Quantifying Gait and Posture in Geriatric Inpatients Using Inertial Sensors and Posturography: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Methods
- F1 (0.03–0.1 Hz): visual and nigrostriatal system;
- F2–4 (0.1–0.5 Hz): peripheral–vestibular system;
- F5–6 (0.5–1.0 Hz): somatosensory system;
- F7–8 (above 1.0 Hz): cerebellar system.
- stability indicator (ST = postural stability);
- synchronization (synch = foot coordination);
- weight distribution index (WDI);
- forefoot–hindfoot ratio (heel);
- left–right ratio (left).
2.3. Statistical Analysis
3. Results
3.1. Description of the Sample Size
3.2. Postural Stability, Regulation and Weight Distribution
3.3. Association Between Test and Parameters of Different Dimensions
4. Discussion
- Walking speed [m/s]: 0.71–0.79 vs. 0.47–0.51;
- Cadence [steps/min]: 96–99 vs. 83–87;
- Stride length [m]: 0.86–0.94 vs. 0.67–0.69.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BI | Barthel Index |
CFS | Clinical Frailty Scale |
GDS | Geriatric Depression Scale |
MoCA | Montreal Cognitive Assessment |
NRS | Numeric Rating Scale |
TIN | Tinetti Test |
TUG | Timed Up & Go |
References
- Fagerström, C.; Borglin, G. Mobility, functional ability and health-related quality of life among people of 60 years or older. Aging Clin. Exp. Res. 2010, 22, 387–394. [Google Scholar] [CrossRef]
- La Grow, S.; Yeung, P.; Towers, A.; Alpass, F.; Stephens, C. The Impact of Mobility on Quality of Life Among Older Persons. J. Aging Health 2013, 25, 723–736. [Google Scholar] [CrossRef]
- Shafrin, J.; Sullivan, J.; Goldman, D.P.; Gill, T.M. The association between observed mobility and quality of life in the near elderly. PLoS ONE 2017, 12, e0182920. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, B. Gait and Balance Disorders in Older Adults. Am. Fam. Physician 2010, 82, 61–68. [Google Scholar]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.W.; Chi, I.; Chiu, A.Y.Y. Falls and fall-related injuries in community-dwelling elderly persons in Hong Kong: A study on risk factors, functional decline, and health services utilisation after falls. Hong Kong Med. J. 2007, 13, S8. [Google Scholar]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical Costs of Fatal and Nonfatal Falls in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef]
- Vaishya, R.; Vaish, A. Falls in Older Adults are Serious. JOIO 2020, 54, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Schoene, D.; Wu, S.M.; Mikolaizak, A.S.; Menant, J.C.; Smith, S.T.; Delbaere, K.; Lord, S.R. Discriminative ability and predictive validity of the timed up and go test in identifying older people who fall: Systematic review and meta-analysis. J. Am. Geriatr. Soc. 2013, 61, 202–208. [Google Scholar] [CrossRef]
- Soubra, R.; Aly Chkeir, A.; Novella, J.L. A Systematic Review of Thirty-One Assessment Tests to Evaluate Mobility in Older Adults. Biomed. Res. Int. 2019, 2019, 1354362. [Google Scholar] [CrossRef]
