Infrequent HPV Infection in Colorectal Neuroendocrine Carcinoma: Molecular and Histologic Characteristics
Abstract
1. Introduction
2. Methods
3. Results
3.1. Clinical Characteristics
3.2. Histologic Features of Colorectal Neuroendocrine Carcinoma
3.3. High-Risk HPV In Situ Hybridization and p16 Immunostaining
3.4. Genetic Alterations and Immunophenotypic Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bernick, P.E.; Klimstra, D.S.; Shia, J.; Minsky, B.; Saltz, L.; Shi, W.; Thaler, H.; Guillem, J.; Paty, P.; Cohen, A.M.; et al. Neuroendocrine carcinomas of the colon and rectum. Dis. Colon Rectum 2004, 47, 163–169. [Google Scholar] [CrossRef]
- Bertani, E.; Ravizza, D.; Milione, M.; Massironi, S.; Grana, C.M.; Zerini, D.; Piccioli, A.N.; Spinoglio, G.; Fazio, N. Neuroendocrine neoplasms of rectum: A management update. Cancer Treat. Rev. 2018, 66, 45–55. [Google Scholar] [CrossRef]
- Shafqat, H.; Ali, S.; Salhab, M.; Olszewski, A.J. Survival of patients with neuroendocrine carcinoma of the colon and rectum: A population-based analysis. Dis. Colon Rectum 2015, 58, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Conte, B.; George, B.; Overman, M.; Estrella, J.; Jiang, Z.Q.; Mehrvarz Sarshekeh, A.; Ferrarotto, R.; Hoff, P.M.; Rashid, A.; Yao, J.C.; et al. High-Grade Neuroendocrine Colorectal Carcinomas: A Retrospective Study of 100 Patients. Clin. Color. Cancer 2016, 15, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, W.; Yotsukura, M.; Yoshida, Y.; Nakagawa, K.; Kashima, J.; Yatabe, Y.; Watanabe, S.I. Clinical and Pathologic Differences between Small-Cell Carcinoma and Large-Cell Neuroendocrine Carcinoma of the Lung. Ann. Surg. Oncol. 2024, 31, 5697–5705. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Sung, C.O. Comprehensive analysis of mutational and clinicopathologic characteristics of poorly differentiated colorectal neuroendocrine carcinomas. Sci. Rep. 2021, 11, 6203. [Google Scholar] [CrossRef]
- Sun, J.M.; Ahn, M.J.; Ahn, J.S.; Um, S.W.; Kim, H.; Kim, H.K.; Choi, Y.S.; Han, J.; Kim, J.; Kwon, O.J.; et al. Chemotherapy for pulmonary large cell neuroendocrine carcinoma: Similar to that for small cell lung cancer or non-small cell lung cancer? Lung Cancer 2012, 77, 365–370. [Google Scholar] [CrossRef]
- Frydman, A.; Srirajaskanthan, R. An Update on the Management of Rectal Neuroendocrine Neoplasms. Curr. Treat. Options Oncol. 2024, 25, 1461–1470. [Google Scholar] [CrossRef]
- Forman, D.; de Martel, C.; Lacey, C.J.; Soerjomataram, I.; Lortet-Tieulent, J.; Bruni, L.; Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; et al. Global burden of human papillomavirus and related diseases. Vaccine 2012, 30 (Suppl. 5), F12–F23. [Google Scholar] [CrossRef]
- De Vuyst, H.; Clifford, G.M.; Nascimento, M.C.; Madeleine, M.M.; Franceschi, S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: A meta-analysis. Int. J. Cancer 2009, 124, 1626–1636. [Google Scholar] [CrossRef]
- de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef]
- Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health 2016, 4, e609–e616. [Google Scholar] [CrossRef]
- Cox, A.J.; Crowe, W.E.; Yang, Q.; Zhang, B.; Oltvai, Z.N.; Liao, X. Clinicopathologic and Molecular Characterization of Anorectal Neuroendocrine Carcinomas Reveals Human Papillomavirus, p53, and c-Myc as Alternative Mechanisms of Carcinogenesis. Mod. Pathol. 2023, 36, 100295. [Google Scholar] [CrossRef]
