Prognostic Value of Tryptophanyl-tRNA Synthetase in Sepsis Combined with Kidney Dysfunction or Urinary Tract Infection: A Prospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Definitions
2.4. Multiplex Immunoassay
2.5. Statistical Analysis
3. Results
3.1. Flowchart and Baseline Characteristics
3.2. Diagnostic and Prognostic Value of Biomarkers
3.3. Combination of Clinical Severity Scores with Biomarkers
3.4. Prognostic Value of WRS According to Microbial Culture Test Results
3.5. Prognostic Value of WRS According to Each Component of SOFA Score
3.6. Correlation Between WRS and Clinical Variables
3.7. Comparison of Biomarker Levels According to Cr SOFA Score
3.8. Risk Factors for 30-Day Mortality in Sepsis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AKI | Acute kidney injury |
| APACHE II | Acute Physiology and Chronic Health Evaluation II |
| AUC | Area under the curve |
| Bili SOFA | Liver SOFA |
| BP SOFA | Cardiovascular SOFA |
| CI | Confidence interval |
| Cr SOFA | Renal SOFA |
| CRP | C-reactive protein |
| DBP | Diastolic blood pressure |
| ED | Emergency department |
| FL-WRS | Full-length WRS |
| GCS SOFA | Central nervous system SOFA |
| ICU | Intensive care units |
| IQR | Interquartile ragne |
| MAP | Mean arterial pressure |
| MEWS | Modified Early Warning Score |
| NEWS | National Early Warning Score |
| PCT | Procalcitonin |
| PLT | Coagulation SOFA |
| P-SEP | Presepsin |
| qSOFA | Quick SOFA |
| Resp SOFA | Respiration SOFA |
| ROC | Receiver operating characteristic |
| SBP | Systolic blood pressure |
| Sepsis-3 | Third International Consensus Definitions for Sepsis and Septic shock |
| SOFA | Sequential Organ Failure Assessment |
| SpO2 | Saturation of percutaneous oxygen |
| WRS | Tryptophanyl-tRNA synthetase |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Bauer, M.; Gerlach, H.; Vogelmann, T.; Preissing, F.; Stiefel, J.; Adam, D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019- results from a systematic review and meta-analysis. Crit. Care 2020, 24, 239. [Google Scholar] [CrossRef]
- Gaieski, D.F.; Edwards, J.M.; Kallan, M.J.; Carr, B.G. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit. Care Med. 2013, 41, 1167–1174. [Google Scholar] [CrossRef]
- De Backer, D.; Dorman, T. Surviving Sepsis Guidelines: A Continuous Move Toward Better Care of Patients with Sepsis. Jama 2017, 317, 807–808. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Gotts, J.E.; Matthay, M.A. Sepsis: Pathophysiology and clinical management. BMJ 2016, 353, i1585. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 775–787. [Google Scholar] [CrossRef]
- Klimpel, J.; Weidhase, L.; Bernhard, M.; Gries, A.; Petros, S. The impact of the Sepsis-3 definition on ICU admission of patients with infection. Scand. J. Trauma. Resusc. Emerg. Med. 2019, 27, 98. [Google Scholar] [CrossRef]
- Shashikumar, S.P.; Stanley, M.D.; Sadiq, I.; Li, Q.; Holder, A.; Clifford, G.D.; Nemati, S. Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics. J. Electrocardiol. 2017, 50, 739–743. [Google Scholar] [CrossRef]
