwatchari, W.; Vichyanond, P.; Jirapongsananuruk, O.; Visitsunthorn, N.; Pacharn, P. Characterization of children with IgE-mediated wheat allergy and risk factors that predict wheat anaphylaxis. Asian Pac. J. Allergy Immunol. 2022, 40, 263–268. [Google Scholar] [CrossRef]
- Kubota, S.; Aoki, Y.; Sakai, T.; Kitamura, K.; Matsui, T.; Takasato, Y.; Sugiura, S.; Nakamura, M.; Matsunaga, K.; Ito, K.; et al. The clinical cross-reactivity and immunological cross-antigenicity of wheat and barley. Allergol. Int. 2022, 71, 505–511. [Google Scholar] [CrossRef]
- Srisuwatchari, W.; Kanchanapoomi, K.; Pacharn, P. Molecular Diagnosis to IgE-mediated Wheat Allergy and Wheat-Dependent Exercise-Induced Anaphylaxis. Clin. Rev. Allergy Immunol. 2025, 68, 47. [Google Scholar] [CrossRef]
- Dramburg, S.; Hilger, C.; Santos, A.F.; de las Vecillas, L.; Aalberse, R.C.; Acevedo, N.; Aglas, L.; Altmann, F.; Arruda, K.L.; Asero, R.; et al. EAACI Molecular Allergology User’s Guide 2.0. Pediatr. Allergy Immunol. 2023, 34 (Suppl. 28), e13854. [Google Scholar] [CrossRef]
- Preda, M.; Popescu, F.D.; Vassilopoulou, E.; Smolinska, S. Allergenic Biomarkers in the Molecular Diagnosis of IgE-Mediated Wheat Allergy. Int. J. Mol. Sci. 2024, 25, 8210. [Google Scholar] [CrossRef] [PubMed]
- Skypala, I.J.; Hunter, H.; Krishna, M.T.; Rey-Garcia, H.; Till, S.J.; du Toit, G.; Angier, E.; Baker, S.; Stoenchev, K.V.; Luyt, D.K.; et al. BSACI guideline for the diagnosis and management of pollen food syndrome in the UK. Clin. Exp. Allergy 2022, 52, 1018–1034. [Google Scholar] [CrossRef] [PubMed]
- Albert, E.; Walsemann, T.; Behrends, J.; Jappe, U. Lipid transfer protein syndrome in a Northern European patient: An unusual case report. Front. Med. 2023, 10, 1049477. [Google Scholar] [CrossRef]
- Armentia, A.; Díaz-Perales, A.; Castrodeza, J.; Dueñas-Laita, A.; Palacin, A.; Fernández, S. Why can patients with baker’s asthma tolerate wheat flour ingestion? Is wheat pollen allergy relevant? Allergol. Immunopathol. 2009, 37, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Ansotegui, I.J.; Melioli, G.; Canonica, G.W.; Gómez, R.M.; Jensen-Jarolim, E.; Ebisawa, M.; Luengo, O.; Caraballo, L.; Passalacqua, G.; Poulsen, L.K.; et al. A WAO—ARIA—GA2LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ. J. 2020, 13, 100091. [Google Scholar] [CrossRef]
- Pesonen, M.; Koskela, K.; Aalto-Korte, K. Contact urticaria and protein contact dermatitis in the Finnish Register of Occupational Diseases in a period of 12 years. Contact Dermat. 2020, 83, 1–7. [Google Scholar] [CrossRef]
- Delaunay, J.; Hacard, F.; Denery-Papini, S.; Garnier, L.; Bérard, F.; Nicolas, J.-F.; Nosbaum, A.; Rouzaire, P.; Vitte, J.; Vial, T.; et al. Occupational immediate contact allergy to hydrolyzed wheat protein after cosmetic exposure. Contact Dermat. 2018, 78, 291–292. [Google Scholar] [CrossRef]
- Denery-Papini, S.; Bodinier, M.; Larré, C.; Brossard, C.; Pineau, F.; Triballeau, S.; Pietri, M.; Battais, F.; Mothes, T.; Paty, E.; et al. Allergy to deamidated gluten in patients tolerant to wheat: Specific epitopes linked to deamidation. Allergy 2012, 67, 1023–1032. [Google Scholar] [CrossRef]
- Faihs, V.; Kugler, C.; Schmalhofer, V.; Scherf, K.A.; Lexhaller, B.; Mortz, C.G.; Bindslev-Jensen, C.; Biedermann, T.; Brockow, K. Wheat-dependent exercise-induced anaphylaxis: Subtypes, diagnosis, and management. JDDG—J. Ger. Soc. Dermatol. 2023, 21, 1131–1135. [Google Scholar] [CrossRef]
- Fischer, J.; Schuck, E.; Biedermann, T. Wheat-dependent exercise-induced anaphylaxis exclusively during menstruation. Allergy Eur. J. Allergy Clin. Immunol. 2010, 65, 1347–1348. [Google Scholar] [CrossRef]