- Metovic, J.; Barella, M.; Bianchi, F.; Hofman, P.; Hofman, V.; Remmelink, M.; Kern, I.; Carvalho, L.; Pattini, L.; Sonzogni, A.; et al. Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch. 2021, 478, 5–19. [Google Scholar] [CrossRef]
- Yoshida, T.; Kamimura, K.; Hosaka, K.; Doumori, K.; Oka, H.; Sato, A.; Fukuhara, Y.; Watanabe, S.; Sato, T.; Yoshikawa, A.; et al. Colorectal neuroendocrine carcinoma: A case report and review of the literature. World J. Clin. Cases 2019, 7, 1865–1875. [Google Scholar] [CrossRef]
- El Demellawy, D.; Khalifa, M.A.; Ismiil, N.; Wong, S.; Ghorab, Z. Primary colorectal small cell carcinoma: A clinicopathological and immunohistochemical study of 10 cases. Diagn. Pathol. 2007, 2, 35. [Google Scholar] [CrossRef]
- Wagner, S.; Prigge, E.S.; Wuerdemann, N.; Reder, H.; Bushnak, A.; Sharma, S.J.; Obermueller, T.; von Knebel Doeberitz, M.; Dreyer, T.; Gattenlohner, S.; et al. Evaluation of p16(INK4a) expression as a single marker to select patients with HPV-driven oropharyngeal cancers for treatment de-escalation. Br. J. Cancer 2020, 123, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Evans, H.; Lantzy, L.; Scharre, K.; Youssef, E. p16(INK4A) is a surrogate biomarker for a subset of human papilloma virus-associated dysplasias of the uterine cervix as determined on the Pap smear. Diagn. Cytopathol. 2005, 32, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, A.M. Immunohistochemistry in the diagnosis and classification of neuroendocrine neoplasms: What can brown do for you? Hum. Pathol. 2020, 96, 8–33. [Google Scholar] [CrossRef] [PubMed]
- Oronsky, B.; Ma, P.C.; Morgensztern, D.; Carter, C.A. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 2017, 19, 991–1002. [Google Scholar] [CrossRef]
- Das, S.; Dasari, A. Epidemiology, Incidence, and Prevalence of Neuroendocrine Neoplasms: Are There Global Differences? Curr. Oncol. Rep. 2021, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, S.; Marando, A.; Sessa, F.; Capella, C. Mixed Adenoneuroendocrine Carcinomas (MANECs) of the Gastrointestinal Tract: An Update. Cancers 2012, 4, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Eggenberger, J.C. Carcinoid and other neuroendocrine tumors of the colon and rectum. Clin. Colon Rectal Surg. 2011, 24, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M. Gastrointestinal neuroendocrine tumors in 2020. World J. Gastrointest. Oncol. 2020, 12, 791–807. [Google Scholar] [CrossRef]
- Levenson, R.M., Jr.; Ihde, D.C.; Matthews, M.J.; Cohen, M.H.; Gazdar, A.F.; Bunn, P.A., Jr.; Minna, J.D. Small cell carcinoma presenting as an extrapulmonary neoplasm: Sites of origin and response to chemotherapy. J. Natl. Cancer Inst. 1981, 67, 607–612. [Google Scholar]
- Brenner, B.; Tang, L.H.; Klimstra, D.S.; Kelsen, D.P. Small-cell carcinomas of the gastrointestinal tract: A review. J. Clin. Oncol. 2004, 22, 2730–2739. [Google Scholar] [CrossRef]
- Le, Z.H.M.; Khoo, W.S.K.; Kumar, K. A Rare Case of Rectosigmoid Small Cell Carcinoma. Cureus 2023, 15, e41339. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.H.; Park, J.; Kim, H.Y.; Lee, S.I.; Nam, E.M.; Park, J.O.; Kim, K.; Jung, C.W.; Im, Y.H.; et al. Extrapulmonary small-cell carcinoma: A single-institution experience. Jpn. J. Clin. Oncol. 2004, 34, 250–254. [Google Scholar] [CrossRef]
