Diagnostic Accuracy of Touchscreen-Based Tests for Mild Cognitive Disorders: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Article Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Meta-Analysis
3. Results
3.1. Studies Included
3.2. Study Characteristics
3.2.1. Participants and Settings
3.2.2. Reference Diagnosis
3.2.3. Touchscreen Test Procedures
3.2.4. Performance Results
3.3. Quality Assessment
3.4. Meta-Analysis
3.4.1. Main Results
3.4.2. Subgroup Analysis
Duration: Brief Test vs. Longer Test
Type of Administration: Self or Assessor Administered
Mobility: Fixed or Mobile Device
Type of Interface: Touchscreen Computer or Tactile Tablet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCI | Mild Cognitive Impairment |
NCD | Neuro Cognitive Disorder |
NINCDS-ADRDA | National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association |
NIAAA | National Institute on Aging-Alzheimer’s Association |
MoCA | Montreal Cognitive Assessment |
MMSE | Mini Mental State Examination |
Appendix A
Themes | MeSH Terms |
---|---|
Age factor | elderly, elder, aged, older adult, geriatrics |
Screening/diagnostic | Diagnosis, diagnose, screening, assessment, evaluation, testing, detection |
Neurocognitive condition | neurodegenerative diseases, cognitive disorders, neurocognitive disorders, dementia, Alzheimer disease |
Touchscreen device | handheld computer, numeric tablet, smartphone, mobile applications, cell phone, touch screen, computer device, mobile technology, computer, electronic device, tablet, tablet computer, mobile device, web app |
Author Year, Country | Participants n (age ± SD) | Name of the Touchscreen Test Language | Functions Assessed | Self-Administration | Touchscreen Test Duration | Mobility | Reference Diagnostic Criteria | Neuropsychological Testing for Reference Diagnosis |
---|---|---|---|---|---|---|---|---|
Alegret 2020 [29], Spain | 61 MCI (67.74 ± 7.93) 154 control (67.98 ± 7.92) | FACEmemory® Spanish | Memory, recognition | yes | 30 | yes | NINCDS/ADRDA | NS |
An 2024 [76], Korea | 126 MCI (70.2 ± 7.8) 55 SCD (69.7 ± 7.2) | Seoul Digital Cognitive Test Korean | Memory, attention, language, visuospatial | NS | 30 | yes | Petersen | SNSB-II |
Berron 2024 [84], Germany and USA | 25 MCI (69.2 ± 6.8) 78 control (68.2 ± 5.5) | Remote Digital Memory Composite English and German | Memory, discrimination, Recognition | yes | NS | yes | NINCDS/ADRDA | MMSE, CERAD and neuropsychological battery tests |
Boz 2019 [31], Turkey | 37 MCI (70.4 ± 7.3) 52 control (67.6 ± 6.0) | Virtual Supermarket Turkish | Visual and verbal memory, executive function, attention, spatial navigation | no | 25 | yes | Petersen | MMSE and neuropsychological battery tests |
Cheah 2022 [34], Taïwan | 59 MCI (67.5 ± 6.3) 59 control (62.6 ± 5.9) | Rey-Osterrieth Complex Figure Taiwanese | Visuospatial, memory, organization skills, attention, visuomotor coordination | no | NS | yes | Jak et al. | Rey-Osterrieth Complex Figure (paper) |
Chin 2020 [35], Korea | 42 MCI (71.7 ± 7.3) 26 control (68.5 ± 6.3) | Inbrain Cognitive Screening Test Korean | Attention, language, visuospatial, memory and executive function | yes | 30 | yes | Petersen | MMSE and Seoul Neuropsychological Screening Battery |
Freedman 2018 [37], Canada | 50 MCI 57 control | Toronto Cognitive Assessment English | Memory, orientation, visuospatial, attention, executive control, language | no | 34 | yes | NIA-AA | Neuropsychological battery tests |
Garre-Olmo 2017 [28], Spain | 12 MCI (63.5 ± 6.5) 17 control (70.2 ± 7.4) | 7 tasks Spanish | Cognitive, kinesthetic, visuospatial, motor features | no | 10–15 | yes | Petersen | Cambridge Cognitive Examination Revised |