- Schwesig, R.; Fischer, D.; Lauenroth, A.; Becker, S.; Leuchte, S. Can falls be predicted with gait analytical and posturographic measurement systems? A prospective follow-up study in a nursing home population. Clin. Rehabil. 2013, 27, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Gröger, I.; Rupprecht, R.; Marcar, V.L.; Gaßmann, K.G. Prediction of future falls in a community dwelling older adult population using instrumented balance and gait analysis. Z. Gerontol. Geriat. 2016, 49, 232–236. [Google Scholar] [CrossRef]
- Schwesig, R.; Fischer, D.; Kluttig, A. Are there changes in postural regulation across the life span? Somatosens. Mot. Res. 2013, 30, 167–174. [Google Scholar] [CrossRef]
- Heimrich, K.G.; Schönenberg, A.; Mendorf, S.; Lehmann, T.; Prell, T. Predictors of Functional Improvement During Comprehensive Geriatric Care in Germany: A 10-Year Monocentric Retrospective Analysis. Sage Open Aging 2025, 11, 30495334251346941. [Google Scholar] [CrossRef] [PubMed]
- Bartels, T.; Brehme, K.; Pyschik, M.; Pollak, R.; Schaffrath, N.; Schulze, S.; Delank, K.S.; Laudner, K.G.; Schwesig, R. Postural stability and regulation before and after anterior cruciate ligament reconstruction—A two-years longitudinal study. Phys. Ther. Sport 2019, 38, 49–58. [Google Scholar] [CrossRef]
- Schwesig, R.; Becker, S.; Fischer, D. Intraobserver reliability of posturography in healthy subjects. Somatosens. Mot. Res. 2014, 31, 16–22. [Google Scholar] [CrossRef]
- Donath, L.; Faude, O.; Lichtenstein, E.; Nüesch, C.; Mündermann, A. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: Comparison to an instrumented treadmill. J. Neuroeng. Rehabil. 2016, 13, 6. [Google Scholar] [CrossRef]
- Schwesig, R.; Leuchte, S.; Fischer, D.; Ullmann, R.; Kluttig, A. Inertial sensor based reference gait data for healthy subjects. Gait Posture 2011, 33, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E. Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Tinetti, M.E. Clinical practice. Preventing falls in elderly persons. N. Engl. J. Med. 2003, 348, 42–49. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef]
- Church, S.; Rogers, E.; Rockwood, K.; Theou, O. A scoping review of the Clinical Frailty Scale. BMC Geriatr. 2020, 20, 393. [Google Scholar] [CrossRef]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a Geriatric Depression Screening Scale: A preliminary report. J. Psychiatr. Res. 1983, 17, 37–49. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbenneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Downie, W.W.; Leatham, P.A.; Rhind, V.M.; Wright, V.; Branco, J.A.; Anderson, J.A. Studies with pain rating scales. Ann. Rheum. Dis. 1978, 37, 378–381. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Hartmann, A.; Herzog, T.; Drinkmann, A. Psychotherapy of bulimia nervosa: What is effective? A meta-analysis. J. Psychosom. Res. 1992, 36, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Lawrence Earlbaum Associates: Hillside, NJ, USA, 1988; pp. 77–280. [Google Scholar]
- Abellan van Kan, G.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.M.; Gillette Guyonnet, S.; Inzitari, M.; et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009, 13, 881–889. [Google Scholar] [CrossRef]