- Remick, S.C.; Ruckdeschel, J.C. Extrapulmonary and pulmonary small-cell carcinoma: Tumor biology, therapy, and outcome. Med. Pediatr. Oncol. 1992, 20, 89–99. [Google Scholar] [CrossRef]
- Lim, J.U.; Ryu, W.K.; Park, N.; Choi, J.; Lee, E.; Lee, S.Y.; Lim, J.H. Current and future perspectives in extensive-stage small-cell lung cancer. Ther. Adv. Med. Oncol. 2025, 17, 17588359251326705. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, D.; Zhao, S.; Gao, P.; Song, Y.; Sun, Y.; Chen, X.; Wang, Z. The efficacy of chemotherapy and operation in patients with colorectal neuroendocrine carcinoma. J. Surg. Res. 2018, 225, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.L.; van Suylen, R.J.; Thunnissen, E.; den Bakker, M.A.; Groen, H.J.; Smit, E.F.; Damhuis, R.A.; van den Broek, E.C.; Speel, E.M.; Dingemans, A.C.; et al. Chemotherapy for pulmonary large cell neuroendocrine carcinomas: Does the regimen matter? Eur. Respir. J. 2017, 49, 1601838. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.; Li, Q.; Freeburg, N.F.; Murali, N.; Indeglia, A.; Grothusen, G.P.; Cicchini, M.; Mai, H.; Gladstein, A.C.; Adler, K.M.; et al. p53 restoration in small cell lung cancer identifies a latent cyclophilin-dependent necrosis mechanism. Nat. Commun. 2023, 14, 4403. [Google Scholar] [CrossRef] [PubMed]
- Gealy, R.; Zhang, L.; Siegfried, J.M.; Luketich, J.D.; Keohavong, P. Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women. Cancer Epidemiol. Biomark. Prev. 1999, 8 Pt 1, 297–302. [Google Scholar]
- Wakuda, K.; Kenmotsu, H.; Serizawa, M.; Koh, Y.; Isaka, M.; Takahashi, S.; Ono, A.; Taira, T.; Naito, T.; Murakami, H.; et al. Molecular profiling of small cell lung cancer in a Japanese cohort. Lung Cancer 2014, 84, 139–144. [Google Scholar] [CrossRef]
- Rekhtman, N.; Pietanza, M.C.; Hellmann, M.D.; Naidoo, J.; Arora, A.; Won, H.; Halpenny, D.F.; Wang, H.; Tian, S.K.; Litvak, A.M.; et al. Next-Generation Sequencing of Pulmonary Large Cell Neuroendocrine Carcinoma Reveals Small Cell Carcinoma-like and Non-Small Cell Carcinoma-like Subsets. Clin. Cancer Res. 2016, 22, 3618–3629. [Google Scholar] [CrossRef]
- Saghaeiannejad Esfahani, H.; Vela, C.M.; Chauhan, A. Prevalence of TP-53/Rb-1 Co-Mutation in Large Cell Neuroendocrine Carcinoma. Front. Oncol. 2021, 11, 653153. [Google Scholar] [CrossRef]
- Papavassiliou, K.A.; Sofianidi, A.A.; Gogou, V.A.; Anagnostopoulos, N.; Papavassiliou, A.G. P53 and Rb Aberrations in Small Cell Lung Cancer (SCLC): From Molecular Mechanisms to Therapeutic Modulation. Int. J. Mol. Sci. 2024, 25, 2479. [Google Scholar] [CrossRef]
- Morkel, M.; Riemer, P.; Blaker, H.; Sers, C. Similar but different: Distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget 2015, 6, 20785–20800. [Google Scholar] [CrossRef]
- Woischke, C.; Schaaf, C.W.; Yang, H.M.; Vieth, M.; Veits, L.; Geddert, H.; Markl, B.; Stommer, P.; Schaeffer, D.F.; Frolich, M.; et al. In-depth mutational analyses of colorectal neuroendocrine carcinomas with adenoma or adenocarcinoma components. Mod. Pathol. 2017, 30, 95–103. [Google Scholar] [CrossRef]