- Vincent, J.L.; de Mendonça, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef]
- Gourd, N.M.; Nikitas, N. Multiple Organ Dysfunction Syndrome. J. Intensive Care Med. 2020, 35, 1564–1575. [Google Scholar] [CrossRef]
- Vincent, J.L. Organ failure in the intensive care unit. Semin. Respir. Crit. Care Med. 2011, 32, 541–542. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yang, H.; Kang, Y. Combined assessment of ΔPCT and ΔCRP could increase the ability to differentiate candidemia from bacteremia. Crit. Care 2019, 23, 271. [Google Scholar] [CrossRef]
- Song, J.; Park, D.W.; Moon, S.; Cho, H.J.; Park, J.H.; Seok, H.; Choi, W.S. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: A prospective controlled study according to the Sepsis-3 definitions. BMC Infect. Dis. 2019, 19, 968. [Google Scholar] [CrossRef] [PubMed]
- Chenevier-Gobeaux, C.; Trabattoni, E.; Roelens, M.; Borderie, D.; Claessens, Y.E. Presepsin (sCD14-ST) in emergency department: The need for adapted threshold values? Clin. Chim. Acta 2014, 427, 34–36. [Google Scholar] [CrossRef]
- Pizzolato, E.; Ulla, M.; Galluzzo, C.; Lucchiari, M.; Manetta, T.; Lupia, E.; Mengozzi, G.; Battista, S. Role of presepsin for the evaluation of sepsis in the emergency department. Clin. Chem. Lab. Med. 2014, 52, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- Jin, M. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Oh, S.C.; Zhou, S.; Kim, T.D. Tryptophanyl-tRNA Synthetase as a Potential Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 4523. [Google Scholar] [CrossRef]
- Jobin, P.G.; Solis, N.; Machado, Y.; Bell, P.A.; Kwon, N.H.; Kim, S.; Overall, C.M.; Butler, G.S. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. J. Biol. Chem. 2019, 294, 12866–12879. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.H.; Park, S.; Choi, J.J.; Park, B.K.; Rhee, K.H.; Kang, E.; Ahn, S.; Lee, C.H.; Lee, J.S.; Inn, K.S.; et al. Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection. Nat. Microbiol. 2016, 2, 16191. [Google Scholar] [CrossRef]
- Ellis, C.N.; LaRocque, R.C.; Uddin, T.; Krastins, B.; Mayo-Smith, L.M.; Sarracino, D.; Karlsson, E.K.; Rahman, A.; Shirin, T.; Bhuiyan, T.R.; et al. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect. Immun. 2015, 83, 1089–1103. [Google Scholar] [CrossRef]
- Wieland, S.; Thimme, R.; Purcell, R.H.; Chisari, F.V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 2004, 101, 6669–6674. [Google Scholar] [CrossRef]
- Choi, J.S.; Yoon, B.R.; Shin, J.H.; Lee, S.H.; Leem, A.Y.; Park, M.S.; Kim, Y.S.; Chung, K.S. Clinical value of full-length tryptophanyl-tRNA synthetase for sepsis detection in critically ill patients—A retrospective clinical assessment. Int. J. Infect. Dis. 2020, 97, 260–266. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191-2194. [Google Scholar]
- Bagshaw, S.M.; Lapinsky, S.; Dial, S.; Arabi, Y.; Dodek, P.; Wood, G.; Ellis, P.; Guzman, J.; Marshall, J.; Parrillo, J.E.; et al. Acute kidney injury in septic shock: Clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009, 35, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef]
