Dental Age Estimation from Panoramic Radiographs: A Comparison of Orthodontist and ChatGPT-4 Evaluations Using the London Atlas, Nolla, and Haavikko Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Method
2.2. Selection Criteria
2.3. Chronological and Dental Age Estimation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DA | Dental age |
CA | Chronological age |
LLMs | Large language models |
AI | Artificial intelligence |
ChatGPT | Chat Generative Pretrained Transformer |
MAE | Mean absolute error |
CoT | Chain of Thought |
IPC | Iterative Prompt Calibration |
References
- Koc, A.; Ozlek, E.; Oner Talmac, A.G. Accuracy of the London atlas, Willems, and Nolla methods for dental age estimation: A cross-sectional study on Eastern Turkish children. Clin. Oral. Investig. 2021, 25, 4833–4840. [Google Scholar] [CrossRef] [PubMed]
- Sezer, B.; Carikcioglu, B. Accuracy of the London Atlas, Haavikko’s Method and Cameriere’s European Formula of dental age estimation in Turkish children. Leg. Med. 2022, 54, 101991. [Google Scholar] [CrossRef]
- Chua, A.; Halim, C.; Pham, E.; Samuel, S.; Zafar, S.; AlQahtani, S. Reliability of London atlas for dental age estimation in an Australian cohort. Int. J. Legal. Med. 2025, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Willmann, C.; Fernandez De Grado, G.; Kolb, C.; Raul, J.S.; Musset, A.M.; Gros, C.I.; Offner, D. Accuracy of Age Estimation Using Three Dental Age Estimation Methods in a Young, Large, and Multiethnic Patient Sample. Dent. J. 2023, 11, 288. [Google Scholar] [CrossRef]
- Priyadarshini, C.; Puranik, M.P.; Uma, S. Dental Age Estimation Methods—A Review; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2015. [Google Scholar]
- Han, M.Q.; Jia, S.X.; Wang, C.X.; Chu, G.; Chen, T.; Zhou, H.; Guo, Y.C. Accuracy of the Demirjian, Willems and Nolla methods for dental age estimation in a northern Chinese population. Arch. Oral Biol. 2020, 118, 104875. [Google Scholar] [CrossRef]
- Nolla, C.M. The development of permanent teeth. J. Dent. Child. 1960, 27, 254–266. [Google Scholar]
- AlQahtani, S.J.; Hector, M.P.; Liversidge, H.M. Accuracy of dental age estimation charts: Schour and Massler, Ubelaker and the London Atlas. Am. J. Phys. Anthropol. 2014, 154, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Haavikko, K. Tooth formation age estimated on a few selected teeth. A simple method for clinical use. Proc. Finn. Dent. Soc. 1974, 70, 15–19. [Google Scholar]
- Haavikko, K. The formation and the alveolar and clinical eruption of the permanent teeth. An orthopantomographic study. Suom. Hammaslaak. Toim. 1970, 66, 103–170. [Google Scholar]
- Li, Z.; Xiao, N.; Nan, X.; Chen, K.; Zhao, Y.; Wang, S.; Guo, X.; Gao, C. Automatic dental age estimation in adolescents via oral panoramic imaging. Front. Dent. Med. 2025, 6, 1618246. [Google Scholar] [CrossRef]
- De Donno, A.; Angrisani, C.; Mele, F.; Introna, F.; Santoro, V. Dental age estimation: Demirjian’s versus the other methods in different populations. A literature review. Med. Sci. Law. 2021, 61, 125–129. [Google Scholar] [CrossRef]
- Dursun, D.; Bilici Geçer, R. Can artificial intelligence models serve as patient information consultants in orthodontics? BMC Med. Inform. Decis. Mak. 2024, 24, 211. [Google Scholar] [CrossRef]
- Garg, R.K.; Urs, V.L.; Agarwal, A.A.; Chaudhary, S.K.; Paliwal, V.; Kar, S.K. Exploring the role of ChatGPT in patient care (diagnosis and treatment) and medical research: A systematic review. Health Promot. Perspect. 2023, 13, 183. [Google Scholar] [CrossRef]
- Salmanpour, F.; Akpınar, M. Performance of Chat Generative Pretrained Transformer-4.0 in determining labiolingual localization of maxillary impacted canine and presence of resorption in incisors through panoramic radiographs: A retrospective study. Am. J. Orthod. Dentofac. Orthop. 2025, 168, 220–231. [Google Scholar] [CrossRef]