- Amarasena, I.U.; Chatterjee, S.; Walters, J.A.; Wood-Baker, R.; Fong, K.M. Platinum versus non-platinum chemotherapy regimens for small cell lung cancer. Cochrane Database Syst. Rev. 2015, 2015, CD006849. [Google Scholar] [CrossRef]
- Jardim, D.L.; Wheler, J.J.; Hess, K.; Tsimberidou, A.M.; Zinner, R.; Janku, F.; Subbiah, V.; Naing, A.; Piha-Paul, S.A.; Westin, S.N.; et al. FBXW7 mutations in patients with advanced cancers: Clinical and molecular characteristics and outcomes with mTOR inhibitors. PLoS ONE 2014, 9, e89388. [Google Scholar] [CrossRef]
- Li, Y.; Nichols, M.A.; Shay, J.W.; Xiong, Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 1994, 54, 6078–6082. [Google Scholar]
- Nemes, J.A.; Deli, L.; Nemes, Z.; Marton, I.J. Expression of p16(INK4A), p53, and Rb proteins are independent from the presence of human papillomavirus genes in oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 102, 344–352. [Google Scholar] [CrossRef]
- Soltan, M.A.; Alhanshani, A.A.; Shati, A.A.; Alqahtani, Y.A.; Alshaya, D.S.; Alharthi, J.; Altalhi, S.A.; Fayad, E.; Zaki, M.S.A.; Eid, R.A. Cyclin Dependent Kinase Inhibitor 2A Genetic and Epigenetic Alterations Interfere with Several Immune Components and Predict Poor Clinical Outcome. Biomedicines 2023, 11, 2254. [Google Scholar] [CrossRef]
Case # | Tumor Site | Age | Gender | Histologic Features | HPV Ish | Stage at Diagnosis | Metastatic Sites During Progression | Primary Chemo Regimen | Follow-Up Months | Outcome |
---|---|---|---|---|---|---|---|---|---|---|
1 | Ascending | 76 | Male | Small cell | Negative | M1 * | Multiple organs | FOLFOX | 2 | Died |
2 | Ascending | 78 | Male | Large cell | Negative | pT4a N2a | Liver | Platinum-based | 11 | Died |
3 | Sigmoid | 48 | Female | Small cell | Negative | pT4 | Peritonium | Platinum-based | 16 | Died |
4 | Rectum | 41 | Male | Large cell | Negative | pT3N2b | Brain | FOLFOX | 42 | Died |
5 | Rectum | 64 | Male | Large cell | Negative | pT4 | Multiple organs | FOLFOX | 12 | Died |
6 | Rectum | 59 | Male | Large cell | N/A | cT4bN2bM1 | Bladder | Platinum-based | 8 | Died |
7 | Rectum | 86 | Male | Small cell | Negative | Lost follow-up | ||||
8 | Rectum | 50 | Male | Small cell | Negative | cT3N1M1 | Liver | Platinum-based | 14 | Died |
9 | Rectum | 59 | Male | Small cell | N/A | cT4N1M1 | Bone | FOLFOX | 6 | Died |
10 | Rectum | 80 | Female | Small cell | Negative | M1 * | Liver and Lung | Platinum-based | 8 | Died |
11 | Rectum | 58 | Male | Small cell | N/A | pT4 | Multiple organs | Platinum-based | 13 | Died |
12 | Rectum | 64 | Male | Large cell | Positive | pT2N1b | Lung | FOLFOX | 54 | Alive |
Small Cell Neuroendocrine Carcinoma (n = 7) | Large Cell Neuroendocrine Carcinoma (n = 5) | p Value | ||
---|---|---|---|---|
Histologic features | Molding | 100% (7/7) | 40% (2/5) | 0.0180 |
Crush artifact | 71% (5/7) | 20% (1/5) | 0.0790 | |
Tumor necrosis | 71% (5/7) | 60% (3/5) | 0.6788 | |
Apoptosis | 71% (5/7) | 80% (4/5) | 0.7353 | |
Cytoplasmic absence | 100% (7/7) | 20% (1/5) | 0.0038 | |
Hyperchromatic nuclei | 100% (7/7) | 20% (1/5) | 0.0038 | |
Nucleioli | 14% (1/7) | 57% (3/5) | 0.0977 | |
Mitoses (per HPF) | 7.3 ± 5.3 | 9.5 ± 6.6 | 0.5962 | |
Immunostaining Profiles | Synoptophysin | 100% (7/7) | 100% (5/5) | 1 |
Chromogranin | 43% (3/7) | 40% (2/5) | 0.9212 | |
Ki67 (%) | 72 ± 27 | 72 ± 13 | 0.9695 | |