- Zarbock, A.; Koyner, J.L.; Gomez, H.; Pickkers, P.; Forni, L. Sepsis-associated acute kidney injury-treatment standard. Nephrol. Dial. Transpl. 2023, 39, 26–35. [Google Scholar] [CrossRef]
- Petrosillo, N.; Granata, G.; Boyle, B.; Doyle, M.M.; Pinchera, B.; Taglietti, F. Preventing sepsis development in complicated urinary tract infections. Expert. Rev. Anti Infect. Ther. 2020, 18, 47–61. [Google Scholar] [CrossRef]
- Balkrishna, A.; Sinha, S.; Kumar, A.; Arya, V.; Gautam, A.K.; Valis, M.; Kuca, K.; Kumar, D.; Amarowicz, R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed. Pharmacother. 2023, 165, 115183. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Song, J.; Park, D.W.; Seok, H.; Ahn, S.; Kim, J.; Park, J.; Cho, H.J.; Moon, S. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: A prospective observational study according to the Sepsis-3 definitions. BMC Infect. Dis. 2022, 22, 8. [Google Scholar] [CrossRef]
- Paraskevas, T.; Chourpiliadi, C.; Demiri, S.; Micahilides, C.; Karanikolas, E.; Lagadinou, M.; Velissaris, D. Presepsin in the diagnosis of sepsis. Clin. Chim. Acta 2023, 550, 117588. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, M.; Inoue, Y.; Nishioka, M.; Ikegame, A.; Nakao, T.; Kishi, S.; Doi, T.; Nagai, K. Clinical evaluation of presepsin considering renal function. PLoS ONE 2019, 14, e0215791. [Google Scholar] [CrossRef] [PubMed]
- Nagata, T.; Yasuda, Y.; Ando, M.; Abe, T.; Katsuno, T.; Kato, S.; Tsuboi, N.; Matsuo, S.; Maruyama, S. Clinical impact of kidney function on presepsin levels. PLoS ONE 2015, 10, e0129159. [Google Scholar] [CrossRef]
- Uhlén, M.; Björling, E.; Agaton, C.; Szigyarto, C.A.; Amini, B.; Andersen, E.; Andersson, A.C.; Angelidou, P.; Asplund, A.; Asplund, C.; et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteom. 2005, 4, 1920–1932. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.H.; Yang, H.K.; Kim, H.; Kim, W.H.; Kim, Y.W.; Kook, M.C.; Park, Y.K.; Kim, H.H.; Lee, H.S.; Lee, K.H.; et al. Predictive test for chemotherapy response in resectable gastric cancer: A multi-cohort, retrospective analysis. Lancet Oncol. 2018, 19, 629–638. [Google Scholar] [CrossRef]
- Ghanipour, A.; Jirström, K.; Pontén, F.; Glimelius, B.; Påhlman, L.; Birgisson, H. The prognostic significance of tryptophanyl-tRNA synthetase in colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2949–2956. [Google Scholar] [CrossRef]
- Patil, P.A.; Blakely, A.M.; Lombardo, K.A.; Machan, J.T.; Miner, T.J.; Wang, L.J.; Marwaha, A.S.; Matoso, A. Expression of PD-L1, indoleamine 2,3-dioxygenase and the immune microenvironment in gastric adenocarcinoma. Histopathology 2018, 73, 124–136. [Google Scholar] [CrossRef]
- Lee, C.W.; Chang, K.P.; Chen, Y.Y.; Liang, Y.; Hsueh, C.; Yu, J.S.; Chang, Y.S.; Yu, C.J. Overexpressed tryptophanyl-tRNA synthetase, an angiostatic protein, enhances oral cancer cell invasiveness. Oncotarget 2015, 6, 21979–21992. [Google Scholar] [CrossRef]