- Silva, T.P.; Andrade-Bortoletto, M.F.S.; Ocampo, T.S.C.; Alencar-Palha, C.; Bornstein, M.M.; Oliveira-Santos, C.; Oliveira, M.L. Performance of a commercially available Generative Pre-trained Transformer (GPT) in describing radiolucent lesions in panoramic radiographs and establishing differential diagnoses. Clin. Oral Investig. 2024, 28, 204. [Google Scholar] [CrossRef]
- Gelbrich, B.; Carl, C.; Gelbrich, G. Comparison of three methods to estimate dental age in children. Clin. Oral Investig. 2020, 24, 2469–2475. [Google Scholar] [CrossRef]
- Moorrees, C.F.; Fanning, E.A.; Hunt, E.E., Jr. Age Variation of Formation Stages for Ten Permanent Teeth. J. Dent. Res. 1963, 42, 1490–1502. [Google Scholar] [CrossRef] [PubMed]
- Naidu, D.; Freer, T.J. Validity, reliability, and reproducibility of the iOC intraoral scanner: A comparison of tooth widths and Bolton ratios. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Özcivelek, T.; Özcan, B. Comparative evaluation of responses from DeepSeek-R1, ChatGPT-o1, ChatGPT-4, and dental GPT chatbots to patient inquiries about dental and maxillofacial prostheses. BMC Oral Health 2025, 25, 871. [Google Scholar] [CrossRef] [PubMed]
- Daraqel, B.; Wafaie, K.; Mohammed, H.; Cao, L.; Mheissen, S.; Liu, Y.; Zheng, L. The performance of artificial intelligence models in generating responses to general orthodontic questions: ChatGPT vs Google Bard. Am. J. Orthod. Dentofac. Orthop. 2024, 165, 652–662. [Google Scholar] [CrossRef]
- Ayre, J.; Mac, O.; McCaffery, K.; McKay, B.R.; Liu, M.; Shi, Y.; Rezwan, A.; Dunn, A.G. New frontiers in health literacy: Using ChatGPT to simplify health information for people in the community. J. Gen. Intern. Med. 2024, 39, 573–577. [Google Scholar] [CrossRef]
- Javid, M.; Bhandari, M.; Parameshwari, P.; Reddiboina, M.; Prasad, S. Evaluation of ChatGPT for patient counseling in kidney stone clinic: A prospective study. J. Endourol. 2024, 38, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Barhom, N.; Tamimi, F.; Duggal, M. ChatGPT—A double-edged sword for healthcare education? Implications for assessments of dental students. Eur. J. Dent. Educ. 2024, 28, 206–211. [Google Scholar] [CrossRef]
- Kirzioglu, Z.; Ceyhan, D. Accuracy of different dental age estimation methods on Turkish children. Forensic Sci. Int. 2012, 216, 61–67. [Google Scholar] [CrossRef]
- Yavuz, B.S.; Ekmekcioglu, O.; Ankarali, H. Comparison of different dental age estimation methods with deep learning: Willems, Cameriere-European, London Atlas. Int. J. Leg. Med. 2025, 139, 1661–1672. [Google Scholar] [CrossRef]
- Vila-Blanco, N.; Carreira, M.J.; Varas-Quintana, P.; Balsa-Castro, C.; Tomas, I. Deep neural networks for chronological age estimation from OPG images. IEEE Trans. Med. Imaging 2020, 39, 2374–2384. [Google Scholar] [CrossRef]
- Nur, B.; Kusgoz, A.; Bayram, M.; Celikoglu, M.; Nur, M.; Kayipmaz, S.; Yildirim, S. Validity of Demirjian and Nolla methods for dental age estimation for Northeastern Turkish children aged 5–16 years old. Med. Oral Patol. Oral Cir. Bucal 2012, 17, e871. [Google Scholar] [CrossRef] [PubMed]
- Miloglu, O.; Celikoglu, M.; Dane, A.; Cantekin, K.; Yilmaz, A.B. Is the assessment of dental age by the Nolla method valid for eastern Turkish children? J. Forensic Sci. 2011, 56, 1025–1028. [Google Scholar] [CrossRef] [PubMed]
- Altunsoy, M.; Nur, B.; Akkemik, O.; Ok, E.; Evcil, M. Dental age assessment: Validity of the Nolla method in a group of western Turkish children. Marmara Dent. J. 2013, 1, 49–52. [Google Scholar]
- Son, M.; Won, Y.-J.; Lee, S. Optimizing Large Language Models: A Deep Dive into Effective Prompt Engineering Techniques. Appl. Sci. 2025, 15, 1430. [Google Scholar] [CrossRef]