- Beck Jepsen, D.; Robinson, K.; Ogliari, G.; Montero-Odasso, M.; Kamkar, N.; Ryg, J.; Freiberger, E.; Masud, T. Predicting falls in older adults: An umbrella review of instruments assessing gait, balance, and functional mobility. BMC Geriatr. 2022, 22, 615. [Google Scholar] [CrossRef]
- Leung, P.B.; Alexander, J.T.; Ouchida, K.E. Falls Prevention for Older Adults. JAMA 2024, 331, 1409–1410. [Google Scholar] [CrossRef] [PubMed]
- Zeh, A.; Stier, J.; Meyer, L.; Wohlrab, D.; Gutteck, N.; Schulze, S.; Panian, M.; Delank, K.S.; Laudner, K.G.; Schwesig, R. No clinical relevant differences in early clinical outcomes, patient satisfaction and objective gait and posture analysis between a custom versus off-the-shelf total knee arthroplasty: A prospective controlled study. Arch. Orthop. Trauma Surg. 2025, 145, 245. [Google Scholar] [CrossRef] [PubMed]
- Moe-Nilssen, R.; Helbostad, J.L. Spatiotemporal gait parameters for older adults—An interactive model adjusting reference data for gender, age, and body height. Gait Posture 2020, 82, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Corsinovi, L.; Bo, M.; Aimonino, N.R.; Marinello, R.; Gariglio, F.; Marchetto, C.; Gastaldi, L.; Fissore, L.; Zanocchi, M.; Molaschi, M. Predictors of falls and hospitalization outcomes in elderly patients admitted to an acute geriatric unit. Arch. Gerontol. Geriat. 2009, 49, 142–145. [Google Scholar] [CrossRef]
- Liang, C.K.; Chou, M.Y.; Peng, L.N.; Liao, M.C.; Chu, C.L.; Lin, Y.T.; Chen, L.K. Gait speed and risk assessment for falls among men aged 80 years and older: A prospective cohort study in Taiwan. Eur. Geriatr. Med. 2014, 5, 298–302. [Google Scholar] [CrossRef]
- Miller, M.E.; Magaziner, J.; Marsh, A.P.; Fielding, R.A.; Gill, T.M.; King, A.C.; Kritchevsky, S.; Manini, T.; McDermott, M.M.; Neiberg, R.; et al. Gait Speed and Mobility Disability: Revisiting Meaningful Levels Across Diverse Clinical Populations. J. Am. Geritr. Soc. 2018, 66, 954–961. [Google Scholar] [CrossRef]
- Colon-Emeric, C.S.; McDermott, C.L.; Lee, D.S.; Berry, S.D. Risk Assessment and Prevention of Falls in Older Community-Dwelling Adults: A Review. JAMA 2024, 331, 1397–1406. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Pieruccini-Faria, F.; Son, S.; Carvalho de Abreu, D.C.; Hunter, S.; Qi Liu, J.; Moore, M.; Hezam, A.; van der Felde, N.; Masud, T.; et al. Fall risk stratification in older adults: Low and not-at-risk status still associated with falls and injuries. Age Ageing 2025, 54, afaf064. [Google Scholar] [CrossRef]
- Bourgarel, E.; Risser, C.; Blanc, F.; Vogel, T.; Kaltenbach, G.; Meyer, M.; Schmitt, E. Spatio-Temporal Gait Parameters of Hospitalized Older Patients: Comparison of Fallers and Non-Fallers. Int. J. Environ. Res. Public Health 2023, 20, 4563. [Google Scholar] [CrossRef]
- Schwesig, R.; Kluttig, A.; Kriebel, K.; Becker, S.; Leuchte, S. Prospective comparison of assessments to evaluate fall risk in a nursing home population. Z. Gerontol. Geriat. 2009, 42, 473–478. [Google Scholar] [CrossRef]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. BioMed Res. Int. 2015, 2015, 891390. [Google Scholar] [CrossRef] [PubMed]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, e15067. [Google Scholar] [CrossRef] [PubMed]