- Christensen, M.J.; Eller, E.; Mortz, C.G.; Brockow, K.; Bindslev-Jensen, C. Wheat-Dependent Cofactor-Augmented Anaphylaxis: A Prospective Study of Exercise, Aspirin, and Alcohol Efficacy as Cofactors. J. Allergy Clin. Immunol. Pract. 2019, 7, 114–121. [Google Scholar] [CrossRef]
- Le, T.A.; Al Kindi, M.; Tan, J.-A.; Smith, A.; Heddle, R.J.; Kette, F.E.; Hissaria, P.; Smith, W.B. The clinical spectrum of omega-5-gliadin allergy. Intern. Med. J. 2016, 46, 710–716. [Google Scholar] [CrossRef]
- Morita, E.; Matsuo, H.; Chinuki, Y.; Takahashi, H.; Dahlström, J.; Tanaka, A. Food-Dependent Exercise-Induced Anaphylaxis—Importance of Omega-5 Gliadin and HMW-Glutenin as Causative Antigens for Wheat-Dependent Exercise-Induced Anaphylaxis—. Allergol. Int. 2009, 58, 493–498. [Google Scholar] [CrossRef]
- Pastorello, E.A.; Farioli, L.; Stafylaraki, C.; Scibilia, J.; Mirone, C.; Pravettoni, V.; Ottolenghi, A.I.; Conio, S.; Mascheri, A.; Losappio, L.; et al. Wheat-dependent exercise-induced anaphylaxis caused by a lipid transfer protein and not by ω-5 gliadin. Ann. Allergy Asthma Immunol. 2014, 112, 386. [Google Scholar] [CrossRef] [PubMed]
- Ogino, R.; Chinuki, Y.; Yokooji, T.; Takizawa, D.; Matsuo, H.; Morita, E. Identification of peroxidase-1 and beta-glucosidase as cross-reactive wheat allergens in grass pollen-related wheat allergy. Allergol. Int. 2021, 70, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Rongfei, Z.; Wenjing, L.; Nan, H.; Guanghui, L. Wheat—Dependent Exercise-Induced Anaphylaxis Occurred With a Delayed Onset of 10 to 24 hours After Wheat Ingestion: A Case Report. Allergy Asthma. Immunol. Res. 2014, 6, 370. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, K.; Chinuki, Y.; Hamada, Y.; Fukutomi, Y.; Sugiyama, A.; Kishikawa, R.; Fukunaga, A.; Oda, Y.; Ugajin, T.; Yokozeki, H.; et al. Genome-wide association study reveals an association between the HLA-DPB1∗02:01:02 allele and wheat-dependent exercise-induced anaphylaxis. Am. J. Hum. Genet. 2021, 108, 1540–1548. [Google Scholar] [CrossRef]
- Yagami, A.; Aihara, M.; Ikezawa, Z.; Hide, M.; Kishikawa, R.; Morita, E.; Chinuki, Y.; Fukutomi, Y.; Urisu, A.; Fukushima, A.; et al. Outbreak of immediate-type hydrolyzed wheat protein allergy due to a facial soap in Japan. J. Allergy Clin. Immunol. 2017, 140, 879–881.e7. [Google Scholar] [CrossRef]
- Nakamura, M.; Yagami, A.; Hara, K.; Sano-Nagai, A.; Kobayashi, T.; Matsunaga, K. Evaluation of the cross-reactivity of antigens in Glupearl 19S and other hydrolyzed wheat proteins in cosmetics. Contact Dermat. 2016, 74, 346–352. [Google Scholar] [CrossRef]
- Chinuki, Y.; Kaneko, S.; Dekio, I.; Takahashi, H.; Tokuda, R.; Nagao, M.; Fujisawa, T.; Morita, E. CD203c expression-based basophil activation test for diagnosis of wheat-dependent exercise-induced anaphylaxis. J. Allergy Clin. Immunol. 2012, 129, 1404–1406. [Google Scholar] [CrossRef]
- Brockow, K.; Reidenbach, K.; Kugler, C.; Biedermann, T. Wheat-dependent exercise-induced anaphylaxis caused by percutaneous sensitisation to hydrolyzed wheat protein in cosmetics. Contact Dermat. 2022, 87, 296–297. [Google Scholar] [CrossRef]
- Furuta, T.; Tanaka, K.; Tagami, K.; Matsui, T.; Sugiura, S.; Kando, N.; Kanie, Y.; Naito, M.; Izumi, H.; Tanaka, A.; et al. Exercise-induced allergic reactions on desensitization to wheat after rush oral immunotherapy. Allergy 2020, 75, 1414–1422. [Google Scholar] [CrossRef]