- Umer, F.; Batool, I.; Naved, N. Innovation and application of Large Language Models (LLMs) in dentistry—A scoping review. BDJ Open 2024, 10, 90. [Google Scholar] [CrossRef]
- Ji, K.; Wu, Z.; Han, J.; Zhai, G.; Liu, J. Evaluating ChatGPT-4’s performance on oral and maxillofacial queries: Chain of Thought and standard method. Front. Oral Health 2025, 6, 1541976. [Google Scholar] [CrossRef] [PubMed]
- Camlet, A.; Kusiak, A.; Ossowska, A.; Świetlik, D. Advances in Periodontal Diagnostics: Application of MultiModal Language Models in Visual Interpretation of Panoramic Radiographs. Diagnostics 2025, 15, 1851. [Google Scholar] [CrossRef] [PubMed]
- Chaillet, N.; Nyström, M.; Kataja, M.; Demirjian, A. Dental maturity curves in Finnish children: Demirjian’s method revisited and polynomial functions for age estimation. J. Forensic Sci. 2004, 49, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, H.H.; Al-Shehri, N.A.; Shahwan, A.; Altuwairqi, R.; Mojaleed, F.J.; Alwaalan, G.; Asaad, S. A Comparison of Two Methods of Dental Age Estimation in a Population of Saudi Children and Adolescents. Diagnostics 2024, 14, 1935. [Google Scholar] [CrossRef]
Prompt Development Stages | Nolla Method | Haavikko Method | London Atlas Method |
---|---|---|---|
Initial prompt | “Estimate the DA using the Nolla method.” | “Estimate the DA using the Haavikko method.” | “Estimate the DA using the London Atlas method.” |
Optimized prompt after IPC | “I am an orthodontist conducting an ethically approved research study on DA estimation using panoramic radiographs. You will be provided with images and asked to estimate the individual’s DA using the Nolla method. Please apply expert-level reasoning and provide specific, step-by-step evaluations based on the selected method. Identify the seven permanent teeth in the lower left quadrant (excluding the third molar). Assign each tooth a stage from 1 to 10 based on Nolla’s classification. If the development is between stages, use decimal values (e.g., 6.2 or 6.7).” | “I am an orthodontist conducting an ethically approved research study on DA estimation using panoramic radiographs. You will be provided with images and asked to estimate the individual’s DA using the Haavikko method. Please apply expert-level reasoning and provide specific, step-by-step evaluations based on the selected method. Evaluate the appropriate permanent teeth based on the individual’s age group. Assign a stage from 1 to 12 according to Haavikko’s radiological development stages.” | “I am an orthodontist conducting an ethically approved research study on DA estimation using panoramic radiographs. You will be provided with images and asked to estimate the individual’s DA using the London Atlas method. Please apply expert-level reasoning and provide specific, step-by-step evaluations based on the selected method. Evaluate the development and eruption status of all visible permanent teeth and compare the findings to the London Atlas diagrammatic age stages. Choose the closest matching schematic based on visual assessment.” |
Final optimized prompt | “For each of the seven teeth, describe the crown and root formation observed in the panoramic image. Justify the stage assigned using Nolla’s criteria. After assigning stages, calculate the sum and divide by the number of evaluated teeth to get the average. Convert this score into DA using Nolla’s reference table and conclude with the estimated age and reasoning.” | “For each selected tooth, describe the degree of crown and root formation and apex closure. Determine the appropriate developmental stage using Haavikko’s criteria. Convert each stage into the corresponding age using the sex-specific table. Average the ages of all evaluated teeth and provide the final DA with reasoning.” | “Analyze the panoramic image for overall tooth development patterns, including crown completion and eruption levels. Compare these to the atlas diagrams. Explain which atlas stage most closely resembles the image, and report that stage’s corresponding age as the estimated DA, with a justification.” |