Gielis 2021 [39], Belgium | 23 MCI (80.0 ± 5.2) 23 control (70.0 ± 5.4) | Klondike Solitaire Dutch | Cognitive skills, spatial and temporal function | yes | 79 | yes | Petersen | MoCA, MMSE and CDR |
Ishikawa 2019 [27], Japan | 25 MCI (75.9 ± 5.3) 36 control (70.0 ± 5.0) | Five drawing tasks Japanese | Memory, visuospatial, executive function | no | NS | yes | Petersen | MMSE |
Kobayashi 2022 [43], Japan | 65 MCI (74.5 ± 4.9) 52 control (72.6 ± 3.8) | Five drawing tasks Japanese | Memory, visuospatial, executive function | yes | NS | yes | NIA-AA | MMSE and neuropsychological battery tests |
Kubota 2017 [20], USA | 4 MCI 6 control | Virtual Kitchen Challenge English | Executive function, memory, attention, processing speed | yes | NS | yes | NS | Neuropsychological battery tests |
Li 2025 [77], China | 93 MCI (73.1 ± 4.8) 88 control (72.2 ± 5.1) | BrainNursing Chinese | Memory, language, attention, visuospatial, executive and fine motor functions | yes | 25 | yes | NS | MoCA, MMSE and a neuropsychological battery test |
Li 2024 [74], China | 108 MCI (71.3 ± 4.5) 99 control (70.1 ± 4.0) | Drawing and Dragging Tasks Chinese | Memory, attention, orientation, visuospatial, hand motor performance | yes | 15 | yes | NINDS-ADRDA | MoCA, MMSE and a neuropsychological battery test |
Li 2023 [44], China | 61 MCI (71.0 ± 5.8) 59 control (67.9 ± 6.2) | Digital cognitive tests + data from a smartwatch Chinese | Verbal fluency, memory, attention, listening, visuospatial and executive function | yes | NS | yes | Petersen | MMSE and MoCA |
Li 2023 [45], China | 30 MCI (69.2 ± 5.9) 30 control (66.1 ± 7.9) | Fingertip interaction handwriting digital evaluation Chinese | Memory, orientation, optimal decision-making, fingertip executive dynamic abilities | no | NS | yes | NIA-AA | MMSE |
Li 2022 [26], China | 43 MCI (61.9 ± 9.6) 12 control (58.3 ± 14.6) | Tree drawing test Chinese | Feature extraction of the drawing | yes | NS | yes | NS | MMSE |
Libon 2025 [19], USA | 17 MCI (74.8 ± 7.1) 23 control (70.0 ± 8.7) | Digital neuropsychological protocol English | Memory, executive function, language | yes | 10 | yes | NS | Neuropsychological battery tests |
Müller 2019 [47], Germany | 138 MCI (70.8 ± 8.4) 137 control (69.6 ± 7.8) | Digital Clock Drawing Test German | Visual perception and encoding, attention, anticipatory thinking, motor planning and executive functions | NS | 4 | yes | Petersen | CERAD |
Müller 2017 [48], Germany | 30 MCI (65.3 ± 6.6) 20 control (66.9 ± 9.4) | Digitizing visuospatial construction task German | Visuospatial construction, movements kinematics, fine motor control, coordination | yes | <1 | yes | Petersen and NIA-AA | CERAD (German) |
Na 2023 [49], Korea | 93 MCI 73 control | Inbrain Cognitive Screening Test Korean | Visuospatial skills, attention, memory, language, orientation, executive function | yes | NS | yes | Petersen | CERAD (Korean) |
Rigby 2024 [78], USA | 62 MCI (72.1 ± 6.8) 96 control (69.0 ± 6.4) | NIH Toolbox Cognition Battery English and Spanish | Memory, executive function, processing speed | no | 30 | yes | NACC | National Alzheimer’s Coordinating Center Unified Data set version 3 |
Robens 2019 [53], Germany | 64 MCI (67.9 ± 11.2) 67 control (65.9 ± 10.3) | Digitized Tree Drawing Test German | Visuospatial and planning abilities, semantic memory and mental imaging | yes | 4 | yes | Petersen and McKhan | CERAD (German) and Clock Drawing test |
Rodríguez-Salgado 2021 [54], Cuba | 46 MCI (72.7 ± 7.5) 53 control (70.4 ± 5.9) | Brain Health Assessment Cuban-Spanish | Memory, processing speed, executive function, visuospatial skills, language | yes | 10 | yes | NS | MoCA, CERAD, BHA and neuropsychological battery tests |