- Guo, M.; Yang, X.L.; Schimmel, P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat. Rev. Mol. Cell Biol. 2010, 11, 668–674. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, H.; Zhou, Q.; Hong, F.; Vo, M.N.; Niu, W.; Wang, Z.; Xiong, X.; Nakamura, K.; Wakasugi, K.; et al. An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. RNA Biol. 2018, 15, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, T.; Miyanokoshi, M.; Tanaka, T.; Wakasugi, K. Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Sci. Rep. 2016, 6, 24750. [Google Scholar] [CrossRef] [PubMed]
- Tzima, E.; Schimmel, P. Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem. Sci. 2006, 31, 7–10. [Google Scholar] [CrossRef] [PubMed]





| Variable | All Patients (n = 243) | Sepsis (n = 124) | Septic Shock (n = 119) | p-Value |
|---|---|---|---|---|
| Demographics | ||||
| Age, median (IQR) | 78 (67–84) | 78 (69–84) | 78 (67–84) | 0.973 |
| Male, n (%) | 144 (59.3) | 77 (62.1) | 67 (56.3) | 0.358 |
| Comorbidity, n (%) | ||||
| Diabetes mellitus | 90 (37.0) | 45 (36.3) | 45 (37.8) | 0.806 |
| Hypertension | 127 (52.3) | 70 (56.5) | 57 (47.9) | 0.182 |
| Malignancy | 40 (16.5) | 24 (19.4) | 16 (13.4) | 0.214 |
| Chronic lung disease | 20 (8.2) | 7 (5.6) | 13 (10.3) | 0.134 |
| Chronic liver disease | 10 (4.1) | 3 (2.4) | 7 (5.9) | 0.209 |
| Chronic kidney disease | 20 (8.2) | 9 (7.3) | 11 (9.2) | 0.573 |
| Cardiovascular disease | 23 (9.5) | 10 (8.1) | 13 (10.9) | 0.446 |
| Cerebrovascular disease | 56 (23.0) | 28 (22.6) | 28 (23.5) | 0.861 |
| Infection sites, n (%) | ||||
| Respiratory | 163 (67.1) | 87 (70.2) | 76 (63.9) | 0.296 |
| Genitourinary | 79 (32.5) | 34 (27.4) | 45 (37.8) | 0.084 |
| Gastrointestinal | 18 (7.4) | 8 (6.5) | 10 (8.4) | 0.561 |
| Others | 17 (7.0) | 10 (8.1) | 7 (5.9) | 0.505 |
| Vital sign, median (IQR) | ||||
| SBP (mmHg) | 96 (84–122) | 104 (92–136) | 89 (77–102) | <0.001 |
| DBP (mmHg) | 59 (50–71) | 63 (56–74) | 53 (48–65) | <0.001 |
| MAP (mmHg) | 72 (62–87) | 75 (70–96) | 65 (57–78) | <0.001 |
| Heart rate (bpm) | 108 (88–124) | 108 (88–125) | 107 (88–125) | 0.639 |
| Respiratory rate (breaths/min) | 24 (20–28) | 23 (20–26) | 24 (20–28) | 0.663 |
| Body temperature (°C) | 37.2 (36.3–38.2) | 37.4 (36.6–38.4) | 37.2 (36.2–38.1) | 0.028 |
| SpO2 (%) | 95 (90–98) | 96 (93–99) | 93 (88–97) | <0.001 |
| Clinical scores, median (IQR) | ||||
| SOFA score | 8 (6–11) | 6 (5–8) | 10 (8–12) | <0.001 |
| NEWS | 11 (9–13) | 10 (8–12) | 11 (9–14) | 0.003 |
| MEWS | 6 (5–8) | 6 (5–7) | 6 (5–8) | 0.076 |
| APACHE II score | 27 (23–32) | 26 (21–30) | 28 (24–33) | 0.001 |
| Laboratory results, median (IQR) | ||||
| White blood cell (×106/L) | 11.6 (7.8–18.4) | 12.7 (8.9–17.2) | 11.0 (6.2–19.8) | 0.343 |
| Hemoglobin (g/dL) | 10.7 (8.9–12.4) | 10.7 (8.9–12.6) | 10.7 (8.6–12.3) | 0.708 |
| Platelet (×106/L) | 199 (120–290) | 207 (141–303) | 188 (104–263) | 0.010 |
| Total bilirubin (mg/dL) | 0.7 (0.4–1.2) | 0.7 (0.4–1.2) | 0.7 (0.5–1.2) | 0.749 |
| Creatinine (mg/dL) | 1.4 (0.9–2.2) | 1.2 (0.9–1.9) | 1.6 (1.0–2.5) | 0.007 |
| Sodium (mmol/L) | 138 (133–141) | 137 (133–141) | 138 (133–141) | 0.840 |
| Potassium (mmol/L) | 4.2 (3.7–4.8) | 4.1 (3.7–4.7) | 4.3 (3.6–5.1) | 0.430 |
| Biomarkers, median (IQR) | ||||