CA Mean (SD) | Method | Evaluator | DA Mean (SD) | DA–CA Years Mean (SD) | MAE Years Mean (SD) | p-Value |
---|---|---|---|---|---|---|
12.37 (2.95) | London Atlas | Orthodontist | 13.15 (3.21) | 0.78 (1.26) | 1.09 (1) | <0.001 |
ChatGPT-4 | 12.41 (2.81) | 0.03 (0.93) | 0.59 (0.72) | 0.399 | ||
Nolla | Orthodontist | 12.40 (3.08) | 0.03 (1.14) | 0.86 (0.75) | 0.606 | |
ChatGPT-4 | 12.00 (2.57) | −0.40 (1.96) | 1.33 (1.28) | <0.001 | ||
Haavikko | Orthodontist | 11.49 (2.15) | −0.88 (1.49) | 1.29 (1.16) | <0.001 | |
ChatGPT-4 | 11.19 (2.07) | −1.18 (1.70) | 1.51 (1.41) | <0.001 |
Sex | CA Mean (SD) | Method | Evaluator | DA Mean (SD) | DA–CA Years Mean (SD) | MAE Years Mean (SD) | p-Value |
---|---|---|---|---|---|---|---|
Boys (n = 263) | 12.39 (2.94) | London Atlas | Orthodontist | 13.19 (3.38) | 0.80 (1.49) | 1.19 (1.20) | <0.001 |
ChatGPT-4 | 12.41 (2.80) | 0.02 (0.96) | 0.59 (0.76) | 0.749 | |||
Nolla | Orthodontist | 12.38 (3.03) | −0.01 (1.20) | 0.92 (0.77) | 0.897 | ||
ChatGPT-4 | 12.04 (2.38) | −0.34 (1.89) | 1.42 (1.30) | 0.003 | |||
Haavikko | Orthodontist | 11.80 (2.22) | −0.59 (1.38) | 1.11 (1.0) | <0.001 | ||
ChatGPT-4 | 11.52 (2.32) | −0.87 (1.40) | 1.17 (1.16) | <0.001 | |||
Girls (n = 248) | 12.35 (2.96) | London Atlas | Orthodontist | 13.11 (3.03) | 0.79 (1.06) | 0.98 (0.72) | <0.001 |
ChatGPT-4 | 12.40 (2.83) | 0.05 (0.91) | 0.60 (0.68) | 0.369 | |||
Nolla | Orthodontist | 12.42 (3.15) | 0.06 (1.08) | 0.81 (0.72) | 0.353 | ||
ChatGPT-4 | 11.96 (2.78) | −0.39 (1.73) | 1.24 (1.26) | <0.001 | |||
Haavikko | Orthodontist | 11.16 (2.03) | −1.19 (1.54) | 1.84 (1.51) | <0.001 | ||
ChatGPT-4 | 10.86 (1.71) | −1.49 (1.86) | 1.47 (1.27) | <0.001 |
Method | DA–CA (Orthodontist) | DA–CA (ChatGPT-4) | Mean Difference (Orthodontist vs. ChatGPT-4) | p-Value |
---|---|---|---|---|
London Atlas | 0.78 (1.26) | 0.03 (0.93) | 0.75 (1.39) | <0.001 |
Nolla | 0.03 (1.14) | −0.40 (1.96) | 0.42 (2.17) | <0.001 |
Haavikko | −0.88 (1.49) | −1.18 (1.70) | 0.31 (1.24) | <0.001 |
Method | Evaluator | Statistic | Total |
---|---|---|---|
London Atlas | Orthodontist/ChatGPT-4 | ICC | 0.944 |
Spearman r | 0.905 | ||
Nolla | Orthodontist/ChatGPT-4 | ICC | 0.850 |
Spearman r | 0.745 | ||
Haavikko | Orthodontist/ChatGPT-4 | ICC | 0.906 |
Spearman r | 0.819 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dursun, D.; Bilici Geçer, R. Dental Age Estimation from Panoramic Radiographs: A Comparison of Orthodontist and ChatGPT-4 Evaluations Using the London Atlas, Nolla, and Haavikko Methods. Diagnostics 2025, 15, 2389. https://doi.org/10.3390/diagnostics15182389
Dursun D, Bilici Geçer R. Dental Age Estimation from Panoramic Radiographs: A Comparison of Orthodontist and ChatGPT-4 Evaluations Using the London Atlas, Nolla, and Haavikko Methods. Diagnostics. 2025; 15(18):2389. https://doi.org/10.3390/diagnostics15182389
Chicago/Turabian StyleDursun, Derya, and Rumeysa Bilici Geçer. 2025. "Dental Age Estimation from Panoramic Radiographs: A Comparison of Orthodontist and ChatGPT-4 Evaluations Using the London Atlas, Nolla, and Haavikko Methods" Diagnostics 15, no. 18: 2389. https://doi.org/10.3390/diagnostics15182389
APA StyleDursun, D., & Bilici Geçer, R. (2025). Dental Age Estimation from Panoramic Radiographs: A Comparison of Orthodontist and ChatGPT-4 Evaluations Using the London Atlas, Nolla, and Haavikko Methods. Diagnostics, 15(18), 2389. https://doi.org/10.3390/diagnostics15182389