Simfukwe 2022 [22], Korea | 22 MCI (67.2 ± 6.0) 22 control (53.0 ± 1.5) | Digital Trail Making Test-Black and White English and Korean | Attention, mental flexibility, visual scanning | yes | 5 | yes | NS | Trail Making Test-Black and White |
Sloane 2022 [58], USA | 21 MCI (71.1) 65 control (70.2) | Miro Health English | Movements, speech, language | yes | 5 to 60 | yes | American Academy of Neurology | MMSE, Telephone Interview for Cognitive Status; Geriatric Depression Scale |
Suzumura 2018 [59], Japan | 15 MCI (74.3 ± 6.0) 48 control (73.6 ± 8.3) | JustTouch screen Japanese | Finger motor skills | yes | NS | yes | Petersen | MMSE |
Um Din 2024 [72], France | 49 mNCD (79.5 ± 6.0) 47 control (78.2 ± 8.5) | Digital Clock Drawing Test French | Visuospatial, memory, planification | no | 5 | yes | DSM-V | Neuropsychological battery tests and paper CDT |
Wu 2023 [63], China | 73 MCI 175 control | Efficient Online MCI Screening System Chinese | Memory, attention, flexibility, visuospatial and executive function, cognitive proceeding speed | yes | 10 | yes | Petersen and American Academy of Neurology | MoCA-C, IADL, AD8 questionnaire |
Yamada 2022 [65], Japan | 67 MCI (74.1 ± 4.5) 46 control (72.3 ± 3.9) | Five drawing tasks Japanese | Visuospatial, planification | yes | NS | yes | McKhann, McKeith and Petersen | MMSE |
Ye 2022 [66], USA | 22 MCI (73.5 ± 5.9) 35 control (67.8 ± 9.6) | BrainCheck battery V4.0.0 English | Memory, inhibition, attention, flexibility | yes | 15 to 37 | yes | Alzheimer’s Disease International | Neuropsychological battery tests |
Yu 2019 [71], Taiwan | 14 MCI (74.9 ± 5.2) 18 control (75.8 ± 5.8) | Graphomotor tasks: two graphic and two handwriting tasks Chinese | Fine motor function | no | NS | yes | Petersen | CDR and neuropsychological battery tests |
Zhang 2024 [75], China | 38 MCI (67.5 ± 7.2) 26 control (64.6 ± 7.0) | Tablet’s Geriatric Complex Figure Test Chinese | Memory, visuospatial, planning, attention, fine motor coordination | no | 23 | yes | NIA-AA | Neuropsychological battery tests |
Zygouris 2015 [68], Greece | 34 MCI (70.3 ± 1.2) 21 control (66.6 ± 1.2) | Virtual Supermarket Test Greek | Memory, executive function, attention, spatial navigation | no | 10 | yes | Petersen | MoCA and MMSE |
Zygouris 2020 [69], Greece | 47 MCI (67.9 ± 0.8) 48 SCD (66.0 ± 0.6) | Virtual Supermarket Test Greek | Visual and verbal memory, executive function, attention, spatial navigation | yes | 30 | yes | Petersen | MMSE, MoCA |
Author Year, Country | Participants n (age ± SD) | Name of the Touchscreen Test Language | Functions Assessed | Self-Administration | Touchscreen Test Duration | Mobility | Reference Diagnostic Criteria | Neuropsychological Testing for Reference Diagnosis |
---|---|---|---|---|---|---|---|---|
Ahmed 2012 [23], England | 15 MCI (80.9 ± 7.2) 20 control (77.4 ± 4.0) | Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment English | Memory, language, executive functions | yes | 30 | no | Petersen | ACE-R, MoCA |
Cabinio 2020 [32], Italy | 32 MCI (76.7 ± 5.3) 107 control (76.5 ± 3.0) | The Smart Aging Serious Game Italian | Executive function, attention, memory and orientation | yes | NS | NS | NIA-AA, DSM-5 | MoCA, FCSRT, TMT A&B |
Curiel 2016 [36], USA | 34 MCI (77.6 ± 6.3) 64 control (74.0 ± 7.3) | The Smart Aging Serious Game English | Memory, categorization | NS | 10 | NS | NS | MMSE and the Loewenstein-Acevedo Scales for Semantic Interference and Learning |
Fukui 2015 [38], Japan | 41 MCI (75.3 ± 6.5) 75 control (75.1 ± 6.1) | Touch-panel screening test: flipping cards, finding mistakes, arranging pictures and beating evils Japanese | Memory, attention and discrimination, memory, judgment | NS | NS | no | ADNI | MMSE, HDS-R |