| WRS (µg/L) | 66.70 (46.10–105.60) | 60.95 (43.80–101.38) | 76.30 (52.60–111.40) | 0.018 |
| P-SEP (ng/L) | 804 (450–1612) | 693 (412–1080) | 1002 (515–2170) | <0.001 |
| CRP (mg/L) | 10.72 (4.79–17.84) | 10.54 (4.51–17.10) | 11.58 (5.19–21.46) | 0.187 |
| PCT (µg/L) | 2.31 (0.64–10.27) | 1.04 (0.41–4.79) | 4.92 (1.11–23.85) | <0.001 |
| Lactate (mmol/L) | 3.00 (1.90–6.00) | 2.35 (1.52–4.71) | 4.10 (2.40–7.60) | <0.001 |
| Mechanical ventilator, n (%) | 70 (28.8) | 15 (12.1) | 55 (46.2) | <0.001 |
| AKI, n (%) | 122 (50.2) | 53 (42.7) | 69 (58.0) | 0.018 |
| Renal replacement therapy, n (%) | ||||
| Patients with AKI in ED | 20 (8.2) | 5 (4.0) | 15 (12.6) | 0.015 |
| Patients without AKI in ED | 8 (3.3) | 2 (1.6) | 6 (5.0) | 0.135 |
| Antibiotics, n (%) | ||||
| Piperacillin/Tazobactam | 173 (71.2) | 75 (60.5) | 98 (82.4) | 0.054 |
| Ceftriaxone | 63 (25.9) | 42 (33.9) | 21 (17.6) | 0.001 |
| Levofloxacin | 16 (6.6) | 6 (4.8) | 10 (8.4) | 0.318 |
| Meropenem | 12 (4.9) | 3 (2.4) | 9 (7.6) | 0.100 |
| Azithromycin | 11 (4.5) | 9 (7.3) | 2 (1.7) | 0.030 |
| Metronidazole | 10 (4.1) | 2 (1.6) | 8 (6.7) | 0.056 |
| Cefepime | 9 (3.7) | 6 (4.8) | 3 (2.5) | 0.302 |
| Others | 19 (7.8) | 8 (6.5) | 11 (9.2) | 0.581 |
| Clinical outcomes, n (%) | ||||
| 7-day mortality | 40 (16.5) | 11 (8.9) | 29 (24.4) | 0.001 |
| 14-day mortality | 54 (22.2) | 18 (14.5) | 36 (30.3) | 0.003 |
| 30-day mortality | 67 (27.6) | 24 (19.4) | 43 (36.1) | 0.003 |
| Variable | Univariable HR (95% CI) | p-Value | Multivariable HR (95% CI) | p-Value |
|---|---|---|---|---|
| WRS | 1.003 (1.001–1.005) | 0.002 | 1.003 (1.001–1.005) | 0.014 |
| P-SEP | 1.000 (1.000–1.000) | 0.091 | ||
| CRP | 1.015 (0.995–1.037) | 0.148 | ||
| PCT | 1.002 (0.992–1.011) | 0.694 | ||
| Lactate | 1.116 (1.075–1.160) | <0.001 | 1.110 (1.068–1.154) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, U.; Lee, S.; Han, K.S.; Kim, S.J.; Lee, S.; Park, D.W.; Song, J. Prognostic Value of Tryptophanyl-tRNA Synthetase in Sepsis Combined with Kidney Dysfunction or Urinary Tract Infection: A Prospective Observational Study. Diagnostics 2025, 15, 2634. https://doi.org/10.3390/diagnostics15202634
Kim U, Lee S, Han KS, Kim SJ, Lee S, Park DW, Song J. Prognostic Value of Tryptophanyl-tRNA Synthetase in Sepsis Combined with Kidney Dysfunction or Urinary Tract Infection: A Prospective Observational Study. Diagnostics. 2025; 15(20):2634. https://doi.org/10.3390/diagnostics15202634
Chicago/Turabian StyleKim, Uihwan, Sijin Lee, Kap Su Han, Su Jin Kim, Sungwoo Lee, Dae Won Park, and Juhyun Song. 2025. "Prognostic Value of Tryptophanyl-tRNA Synthetase in Sepsis Combined with Kidney Dysfunction or Urinary Tract Infection: A Prospective Observational Study" Diagnostics 15, no. 20: 2634. https://doi.org/10.3390/diagnostics15202634
APA StyleKim, U., Lee, S., Han, K. S., Kim, S. J., Lee, S., Park, D. W., & Song, J. (2025). Prognostic Value of Tryptophanyl-tRNA Synthetase in Sepsis Combined with Kidney Dysfunction or Urinary Tract Infection: A Prospective Observational Study. Diagnostics, 15(20), 2634. https://doi.org/10.3390/diagnostics15202634