- Constantin, C.; Huber, W.D.; Granditsch, G.; Weghofer, M.; Valenta, R. Different Profiles of Wheat Antigens Are Recognised by Patients Suffering from Coeliac Disease and IgE-Mediated Food Allergy. Int. Arch. Allergy Immunol. 2005, 138, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Mennini, M.; Fiocchi, A.; Trovato, C.M.; Ferrari, F.; Iorfida, D.; Cucchiara, S.; Montuori, M. Anaphylaxis after wheat ingestion in a patient with coeliac disease: Two kinds of reactions and the same culprit food. Eur. J. Gastroenterol. Hepatol. 2019, 31, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Brockow, K.; Kneissl, D.; Valentini, L.; Zelger, O.; Grosber, M.; Kugler, C.; Werich, M.; Darsow, U.; Matsuo, H.; Morita, E.; et al. Using a gluten oral food challenge protocol to improve diagnosis of wheat-dependent exercise-induced anaphylaxis. J. Allergy Clin. Immunol. 2015, 135, 977–984.e4. [Google Scholar] [CrossRef] [PubMed]
- Riggioni, C.; Ricci, C.; Moya, B.; Pascual, C.; Valenta, R. Systematic review and meta-analyses on the accuracy of diagnostic tests for IgE-mediated food allergy. Allergy 2024, 79, 324–352. [Google Scholar] [CrossRef]
- Hamada, Y.; Chinuki, Y.; Fukutomi, Y.; Nakatani, E.; Yagami, A.; Matsunaga, K.; Oda, Y.; Fukunaga, A.; Atsuko, A.; Hiragun, M.; et al. Long-term dynamics of omega-5 gliadin-specific IgE levels in patients with adult-onset wheat allergy. J. Allergy Clin. Immunol. Pract. 2020, 8, 1149–1151.e3. [Google Scholar] [CrossRef]
- Sampson, H.A. Utility of food-specific IgE concentrations in predicting symptomatic food allergy. J. Allergy Clin. Immunol. 2001, 107, 891–896. [Google Scholar] [CrossRef]
- Yanagida, N.; Sato, S.; Takahashi, K.; Nagakura, K.-I.; Asaumi, T.; Ogura, K.; Ebisawa, M. Increasing specific immunoglobulin E levels correlate with the risk of anaphylaxis during an oral food challenge. Pediatr. Allergy Immunol. 2018, 29, 417–424. [Google Scholar] [CrossRef]
- Rutrakool, N.; Piboonpocanun, S.; Wangthan, U.; Srisuwatchari, W.; Thongngarm, T.; Jirapongsananuruk, O.; Visitsunthorn, N.; Vichyanond, P.; Pacharn, P. Children with Wheat Anaphylaxis and with Low Wheat Specific IgE Have a Different IgE Immunoblot Pattern than Those with High Wheat Specific IgE. Asian Pac. J. Allergy Immunol. 2023, 41. [Google Scholar] [CrossRef]
- Czaja-Bulsa, G.; Bulsa, M. What Do We Know Now about IgE-Mediated Wheat Allergy in Children? Nutrients 2017, 9, 35. [Google Scholar] [CrossRef]
- Pourvali, A.; Arshi, S.; Nabavi, M.; Bemanian, M.; Shokri, S.; Khajoei, S.; Seif, F.; Fallahpour, M. Sustained unresponsiveness development in wheat oral immunotherapy: Predictive factors and flexible regimen in the maintenance phase. Eur. Ann. Allergy Clin. Immunol. 2023, 55, 174. [Google Scholar] [CrossRef]
- Palacin, A.; Bartra, J.; Muñoz, R.; Diaz-Perales, A.; Valero, A.; Salcedo, G. Anaphylaxis to wheat flour-derived foodstuffs and the lipid transfer protein syndrome: A potential role of wheat lipid transfer protein tri a 14. Int. Arch. Allergy Immunol. 2010, 152, 178–183. [Google Scholar] [CrossRef]
- Cardona, V.; Luengo, O.; Garriga, T.; Labrador-Horrillo, M.; Sala-Cunill, A.; Izquierdo, A.; Soto, L.; Guilarte, M. Co-Factor-Enhanced Food Allergy. Allergy 2012, 67, 1316–1318. [Google Scholar] [CrossRef]
- Srisuwatchari, W.; Suárez-Fariñas, M.; Delgado, A.D.; Grishina, G.; Suprun, M.; Lee, A.S.E.; Vichyanond, P.; Pacharn, P.; Sampson, H.A. Utility of epitope-specific IgE, IgG4, and IgG1 antibodies for the diagnosis of wheat allergy. J. Allergy Clin. Immunol. 2024, 154, 1249–1259. [Google Scholar] [CrossRef]
- Srisuwatchari, W.; Sompornrattanaphan, M.; Jirapongsananuruk, O.; Visitsunthorn, N.; Pacharn, P. Exercise-food challenge test in patients with wheat-dependent exercise-induced anaphylaxis. Asian Pac. J. Allergy Immunol. 2024, 42, 43–49. [Google Scholar] [CrossRef]
- Muraro, A.; Worm, M.; Alviani, C.; Cardona, V.; DunnGalvin, A.; Garvey, L.H.; Grimshaw, K.E.C.; Halken, S.; Lack, G.; Makowska, J.; et al. EAACI guidelines: Anaphylaxis (2021 update). Allergy 2022, 77, 19. [Google Scholar] [CrossRef]
- Santos, A.F.; Lack, G. Basophil activation test: Food challenge in a test tube or specialist research tool? Clin. Transl. Allergy 2016, 6, 10. [Google Scholar] [CrossRef]