- Julienne, A.; Verbecque, E.; Besnard, S. Normative data for instrumented posturography: A systematic review and meta-analysis. Front. Hum. Neurosci. 2024, 18, 1498107. [Google Scholar] [CrossRef]
- Schwenk, M.; Howe, C.; Saleh, A.; Mohler, J.; Grewal, G.; Armstrong, D.; Najafi, B. Frailty and technology: A systematic review of gait analysis in those with frailty. Gerontology 2014, 60, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, F.; Hobbelen, H.S.M.; van Munster, B.C.; Lamoth, C.J. Gait parameters and daily physical activity for distinguishing pre-frail, frail, and non-frail older adults: A scoping review. J. Nutr. Health Aging 2025, 29, 100580. [Google Scholar] [CrossRef]
- Dapp, U.; Vinyard, D.; Golgert, S.; Krumpoch, S.; Freiberger, E. Reference values of gait characteristics in community-dwelling older persons with different physical functional levels. BMC Geriatr. 2022, 22, 713. [Google Scholar] [CrossRef]
- Ollenschläger, M.; Kluge, F.; Müller-Schulz, M.; Püllen, R.; Möller, C.; Klucken, J.; Eskofier, B.M. Wearable gait analysis systems: Ready to be used by medical practitioners in geriatric wards? Eur. Geriatr. Med. 2022, 13, 817–824. [Google Scholar] [CrossRef]
- Fränzel, K.; Koschate, J.; Freiberger, E.; Shigematsu, R.; Zieschang, T.; Tietgen, S. Square-stepping exercise in older inpatients in early geriatric rehabilitation. A randomized controlled pilot study. BMC Geriatr. 2024, 24, 326. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Barrett-Connor, E.; et al. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Assessment | Short Description |
---|---|
Tinetti Test (TIN) | The TIN [19,20] is a validated clinical instrument for evaluating balance and gait in older adults. The assessment encompasses measures of static, dynamic, reactive, and anticipatory balance, as well as ambulation and transfer capabilities, providing a comprehensive overview of an individual’s mobility status. The scores range from 1 to 28, where a score of 28 indicates low risk of falling. |
Barthel Index (BI) | The BI [21] is an instrument for assessing functional status and the level of independence in activities of daily living (ADLs). It evaluates domains such as eating, bathing, grooming, dressing, bowel and bladder control, toilet use, transfers, mobility on level surfaces, and stair navigation. The scoring system ranges from 0 to 100, with a score of 100 indicating complete independence and a score of 0 reflecting total dependence on assistance. |
Clinical Frailty Scale (CFS) | The Clinical Frailty Scale [22,23] is a 9-point, judgement-based tool that classifies older adults from 1 = very fit to 9 = terminally ill based on clinical descriptors and functional status, integrating comorbidity, cognition, and level of independence. |