Inoue 2005 [18], Japan | 22 MCI (72.0 ± 9.6) 55 control (72.6 ± 7.3) | Six tests: age and year of birth, 3 words memory test, time orientation test, 2 modified delayed-recall test, visual working memory test Japanese | Memory, orientation, visual working memory | yes | 5 | no | Petersen | Neuropsychological tests, neuroimaging examination and medical checks |
Isernia 2021 [41], Italy | 60 MCI (74.2 ± 5.0) 74 control (75.5 ± 2.7) | Smart Aging Serious Game: 5 tasks of functional activities of everyday life Italian | Memory, spatial orientation, executive functions, attention | yes | 30 | NS | NINCDS-ADRDA | MoCA and neuropsychological battery |
Liu 2023 [73], China | 74 MCI (66.3 ± 10.1) | Computerized cognitive training Chinese | Memory, attention, perception, executive function | NS | NS | NS | Petersen | MoCA, MMSE, CDR |
Memória 2014 [46], Brasil | 35 MCI (73.8 ± 5.5) 41 control (71.7 ± 4.6) | Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment Portuguese | Executive function, language, memory | yes | 30–50 | NS | Petersen | MoCA |
Noguchi-Shinohara 2020 [50], Japan | 94 MCI (75.8 ± 4.1) 100 control (75.0 ± 3.2) | Computerized assessment battery for Cognition Japanese | Time orientation, recognition, memory | yes | 5 | no | International Working Group | MMSE |
Park 2018 [51], Korea | 74 MCI (74.4 ± 6.5) 103 control (74.9 ± 7.0) | Mobile cognitive function test system for screening mild cognitive impairment English and Korean | Orientation, memory, attention, visuospatial ability, language, executive function, reaction time | no | 10 | yes | Petersen | MoCA-K |
Porrselvi 2022 [25], India | 18 MCI (71.0 ± 5.4) 100 control (66.3 ± 7.8) | Tamil computer-assisted cognitive test Battery Tamil | Attention, memory, language, visuospatial skills and spatial cognition, executive function, processing speed | NS | 150 | yes | Petersen | MoCA, CDR Scale, MMSE, and neuropsychological battery |
Saxton 2009 [21], USA | 228 MCI (75.2 ± 6.8) 296 control (71.8 ± 5.9) | Computer Assessment of Mild Cognitive Impairment English | Memory verbal and visual, attention, psychomotor speed, language, spatial and executive functioning | yes | 20 | yes | Criteria of the University of Pittsburgh Alzheimer Disease Research (ADRC) | MMSE and neuropsychological battery |
Wang 2023 [24], China | 46 MCI (70.0) 46 control (68.0) | Smart 2-Min Mobile Alerting Method Chinese | Fingertip interaction, spatial navigation, executive process | no | 2 | yes | NIA-AA | MMSE |
Wong 2017 [62], China | 59 MCI (78.2 ± 8.1) 101 control (70.5 ± 8.6) | Computerized Cognitive Screen English | Memory, executive functions, orientation, attention and working memory | yes | 15 | no | NS | MoCA |
Wu 2017 [64], France | 129 MCI (76.5 ± 7.5) 112 control (74.7 ± 6.9) | Tablet-based cancelation test French | Attention, visuospatial, psychomotor speed, fine motor coordination | yes | 3 | yes | Petersen | K-T cancelation test |
Study | Risk of Bias | Applicability Concerns | Decision | |||||
---|---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | ||
Ahmed 2012 [23] | included | |||||||
Alegret 2020 [29] | included | |||||||
An 2024 [76] | included | |||||||
Bergeron 2020 [30] | ? | excluded | ||||||
Boz 2020 [31] | included | |||||||
Cabinio 2020 [32] | included | |||||||
Cerino 2021 [33] | ? | ? | ? | excluded | ||||
Cheah 2022 [34] | ? | ? | ? | included | ||||
Chin 2020 [35] | included | |||||||
Curiel 2016 [36] | included | |||||||
Freedman 2018 [37] | included | |||||||
Fukui 2015 [38] | included | |||||||
Garre-Olmo 2017 [28] | ? | included | ||||||
Gielis 2021 [39] | included | |||||||
Groppell 2019 [40] | ? | ? | excluded | |||||
Inoue 2005 [18] | included | |||||||
Isernia 2021 [41] | included | |||||||