- Pascal, M.; Edelman, S.M.; Nopp, A.; Möbs, C.; Geilenkeuser, W.J.; Knol, E.F.; Ebo, D.G.; Mertens, C.; Shamji, M.H.; Santos, A.F.; et al. EAACI task force report: A consensus protocol for the basophil activation test for collaboration and external quality assurance. Allergy 2023, 79, 290–293. [Google Scholar] [CrossRef]
- Wong, D.S.H.; Santos, A.F. The future of food allergy diagnosis. Front. Allergy 2024, 5, 1456585. [Google Scholar] [CrossRef]
- Foong, R.X.; Santos, A.F. Biomarkers of diagnosis and resolution of food allergy. Pediatr. Allergy Immunol. 2021, 32, 223–233. [Google Scholar] [CrossRef]
- Kim, T.; Yu, J.; Li, H.; Scarupa, M.; Wasserman, R.L.; Economides, A.; White, M.; Ward, C.; Shah, A.; Jones, D.; et al. Validation of inducible basophil biomarkers: Time, temperature and transportation. Cytom. B Clin. Cytom. 2021, 100, 632–644. [Google Scholar] [CrossRef]
- Mukai, K.; Gaudenzio, N.; Gupta, S.; Vivanco, N.; Bendall, S.C.; Maecker, H.T.; Chinthrajah, R.S.; Tsai, M.; Nadeau, K.C.; Galli, S.J. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. J. Allergy Clin. Immunol. 2017, 139, 889–899.e11. [Google Scholar] [CrossRef]
- Sonder, S.U.; Plassmeyer, M.; Schroeder, N.; Peyton, S.; Paige, M.; Girgis, M.; Safi, H.; Alpan, O. Basophil activation test; User’s manual. J. Immunol. Methods 2025, 537, 113815. [Google Scholar] [CrossRef]
- Mayorga, C.; Çelik, G.E.; Pascal, M.; Hoffmann, H.J.; Eberlein, B.; Torres, M.J.; Brockow, K.; Garvey, L.H.; Barbaud, A.; Madrigal-Burgaleta, R.; et al. Flow-based basophil activation test in immediate drug hypersensitivity. An EAACI task force position paper. Allergy 2024, 79, 580–600. [Google Scholar] [CrossRef]
- Nucera, E.; Inchingolo, R.; Nicotra, R.; Ferraironi, M.; Ricci, A.G.; Parrinello, G.; La Sorda, M.; Sanguinetti, M.; Gasbarrini, A.; Rizzi, A. Influence of Antihistamines on Basophil Activation Test in Food Allergy to Milk and Egg. Diagnostics 2020, 11, 44. [Google Scholar] [CrossRef]
- Iqbal, K.; Bhargava, K.; Skov, P.S.; Falkencrone, S.; Grattan, C.E. A positive serum basophil histamine release assay is a marker for ciclosporin-responsiveness in patients with chronic spontaneous urticaria. Clin. Transl. Allergy 2012, 2, 19. [Google Scholar] [CrossRef]
- Gabler, A.M.; Gebhard, J.; Eberlein, B.; Biedermann, T.; Scherf, K.A.; Brockow, K. The basophil activation test differentiates between patients with wheat-dependent exercise-induced anaphylaxis and control subjects using gluten and isolated gluten protein types. Clin. Transl. Allergy 2021, 11, e12050. [Google Scholar] [CrossRef] [PubMed]
- Gabler, A.M.; Scherf, K.A. Comparative Characterization of Gluten and Hydrolyzed Wheat Proteins. Biomolecules 2020, 10, 1227. [Google Scholar] [CrossRef]
- Scherf, K.A.; Brockow, K.; Biedermann, T.; Koehler, P.; Wieser, H. Wheat-dependent exercise-induced anaphylaxis. Clin. Exp. Allergy 2016, 46, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Ebo, D.G.; Bridts, C.H. Flow-Assisted Analysis of Basophils: A Valuable Instrument for In Vitro Allergy Diagnosis. Allergy Front. Diagn. Health Econ. 2009, 4, 201–221. [Google Scholar] [CrossRef]
- Di Giulia, G.; De Filippo, P.; Liguori, A.; Sferrazza, P.; Bianchi, D.; D’Amato, F.; D’Auria, S.; Caruso, F.; Leone, P.; Arena, M.; et al. Applications of Basophil Activation Test in Paediatric Allergic Diseases. World Allergy Organ. J. 2024, 17, 100998. [Google Scholar] [CrossRef]
- Ebo, D.G.; Beyens, M.; Heremans, K.; van der Poorten, M.-L.M.; Van Gasse, A.L.; Mertens, C.; Van Houdt, M.; Sabato, V.; Elst, J. Recent Knowledge and Insights on the Mechanisms of Immediate Hypersensitivity and Anaphylaxis: IgE/FcεRI- and Non-IgE/FcεRI-Dependent Anaphylaxis. Curr. Pharm. Des. 2022, 29, 178–184. [Google Scholar] [CrossRef]