Geriatric Depression Scale (GDS) | The Geriatric Depression Scale [24] is a validated 15-item self-report screening tool for depressive symptoms in older adults, with dichotomous responses scored 0–15, where higher scores indicate more symptoms. |
Montreal Cognitive Assessment (MoCA) | The Montreal Cognitive Assessment [25] is a screening tool for cognitive function, scored from 0 to 30, with higher scores indicating better cognitive performance. |
Numeric Rating Scale (NRS) | The Numeric Rating Scale [26] is an 11-point scale to assess pain intensity in older adults who are able to self-report. A score of 0 reflects no pain and a score of 10 indicates the most pain imaginable. |
Demographic and Anthropometric Data | ||||||
male (n = 28) | female (n = 26) | total (n = 54) | p | ηp2 | ||
Age (years) | 83.8 ± 5.96 (81.7; 85.9) | 84.7 ± 4.97 (82.6; 86.8) | 84.3 ± 5.47 (82.8; 85.7) | 0.545 | 0.01 | |
Height (m) | 1.71 ± 0.08 (1.68; 1.74) | 1.58 ± 0.08 (1.55; 1.61) | 1.64 ± 0.01 (1.62; 1.67) | <0.001 | 0.39 | |
Weight (kg) | 75.9 ± 12.7 (71.3; 80.6) | 64.3 ± 11.9 (59.6; 69.1) | 70.2 ± 13.5 (66.6; 73.9) | 0.001 | 0.19 | |
BMI (kg/m2) | 26.0 ± 3.58 (24.3; 27.6) | 25.9 ± 4.88 (24.3; 27.6) | 25.9 ± 4.23 (24.8; 27.1) | 0.963 | 0.00 | |
Clinical Data | ||||||
male (n = 28) | female (n = 26) | total (n = 54) | p | U | ||
TIN | total | 24 (18; 27) | 24 (17; 27) | 24 (18; 27) | 0.875 | 355 |
balance | 12 (8; 14) | 12 (6; 14) | 12 (8; 14) | 0.694 | 347 | |
gait | 12 (9; 13) | 12 (9; 13) | 12 (9; 13) | 0.380 | 315 | |
BI | 45 (30; 66) | 60 (35; 80) | 50 (35; 75) | 0.015 | 235 | |
CFS | 5 (4; 6) | 5 (3.8; 6.0) | 5 (4; 6) | 0.057 | 262 | |
GDS | 1.5 (0; 4.1) | 4 (0; 7.3) | 2 (0; 6) | 0.007 | 212 | |
MoCA | 19 (13; 27) | 18 (12; 26) | 19 (12; 26) | 0.815 | 351 | |
NRS rest | 0 (0; 1.1) | 0 (0; 1.2) | 0 (0; 1) | 0.533 | 348 | |
NRS load | 1.5 (0; 3) | 2 (0; 4.4) | 2 (0; 3) | 0.486 | 338 |
Male (n = 12) | Reference (n = 20) | Female (n = 10) | Reference (n = 95) | Effect Size | |
d | |||||
Age Range: 71.0–85.0 years (older Adults) | |||||
Visual & Nigrostriatal | 22.3 ± 7.43 (13.1; 35.8) | 19.3 ± 4.21 (13.3; 26.8) | 23.9 ± 8.55 (13.5; 40.3) | 17.3 ± 6.30 (9.82; 24.6) | 0.20 |
Peripheral– Vestibular | 14.2 ± 3.14 (8.96; 18.1) | 11.6 ± 2.41 (8.34; 14.8) | 14.6 ± 5.23 (7.74; 22.5) | 10.4 ± 3.29 (6.88; 15.3) | 0.10 |
Somatosensory | 7.79 ± 2.74 (4.76; 11.6) | 5.89 ± 1.69 (3.23; 8.17) | 8.17 ± 3.78 (5.08; 16.9) | 5.59 ± 2.13 (3.42; 8.58) | 0.12 |
Cerebellar | 1.70 ± 0.64 (1.00; 2.68) | 1.22 ± 0.60 (0.65; 2.47) | 1.90 ± 1.39 (0.80; 5.02) | 1.10 ± 0.50 (0.67; 1.60) | 0.20 |
Stability Indicator | 46.6 ± 16.2 (28.4; 71.8) | 27.7 ± 8.10 (16.0; 39.0) | 51.9 ± 33.0 (25.8; 126) | 25.7 ± 10.1 (15.6; 39.2) | 0.22 |
Weight Distribution Index | 5.99 ± 1.90 (2.87; 8.65) | 6.12 ± 2.34 (3.84; 10.2) | 6.41 ± 0.97 (5.09; 7.85) | 6.39 ± 2.70 (3.44; 9.97) | 0.29 |
Synchronization | 543 ± 119 (339; 707) | 559 ± 182 (224; 769) | 655 ± 75 (532; 749) | 549 ± 209 (287; 774) | 1.16 |
Heel (%) | 48.0 ± 6.37 (41.6; 58.2) | 48.0 ± 9.97 (33.6; 62.4) | 44.9 ± 7.17 (36.9; 56.7) | 46.5 ± 9.78 (32.9; 58.3) | 0.46 |
Left (%) | 49.8 ± 6.48 (42.6; 62.3) | 50.6 ± 4.63 (43.1; 56.5) | 48.7 ± 5.81 (38.2; 55.3) | 50.5 ± 5.46 (43.9; 56.9) | 0.18 |