Ishikawa 2019 [27] | included | |||||||
Ishiwata 2014 [42] | excluded | |||||||
Kobayashi 2022 [43] | included | |||||||
Kubota 2017 [20] | ? | NA | NA | included | ||||
Li 2024 [74] | ? | included | ||||||
Li 2025 [77] | ? | ? | included | |||||
Li 2023 [44] | included | |||||||
Li 2022 [26] | ? | included | ||||||
Li 2023 [45] | included | |||||||
Libon 2024 [19] | ? | included | ||||||
Liu 2023 [73] | included | |||||||
Memória 2014 [46] | included | |||||||
Morisson 2016 [70] | ? | ? | ? | ? | ? | ? | ? | excluded |
Müller 2019 [47] | included | |||||||
Müller 2017 [48] | included | |||||||
Mychajliw 2024 [79] | ? | ? | ? | ? | excluded | |||
Na 2023 [49] | ? | ? | included | |||||
Noguchi-Shinohara 2020 [50] | included | |||||||
Park 2018 [51] | ? | included | ||||||
Porrselvi 2022 [25] | included | |||||||
Possin 2018 [52] | ? | ? | ? | excluded | ||||
Rigby 2024 [78] | included | |||||||
Robens 2019 [53] | included | |||||||
Rodríguez-Salgado 2021 [54] | included | |||||||
Satler 2015 [55] | ? | ? | ? | excluded | ||||
Saxton 2009 [21] | included | |||||||
Scharre 2017 [56] | excluded | |||||||
Shigemori 2015 [57] | ? | ? | ? | excluded | ||||
Simfukwe 2022 [22] | ? | included | ||||||
Sloane 2022 [58] | included | |||||||
Suzumura 2018 [59] | included | |||||||
Tamura 2006 [60] | ? | ? | ? | excluded | ||||
Um Din 2024 [72] | included | |||||||
Wang 2023 [24] | included | |||||||
Wilks 2021 [61] | ? | ? | ? | ? | excluded | |||
Wong 2017 [62] | included | |||||||
Wu 2023 [63] | included | |||||||
Wu 2017 [64] | included | |||||||
Yamada 2022 [65] | included | |||||||
Ye 2022 [66] | ? | included | ||||||
Yu 2019 [71] | ? | ? | included | |||||
Zhao 2019 [67] | ? | ? | ? | ? | excluded | |||
Zhang 2024 [75] | included | |||||||
Zygouris 2015 [68] | included | |||||||
Zygouris 2020 [69] | included |
References
- Dubois, B.; Padovani, A.; Scheltens, P.; Rossi, A.; Dell’Agnello, G. Timely Diagnosis for Alzheimer’s Disease: A Literature Review on Benefits and Challenges. J. Alzheimers Dis. 2016, 49, 617–631. [Google Scholar] [CrossRef]
- Porsteinsson, A.P.; Isaacson, R.S.; Knox, S.; Sabbagh, M.N.; Rubino, I. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. J. Prev. Alzheimers Dis. 2021, 8, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Stokin, G.B.; Krell-Roesch, J.; Petersen, R.C.; Geda, Y.E. Mild Neurocognitive Disorder: An Old Wine in a New Bottle. Harv. Rev. Psychiatry 2015, 23, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. Am. J. Alzheimers Dis. Other Demen. 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med. 2017, 33, 325–337. [Google Scholar] [CrossRef]
- Wood, E.; Willoughby, T.; Rushing, A.; Bechtel, L.; Gilbert, J. Use of Computer Input Devices by Older Adults. J. Appl. Gerontol. 2005, 24, 419–438. [Google Scholar] [CrossRef]
- Sachs-Ericsson, N.; Blazer, D.G. The New DSM-5 Diagnosis of Mild Neurocognitive Disorder and Its Relation to Research in Mild Cognitive Impairment. Aging Ment. Health 2015, 19, 2–12. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Pinto, T.C.C.; Machado, L.; Bulgacov, T.M.; Rodrigues-Júnior, A.L.; Costa, M.L.G.; Ximenes, R.C.C.; Sougey, E.B. Is the Montreal Cognitive Assessment (MoCA) Screening Superior to the Mini-Mental State Examination (MMSE) in the Detection of Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) in the Elderly? Int Psychogeriatr 2019, 31, 491–504. [Google Scholar] [CrossRef]
- Chun, C.T.; Seward, K.; Patterson, A.; Melton, A.; MacDonald-Wicks, L. Evaluation of Available Cognitive Tools Used to Measure Mild Cognitive Decline: A Scoping Review. Nutrients 2021, 13, 3974. [Google Scholar] [CrossRef]