- Kubo, M. Mast cells and basophils in allergic inflammation. Curr. Opin. Immunol. 2018, 54, 74–79. [Google Scholar] [CrossRef]
- Sonder, S.U.; Plassmeyer, M.; Loizou, D.; Alpan, O. Towards standardizing basophil identification by flow cytometry. Front. Allergy 2023, 4, 1133378. [Google Scholar] [CrossRef]
- Santos, A.F.; Bécares, N.; Stephens, A.; Turcanu, V.; Lack, G. The expression of CD123 can decrease with basophil activation: Implications for the gating strategy of the basophil activation test. Clin. Transl. Allergy 2016, 6, 11. [Google Scholar] [CrossRef]
- Chirumbolo, S. Commentary: The expression of CD123 can decrease with basophil activation: Implications for the gating strategy of the ba-sophil activation test. Front. Immunol. 2016, 7, 211113. [Google Scholar] [CrossRef]
- Macglashan, D.W. Expression of CD203c and CD63 in Human Basophils: Relationship to Differential Regulation of Piecemeal and Anaphylactic Degranulation Processes. Clin. Exp. Allergy 2010, 40, 1365–1377. [Google Scholar] [CrossRef]
- Sturm, E.M.; Kranzelbinder, B.; Heinemann, A.; Groselj-Strele, A.; Aberer, W.; Sturm, G.J. CD203c-Based Basophil Activation Test in Allergy Diagnosis: Characteristics and Differences to CD63 Upregulation. Cytom. B Clin. Cytom. 2010, 78, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Hemmings, O.; Kwok, M.; Mckendry, R.; Santos, A.F. Basophil Activation Test: Old and New Applications in Allergy. Curr. Allergy Asthma Rep. 2018, 18, 77. [Google Scholar] [CrossRef]
- Krawiec, M.; Radulovic, S.; Foong, R.; Marques-Mejias, A.; Bartha, I.; Kwok, M.; Jama, Z.; Harrison, F.; Ricci, C.; Lack, G.; et al. Diagnostic utility of allergy tests to predict baked egg and lightly cooked egg allergies compared to double-blind placebo-controlled food challenges. Allergy 2023, 78, 2510–2523. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.S.; Bloom, K.A.; Nowak-Wȩgrzyn, A.H.; Shreffler, W.G.; Masilamani, M.; Sampson, H.A. Basophil reactivity, wheal size, and immunoglobulin levels distinguish degrees of cow’s milk tolerance. J. Allergy Clin. Immunol. 2013, 131, 180–186.e3. [Google Scholar] [CrossRef]
- Shamji, M.H.; Layhadi, J.A.; Scadding, G.W.; Cheung, D.K.; Calderon, M.A.; Turka, L.A.; Phippard, D.; Durham, S. R Basophil expression of diamine oxidase: A novel biomarker of allergen immunotherapy response. J. Allergy Clin. Immunol. 2015, 135, 913–921.e9. [Google Scholar] [CrossRef]
- Hoffmann, H.J.; Santos, A.F.; Mayorga, C.; Nopp, A.; Eberlein, B.; Ferrer, M.; Rouzaire, P.; Ebo, D.G.; Sabato, V.; Sanz, M.L.; et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy: Eur. J. Allergy Clin. Immunol. 2015, 70, 1393–1405. [Google Scholar] [CrossRef]
- Osborne, N.J.; Koplin, J.J.; Martin, P.E.; Gurrin, L.C.; Lowe, A.J.; Matheson, M.C.; Ponsonby, A.-L.; Wake, M.; Tang, M.L.; Dharmage, S.C. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J. Allergy Clin. Immunol. 2011, 127, 668–676.e2. [Google Scholar] [CrossRef]
- Santos, A.F.; Shreffler, W.G.; Santos, C.F.A. Road map for the clinical application of the basophil activation test in food allergy. Clin. Exp. Allergy 2017, 47, 1115–1124. [Google Scholar] [CrossRef]
- Suarez-Farinas, M.; Srisuwatchari, W.; Andrew, G.D.; Grishina; Vichyanond, P.; Pacharn, P.; Sampson, H. Epitope-specific IgE, IgG4, and IgG1 antibodies for clinical phenotyping of IgE-mediated wheat allergy. J. Allergy Clin. Immunol. 2024, 153, AB377. [Google Scholar] [CrossRef]
- Ehrlich, R.; Prescott, R. Baker’s asthma with a predominant clinical response to rye flour. Am. J. Ind. Med. 2005, 48, 153–155. [Google Scholar] [CrossRef]
- Tokuda, R.; Chinuki, Y.; Takahashi, H.; Matsuo, H.; Morita, E.; Fujisawa, T. Antigen-Induced Expression of CD203c on Basophils Predicts IgE-mediated Wheat Allergy. Allergol. Int. 2009, 58, 193–199. [Google Scholar] [CrossRef]