Age Range: 85.1–96.5 years (very older Adults) | |||||
Male (n = 10) | Reference (n = 3 *) | Female (n = 13) | Reference (n = 36) | d | |
Visual & Nigrostriatal | 22.0 ± 4.17 (16.7; 29.1) | 23.0 ± 12.3 (11.4; 35.9) | 21.4 ± 4.73 (13.0; 28.7) | 20.9 ± 6.57 (13.4; 31.6) | 0.07 |
Peripheral– Vestibular | 15.8 ± 3.26 (11.5; 22.0) | 13.8 ± 7.75 (9.01; 22.8) | 14.9 ± 3.77 (10.2; 22.0) | 11.1 ± 4.62 (6.78; 19.4) | 0.26 |
Somatosensory | 7.70 ± 1.45 (5.77; 9.80) | 6.93 ± 0.34 (6.64; 7.30) | 7.54 ± 1.98 (3.99; 10.3) | 6.62 ± 3.83 (3.46; 12.4) | 0.09 |
Cerebellar | 1.54 ± 0.44 (1.09; 2.41) | 1.44 ± 0.37 (1.08; 1.81) | 1.60 ± 0.43 (0.89; 2.18) | 1.44 ± 1.14 (0.70; 2.56) | 0.14 |
Stability Indicator | 43.6 ± 10.1 (32.5; 57.8) | 30.8 ± 5.01 (25.1; 34.8) | 44.4 ± 12.1 (23.7; 60.8) | 28.6 ± 18.6 (14.7; 51.3) | 0.07 |
Weight Distribution Index | 5.85 ± 1.64 (3.21; 8.89) | 7.04 ± 2.06 (5.13; 9.23) | 6.78 ± 1.62 (4.84; 9.47) | 8.59 ± 3.68 (4.30; 13.9) | 0.56 |
Synchronization | 500 ± 204 (167; 739) | 423 ± 139 (348; 583) | 578 ± 165 (290; 814) | 436 ± 177 (146; 640) | 0.42 |
Heel (%) | 49.4 ± 7.60 (35.5; 59.7) | 41.3 ± 5.37 (37.2; 47.4) | 50.3 ± 9.52 (39.5; 68.4) | 39.0 ± 10.5 (24.5; 52.6) | 0.11 |
Left (%) | 47.9 ± 5.29 (39.2; 34.5) | 51.2 ± 6.85 (43.3; 55.3) | 49.1 ± 6.11 (40.4; 58.0) | 50.4 ± 6.50 (42.4; 60.0) | 0.21 |
Male (n = 15) | Reference (n = 47) | Female (n = 10) | Reference (n = 53) | Effect Size | |
d | |||||
Age Range: 71.0–85.0 years (older Adults) | |||||
Mean Heights (m) | 1.75 | 1.72 | 1.58 | 1.59 | |
Stride length (m) | 0.93 ± 0.25 (0.54; 1.20) | 1.37 ± 0.19 (1.12; 1.61) | 0.91 ± 0.15 (0.72; 1.16) | 1.28 ± 0.21 (1.00; 1.53) | 0.10 |
Walking speed (m/s) | 0.79 ± 0.27 (0.40; 1.14) | 1.21 ± 0.23 (0.90; 1.51) | 0.76 ± 0.21 (0.40; 1.10) | 1.20 ± 0.25 (0.78; 1.50) | 0.13 |
Cadence (steps/min) | 99 ± 12.4 (77; 112) | 111 ± 9.78 (99; 124) | 98 ± 16.1 (63; 119) | 119 ± 10.0 (105; 130) | 0.07 |
Stance phase (%) | 65.1 ± 3.61 (59.2; 70.4) | 65.5 ± 2.51 (57.3; 63.1) | 63.5 ± 5.43 (54.7; 72.5) | 59.9 ± 2.95 (56.6; 54.6) | 0.35 |
Double support (%) | 14.5 ± 4.41 (8.80; 21.0) | 10.9 ± 2.12 (8.25; 13.4) | 14.3 ± 6.43 (6.22; 27.1) | 10.5 ± 2.88 (7.55; 13.9) | 0.04 |
Single support (%) | 35.2 ± 4.24 (29.7; 41.7) | 39.2 ± 2.16 (36.4; 42.2) | 35.6 ± 5.83 (25.7; 44.7) | 39.5 ± 2.58 (36.3; 43.3) | 0.08 |
Foot height (cm) | 0.15 ± 0.03 (0.10; 0.18) | 0.19 ± 0.02 (0.16; 0.22) | 0.13 ± 0.02 (0.10; 0.16) | 0.17 ± 0.03 (0.13; 0.21) | 0.80 |
Roll-off angle (°) | −33.6 ± 8.90 (−46.8; −19.6) | −65.7 ± 8.68 (−75.9; −53.5) | −39.8 ± 11.0 (−63.0; −26.7) | −63.5 ± 10.3 (−76.6; −49.5) | 0.62 |
Landing angle (°) | 10.4 ± 6.35 (1.36; 21.2) | 27.3 ± 5.77 (20.9; 33.4) | 10.6 ± 4.62 (1.73; 16.3) | 22.7 ± 5.05 (15.1; 28.7) | 0.04 |
Age Range: 85.1–96.5 years (very older Adults) | |||||
Male (n = 10) | Reference (n = 6 *) | Female (n = 15) | Reference (n = 14) | d | |
Mean heights (m) | 1.67 | 1.71 | 1.58 | 1.54 | |
Stride length (m) | 0.94 ± 0.17 (0.74; 1.30) | 1.09 ± 0.23 (0.75; 1.40) | 0.86 ± 0.22 (0.52; 1.17) | 1.02 ± 0.25 (0.73; 1.43) | 0.41 |