Genetic Abnormalities | TP53 | 86% (6/7) | 60% (3/5) | 0.3105 |
Kras | 29% (2/7) | 40% (2/5) | 0.4140 | |
APC | 14% (1/7) | 0% (0/5) | 0.3774 | |
BRAF V600E | 29% (2/7) | 0% (0/5) | 0.1904 | |
RB | 29% (2/7) | 20% (1/5) | 0.7353 | |
FBXW7 | 29% (2/7) | 20% (1/5) | 0.7353 | |
Chemotherapy | Platinum based | 67% (4/6) * | 40% (2/5) | 0.3765 |
Median survivle time (months) | 10.5 (2–16) | 12 (8–54) | 0.1129 |
Case # | Histologic Features | HPV Ish | Synaptophysin | Chromogranin | Other Positive NE Markers | P16 | Ki67 | TP53 | Kras | APC | BRAF V600E | RB | FBXW7 | MMR | PD-L1 (CPS) | Her2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Small cell | − | + | − | CD56 | N/A | 30 | Mutation | wildtype | wildtype | Mutation | wildtype | wildtype | Intact | <1 | Negative |
2 | Large cell | − | + | − | CD56, INMS1 | + | 55 | Mutation | wildtype | wildtype | wildtype | Mutation | wildtype | Intact | >10 | N/A |
3 | Small cell | − | + | − | CD56 | N/A | N/A | wildtype | wildtype | wildtype | Mutation | wildtype | wildtype | Intact | <1 | N/A |
4 | Large cell | − | + | − | CD56, INMS1 | N/A | 60 | Mutation | wildtype | wildtype | wildtype | wildtype | Mutation | Intact | >10 | Negative |
5 | Large cell | − | + | − | CD56 | N/A | 81 | wildtype | Mutation | wildtype | wildtype | wildtype | wildtype | Intact | >10 | N/A |
6 | Large cell | N/A | + | + | CD56 | N/A | 90 | Mutation | Mutation | wildtype | wildtype | wildtype | wildtype | Intact | <1 | N/A |
7 | Small cell | − | + | − | INMS1 | N/A | 99 | Mutation | wildtype | wildtype | wildtype | wildtype | wildtype | Intact | <1 | N/A |
8 | Small cell | − | + | + | N/A | + | 50 | Mutation | wildtype | wildtype | wildtype | wildtype | wildtype | Intact | <1 | Negative |
9 | Small cell | N/A | + | − | INMS1 | N/A | N/A | Mutation | Mutation | wildtype | wildtype | Mutation | wildtype | MSH2 MSH6 loss | <1 | N/A |
10 | Small cell | − | + | + | CD56, INMS1 | N/A | 99 | Mutation | Mutation | wildtype | wildtype | Mutation | Mutation | Intact | <1 | N/A |
11 | Small cell | N/A | + | + | N/A | N/A | 80 | Mutation | wildtype | Mutation | wildtype | wildtype | Mutation | Intact | <1 | N/A |
12 | Large cell | + | + | + | INMS1 | + | 75 | wildtype | wildtype | wildtype | wildtype | wildtype | wildtype | Intact | 5–10 | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhong, M.; Zhang, X.; Liang, Y. Infrequent HPV Infection in Colorectal Neuroendocrine Carcinoma: Molecular and Histologic Characteristics. Diagnostics 2025, 15, 2569. https://doi.org/10.3390/diagnostics15202569
Wang X, Zhong M, Zhang X, Liang Y. Infrequent HPV Infection in Colorectal Neuroendocrine Carcinoma: Molecular and Histologic Characteristics. Diagnostics. 2025; 15(20):2569. https://doi.org/10.3390/diagnostics15202569
Chicago/Turabian StyleWang, Xi, Minghao Zhong, Xuchen Zhang, and Yuanxin Liang. 2025. "Infrequent HPV Infection in Colorectal Neuroendocrine Carcinoma: Molecular and Histologic Characteristics" Diagnostics 15, no. 20: 2569. https://doi.org/10.3390/diagnostics15202569
APA StyleWang, X., Zhong, M., Zhang, X., & Liang, Y. (2025). Infrequent HPV Infection in Colorectal Neuroendocrine Carcinoma: Molecular and Histologic Characteristics. Diagnostics, 15(20), 2569. https://doi.org/10.3390/diagnostics15202569