- Nilsson, N.; Nilsson, C.; Hedlin, G.; Johansson, S.G.O.; Borres, M.P.; Nopp, A. Combining Analyses of Basophil Allergen Threshold Sensitivity, CD-sens, and IgE Antibodies to Hydrolyzed Wheat, ω-5 gliadin and Timothy Grass Enhances the Prediction of Wheat Challenge Outcome. Int. Arch. Allergy Immunol. 2013, 162, 50–57. [Google Scholar] [CrossRef]
- Zhang, Q. Diagnostic value of basophil activation test on wheat-dependent exercise-induced anaphylaxis(WDEIA). J. Allergy Clin. Immunol. 2018, 141, AB153. [Google Scholar] [CrossRef]
- Chinuki, Y.; Kohno, K.; Hide, M.; Hanaoka, K.; Okabe, T.; Fukunaga, A.; Oda, Y.; Adachi, A.; Ugajin, T.; Yokozeki, H.; et al. Efficacy and safety of omalizumab in adult patients with wheat-dependent exercise-induced anaphylaxis: Reduction of in vitro basophil activation and allergic reaction to wheat. Allergol. Int. 2023, 72, 444–450. [Google Scholar] [CrossRef]
- Aoki, Y.; Yagami, A.; Sakai, T.; Ohno, S.; Sato, N.; Nakamura, M.; Futamura, K.; Suzuki, K.; Horiguchi, T.; Nakata, S.; et al. Alpha/Beta Gliadin MM1 Is a Novel Antigen for Wheat-Dependent Exercise-Induced Anaphylaxis. Int. Arch. Allergy Immunol. 2023, 184, 1022–1035. [Google Scholar] [CrossRef]
- Faihs, V.; Schmalhofer, V.; Kugler, C.; Bent, R.K.; Scherf, K.A.; Lexhaller, B.; Bindslev-Jensen, C.; Mortz, C.G.; Biedermann, T.; Brockow, K.; et al. Detection of Sensitization Profiles with Cellular In Vitro Tests in Wheat Allergy Dependent on Augmentation Factors (WALDA). Int. J. Mol. Sci. 2024, 25, 3574. [Google Scholar] [CrossRef]
- Vieths, S.; Scheurer, S.; Ballmer-Weber, B. Current understanding of cross-reactivity of food allergens and pollen. Ann. N. Y. Acad. Sci. 2002, 964, 47–68. [Google Scholar] [CrossRef] [PubMed]
- Aalberse, R.C.; Crameri, R. IgE-binding epitopes: A reappraisal. Allergy 2011, 66, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Palosuo, K.; Alenius, H.; Varjonen, E.; Kalkkinen, N.; Reunala, T. Rye gamma-70 and gamma-35 secalins and barley gamma-3 hordein cross-react with omega-5 gliadin, a major allergen in wheat-dependent, exercise-induced anaphylaxis. Clin. Exp. Allergy 2001, 31, 466–473. [Google Scholar] [CrossRef]
- Morita, E.; Matsuo, H.; Kohno, K.; Yokooji, T.; Yano, H.; Endo, T. A Narrative Mini Review on Current Status of Hypoallergenic Wheat Development for IgE-Mediated Wheat Allergy, Wheat-Dependent Exercise-Induced Anaphylaxis. Foods 2023, 12, 954. [Google Scholar] [CrossRef] [PubMed]
- Yokooji, T.; Ogino, R.; Koga, Y.; Taogoshi, T.; Morita, E.; Matsuo, H. Evaluation of allergenicity of hypoallergenic wheat and its ability of oral tolerance induction to gluten proteins in a rat model of wheat allergy. J. Allergy Clin. Immunol. 2025, 155, AB135. [Google Scholar] [CrossRef]
- Rubio, A.; Vivinus-Nébot, M.; Bourrier, T.; Saggio, B.; Albertini, M.; Bernard, A. Benefit of the basophil activation test in deciding when to reintroduce cow’s milk in allergic children. Allergy 2011, 66, 92–100. [Google Scholar] [CrossRef]
- Santos, A.F.; Du Toit, G.; Douiri, A.; Radulovic, S.; Stephens, A.; Turcanu, V.; Lack, G. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J. Allergy Clin. Immunol. 2015, 135, 179–186. [Google Scholar] [CrossRef]
- Day, L.; Augustin, M.A.; Batey, I.L.; Wrigley, C.W. Wheat-gluten uses and industry needs. Trends Food Sci. Technol. 2006, 17, 82–90. [Google Scholar] [CrossRef]
- Yokooji, T.; Kurihara, S.; Murakami, T.; Chinuki, Y.; Takahashi, H.; Morita, E.; Harada, S.; Ishii, K.; Hiragun, M.; Hide, M.; et al. Characterization of causative allergens for wheat-dependent exercise-induced anaphylaxis sensitized with hydrolyzed wheat proteins in facial soap. Allergol. Int. 2013, 62, 435–445. [Google Scholar] [CrossRef]