Walking speed (m/s) | 0.78 ± 0.18 (0.59; 1.17) | 0.90 ± 0.24 (0.62; 1.21) | 0.71 ± 0.26 (0.30; 1.11) | 0.92 ± 0.30 (0.55; 1.39) | 0.32 |
Cadence (steps/min) | 98 ± 6.26 (89; 109) | 103 ± 10.6 (83; 112) | 96 ± 16.3 (68; 119) | 111 ± 10.3 (92; 123) | 0.18 |
Stance phase (%) | 65.3 ± 3.49 (60.7; 71.3) | 63.8 ± 4.67 (58.9; 71.9) | 65.4 ± 5.33 (59.3; 74.3) | 63.8 ± 5.11 (57.8; 71.8) | 0.02 |
Double support (%) | 16.1 ± 3.96 (10.2; 22.3) | 13.6 ± 4.59 (9.93; 21.4) | 14.6 ± 5.26 (9.18; 23.6) | 13.5 ± 4.17 (8.26; 20.3) | 0.33 |
Single support (%) | 34.2 ± 4.33 (27.6; 39.8) | 37.7 ± 3.55 (32.7; 41.6) | 35.2 ± 5.33 (26.8; 41.3) | 37.1 ± 2.69 (32.2; 40.4) | 0.21 |
Foot height (cm) | 0.14 ± 0.03 (0.10; 0.20) | 0.18 ± 0.03 (0.15; 0.21) | 0.12 ± 0.03 (0.07; 0.17) | 0.14 ± 0.02 (0.12; 0.18) | 0.67 |
Roll-off angle (°) | −33.5 ± 7.69 (−45.1; −20.6) | −53.1 ± 8.55 (−62.5; −39.1) | −37.8 ± 12.0 (−54.1; −18.5) | −56.3 ± 11.6 (−74.5; −38.7) | 0.44 |
Landing angle (°) | 8.22 ± 6.18 (1.94; 21.0) | 19.2 ± 5.49 (12.9; 27.9) | 10.6 ± 4.97 (3.68; 19.4) | 17.0 ± 7.11 (6.05; 28.7) | 0.43 |
Parameters | Sample | r | 95% CI | Partial Correlation |
---|---|---|---|---|
TIN vs. walking speed | total | 0.472 | 0.215–0.668 | 0.517 |
female | 0.381 | −0.039–0.687 | ||
male | 0.531 | 0.169–0.767 | ||
TIN vs. BI | total | 0.451 | 0.201–0.646 | 0.473 |
female | 0.566 | 0.217–0.786 | ||
male | 0.528 | 0.181–0.758 | ||
landing angle vs. F5–6 | total | −0.415 | −0.634–−0.135 | −0.419 |
female | −0.456 | −0.731–0.054 | ||
male | −0.380 | −0.697–0.062 | ||
TIN vs. F2–4 | total | −0.355 | −0.595–−0.056 | −0.314 |
female | −0.410 | −0.715–0.028 | ||
male | −0.218 | −0.595–0.237 | ||
CFS vs. GDS | total | 0.285 | 0.007–0.521 | 0.474 |
female | 0.637 | 0.321–0.826 | ||
male | 0.174 | −0.232–0.528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwesig, R.; Strutz, N.; Schönenberg, A.; Panian, M.; Delank, K.-S.; Laudner, K.G.; Prell, T. Quantifying Gait and Posture in Geriatric Inpatients Using Inertial Sensors and Posturography: A Cross-Sectional Study. Diagnostics 2025, 15, 2578. https://doi.org/10.3390/diagnostics15202578
Schwesig R, Strutz N, Schönenberg A, Panian M, Delank K-S, Laudner KG, Prell T. Quantifying Gait and Posture in Geriatric Inpatients Using Inertial Sensors and Posturography: A Cross-Sectional Study. Diagnostics. 2025; 15(20):2578. https://doi.org/10.3390/diagnostics15202578
Chicago/Turabian StyleSchwesig, René, Nicole Strutz, Aline Schönenberg, Matti Panian, Karl-Stefan Delank, Kevin G. Laudner, and Tino Prell. 2025. "Quantifying Gait and Posture in Geriatric Inpatients Using Inertial Sensors and Posturography: A Cross-Sectional Study" Diagnostics 15, no. 20: 2578. https://doi.org/10.3390/diagnostics15202578
APA StyleSchwesig, R., Strutz, N., Schönenberg, A., Panian, M., Delank, K.-S., Laudner, K. G., & Prell, T. (2025). Quantifying Gait and Posture in Geriatric Inpatients Using Inertial Sensors and Posturography: A Cross-Sectional Study. Diagnostics, 15(20), 2578. https://doi.org/10.3390/diagnostics15202578