- Macglashan, D.W.; Saini, S.S. Omalizumab increases the intrinsic sensitivity of human basophils to IgE-mediated stimulation. J. Allergy Clin. Immunol. 2013, 132, 906–911.e4. [Google Scholar] [CrossRef]
- MacGlashan, D.W.; Savage, J.H.; Wood, R.A.; Saini, S.S. Suppression of the basophil response to allergen during treatment with omalizumab is dependent on 2 competing factors. J. Allergy Clin. Immunol. 2012, 130, 1130–1135.e5. [Google Scholar] [CrossRef]
- Chinuki, Y.; Yagami, A.; Adachi, A.; Matsunaga, K.; Ugajin, T.; Yokozeki, H.; Hayashi, M.; Katayama, I.; Kohno, K.; Shiwaku, K.; et al. In vitro basophil activation is reduced by short-term omalizumab treatment in hydrolyzed wheat protein allergy. Allergol. Int. 2020, 69, 284–286. [Google Scholar] [CrossRef]
- MacGinnitie, A.J.; Rachid, R.; Gragg, H.; Little, S.; Lakin, P.; Cianferoni, A.; Kulis, M.; Kim, E.H.; Burks, A.W.; Sampson, H.A.; et al. Omalizumab facilitates rapid oral desensitization for peanut allergy. J. Allergy Clin. Immunol. 2017, 139, 873–881.e8. [Google Scholar] [CrossRef]
- Chinthrajah, R.S.; Purington, N.; Andorf, S.; Rosa, J.S.; Mukai, K.; Hamilton, R.; Smith, B.M.; Gupta, R.; Galli, S.J.; Desai, M.; et al. Development of a tool predicting severity of allergic reaction during peanut challenge. Ann. Allergy Asthma Immunol. 2018, 121, 69–76.e2. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, G.V.; Cochrane, S.; Onion, D.; Fairclough, L.C. The Role of Lipids in Allergic Sensitization: A Systematic Review. Front. Mol. Biosci. 2022, 9, 832330. [Google Scholar] [CrossRef] [PubMed]
- Jappe, U.; Vieths, S.; Scheurer, S.; Ballmer-Weber, B.K.; Kuehn, A.; Wicklein, D.; Posch, A.; Huber, H.; Lauer, I.; Pomés, A.; et al. Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy. Front. Immunol. 2019, 10, 122. [Google Scholar] [CrossRef] [PubMed]
Allergen (Tri a) | Protein Family/Type | Associated Phenotype(s) | Sensitization Route | Key Notes/ Diagnostic Relevance |
---|---|---|---|---|
Tri a 19 (ω-5 gliadin) | Prolamin | Classic WA, WDEIA, WALDA | Oral | Major marker for WDEIA; thermostable; key BAT; and sIgE target. |
Tri a 14 (nsLTP) | Non-specific lipid transfer protein | WDEIA (HWP-negative cases), Pollen-food syndrome | Cutaneous/Oral | Cross-reactivity with peach, grass pollen; relevant in Asia. |
Tri a 12 (Profilin) | Profilin | Pollen-food syndrome | Respiratory | Causes mild oral symptoms; cross-reactive with grass pollen. |
Tri a 27/Tri a 28 | α-Amylase/Trypsin inhibitors (ATI) | Baker’s asthma, WDEIA (minor role) | Inhalation/Oral | Occupational exposure; enhances innate immune response. |
Tri a 26 (HMW-GS) | Glutenin (high molecular weight) | WDEIA, FAw | Oral | Marker of severe phenotypes; thermostable. |
Tri a 36 (LMW-GS) | Glutenin (low molecular weight) | FAw, HWP contact urticaria | Oral/Cutaneous | Found in cosmetic-induced sensitization. |
Peroxidase-1 | Enzyme | GPWA | Respiratory/Oral | Homologous to grass pollen peroxidase; diagnostic confusion possible. |
Tri a 37 (β-glucosidase) | Enzyme | GPWA | Respiratory/Oral | Cross-reactivity with grass pollen β-glucosidase. |
Deamidated gluten | Modified gluten hydrolysate | HWP-WDEIA, contact urticaria | Cutaneous | Triggers reactions even in dietary wheat tolerance. |
ω-1,2 gliadin | Gliadin fraction | Cosmetic-related allergy | Cutaneous | Detected in HWP reactions; cross-reacts with deamidated peptides. |
Year | First Author | Study Type | Population | Highlights | Allergens Tested | Markers | Allergen Concentrations Used |
---|---|---|---|---|---|---|---|
2005 | Ehrlich R. et al. [81] | Case report: Occupational wheat allergy/Baker’s asthma | One adult male baker with asthma | Stronger reactivity to rye vs. wheat (37% vs. 17% CD63+ basophils); confirmed by bronchial challenge | Purified rye and wheat flour extracts | CD63 | Bühlmann extract |
2009 | Tokuda R et al. [82] | Pediatric BAT study | 32 wheat-allergic children vs. 27 tolerant controls | 85% sensitivity, 77% specificity; AUC 0.89; better than sIgE | PBS, EtOH, Alkali, purified native ω5G, recombinant ω5G | CD203c | 0.01–0.1–1–10 µg/mL |
2012 | Chinuki Y et al. [33] | Distinct WDEIA phenotypes | 10 WDEIA patients (5 CO-WDEIA, 5 HWP-WDEIA) | Differentiated CO-WDEIA vs. HWP-WDEIA | HWP, ω5G | CD203c | 0.0001–1 µg/mL |
2013 | Nilsson N et al. [83] | Pediatric BAT study | 24 wheat-allergic children undergoing oral challenge | Wheat CD-sens > 150 and wheat IgE > 20 kUA/L/ω-5 gliadin IgE > 0.1 kUA/L | Wheat extract, recombinant ω-5 gliadin, HWP, timothy grass | CD203c, CD63 | Serial dilutions used to derive CD-sens; |
2018 | Zhang Q [84] | Abstract (JACI) | Patients with WDEIA | Higher %CD63+ basophils in WDEIA vs. controls | Crude wheat extract | CD63 | Not specified |
2021 | Gabler AM et al. [61] | Component-specific BAT (GPT-BAT) | 12 challenge-confirmed WDEIA adults vs. 10 healthy controls | ω5G AUC 0.91; 100% sensitivity and HMW-glutenin: 70–100% specificity | ω5G, ⍵ 1,2-gliadins, ⍺- and Ɣ-gliadins, HMG-GS, LMW-GS, gluten | CCR3, CD63 | 0.08–4.0 mg/mL |
2022 | Gabler AM et al. [2] | Gluten vs. HWP in WDEIA | 13 WDEIA-patients vs. 13 exercise-tolerant controls | sHWP BAT 100% sens., 83% spec.; α-ATIs implicated | saline extracts of gluten, gluten with reduced content of ω5G, sHWP, eHWP | CCR3, CD63 | 2.10 mg/mL gluten, 2.05 mg/mL gluten with reduced content of ω5G, 3.96 mg/mL sHWP, 3 mg/mL eHWP |
2023 | Chinuki Y et al. [85] | Omalizumab treatment study | 20 WDEIA adults (omalizumab trial, no controls) | 82% Achieved BAT < 10% during treatment | HWP, PBS, EtOH, Alkali, purified ω5G | CD203c, IgE | HWP: 0.1/1 µg/mL, PBS: 1/10 µg/mL, EtOH: 1/10 µg/mL, Alkali: 1/10 µg/mL, purified ω5G: 0.1/1 µg/mL |
2023 | Aoki Y et al. [86] | Novel gliadin epitope (MM1) identification | 42 WDEIA patients, 8 non-WDEIA wheat-allergic adults, 20 healthy controls | MM1-activated basophils in all 14 tested WDEIA; none in non-allergic | r α/β gliadin MM1 | CD123+/HLA-DR−, CD203c | Not specified |
2024 | Faihs V et al. [87] | Sensitization profiling in WALDA | 13 WDEIA/WALDA adults vs. 11 healthy controls | BAT activated across all tested allergens; individualized profiles | gluten, HMW-GS, ATIs, afWB, extensive HWPs, slightly HWPs, rye gluten, and secalin | CD123+/HLA-DR−, CD203c | Wheat, rye, gluten, HMW-GS: 4000/2000/800 µg/mL, ATIs: 400/200/80/40 µg/mL, afWB:1:10/1:100, e&pHWP: 1:5/1:10/1:50, rye secalins: 800 µg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berghea, E.C.; Coman-Stanemir, M.; Papacocea, I.R. Basophil Activation Test in IgE-Mediated Wheat Allergy: Diagnostic and Clinical Applications—A Narrative Review. Diagnostics 2025, 15, 2659. https://doi.org/10.3390/diagnostics15202659
Berghea EC, Coman-Stanemir M, Papacocea IR. Basophil Activation Test in IgE-Mediated Wheat Allergy: Diagnostic and Clinical Applications—A Narrative Review. Diagnostics. 2025; 15(20):2659. https://doi.org/10.3390/diagnostics15202659
Chicago/Turabian StyleBerghea, Elena Camelia, Mădălina Coman-Stanemir, and Ioana Raluca Papacocea. 2025. "Basophil Activation Test in IgE-Mediated Wheat Allergy: Diagnostic and Clinical Applications—A Narrative Review" Diagnostics 15, no. 20: 2659. https://doi.org/10.3390/diagnostics15202659
APA StyleBerghea, E. C., Coman-Stanemir, M., & Papacocea, I. R. (2025). Basophil Activation Test in IgE-Mediated Wheat Allergy: Diagnostic and Clinical Applications—A Narrative Review. Diagnostics, 15(20), 2659. https://doi.org/10.3390/diagnostics15202659