- Breton, A.; Casey, D.; Arnaoutoglou, N.A. Cognitive Tests for the Detection of Mild Cognitive Impairment (MCI), the Prodromal Stage of Dementia: Meta-Analysis of Diagnostic Accuracy Studies. Int. J. Geriatr. Psychiatry 2019, 34, 233–242. [Google Scholar] [CrossRef]
- Giaquinto, F.; Battista, P.; Angelelli, P. Touchscreen Cognitive Tools for Mild Cognitive Impairment and Dementia Used in Primary Care Across Diverse Cultural and Literacy Populations: A Systematic Review. J. Alzheimers Dis. 2022, 90, 1359–1380. [Google Scholar] [CrossRef] [PubMed]
- Um Din, N.; Maronnat, F.; Zolnowski-Kolp, V.; Otmane, S.; Belmin, J. Diagnosis Accuracy of Touchscreen-Based Testings for Major Neurocognitive Disorders: A Systematic Review and Meta-Analysis. Age Ageing 2025, 54, afaf204. [Google Scholar] [CrossRef] [PubMed]
- Salameh, J.-P.; Bossuyt, P.M.; McGrath, T.A.; Thombs, B.D.; Hyde, C.J.; Macaskill, P.; Deeks, J.J.; Leeflang, M.; Korevaar, D.A.; Whiting, P.; et al. Preferred Reporting Items for Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA): Explanation, Elaboration, and Checklist. BMJ 2020, 370, m2632. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2 Group QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Nyaga, V.N.; Arbyn, M. Metadta: A Stata Command for Meta-Analysis and Meta-Regression of Diagnostic Test Accuracy Data—A Tutorial. Arch. Public Health 2022, 80, 95. [Google Scholar] [CrossRef]
- Inoue, M.; Urakami, K.; Taniguchi, M.; Kimura, Y.; Saito, J.; Nakashima, K. Evaluation of a Computerized Test System to Screen for Mild Cognitive Impairment. Psychogeriatrics 2005, 5, 36–41. [Google Scholar] [CrossRef]
- Libon, D.J.; Swenson, R.; Price, C.C.; Lamar, M.; Cosentino, S.; Bezdicek, O.; Kling, M.A.; Tobyne, S.; Jannati, A.; Banks, R.; et al. Digital Assessment of Cognition in Neurodegenerative Disease: A Data Driven Approach Leveraging Artificial Intelligence. Front. Psychol. 2024, 15, 1415629. [Google Scholar] [CrossRef]
- Kubota, Y.; Yamaguchi, T.; Maeta, T.; Okada, Y.; Miura, Y.; Martono, N.P.; Ohwada, H.; Tania, G. Feature Extraction Based on Touch Interaction Data in Virtual Reality-Based IADL for Characterization of Mild Cognitive Impairment. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Porto, Portugal, 27 February–1 March 2017; pp. 152–157. [Google Scholar] [CrossRef]
- Saxton, J.; Morrow, L.; Eschman, A.; Archer, G.; Luther, J.; Zuccolotto, A. Computer Assessment of Mild Cognitive Impairment. Postgrad. Med. 2009, 121, 177–185. [Google Scholar] [CrossRef]
- Simfukwe, C.; Youn, Y.C.; Kim, S.Y.; An, S.S. Digital Trail Making Test-Black and White: Normal vs MCI. Appl. Neuropsychol. Adult 2022, 29, 1296–1303. [Google Scholar] [CrossRef]
- Ahmed, S.; de Jager, C.; Wilcock, G. A Comparison of Screening Tools for the Assessment of Mild Cognitive Impairment: Preliminary Findings. Neurocase 2012, 18, 336–351. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, T.; Wang, C.; Ogihara, A.; Ma, X.; Huang, S.; Zhou, S.; Li, S.; Liu, J.; Li, K. A New Smart 2-Min Mobile Alerting Method for Mild Cognitive Impairment Due to Alzheimer’s Disease in the Community. Brain Sci. 2023, 13, 244. [Google Scholar] [CrossRef] [PubMed]
- Porrselvi, A.P. TAM Battery: Development and Pilot Testing of a Tamil Computer-Assisted Cognitive Test Battery for Older Adults. Clin. Neuropsychol. 2023, 37, 1005–1024. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Yang, J.; Yang, H.; Lan, M.; Gao, L. Characterizing Cognitive Impairment through Drawing Features Extracted from the Tree Drawing Test. In Proceedings of the 2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS), Nara, Japan, 24–26 November 2022; Volume 7, pp. 341–347. [Google Scholar]
- Ishikawa, T.; Nemoto, M.; Nemoto, K.; Takeuchi, T.; Numata, Y.; Watanabe, R.; Tsukada, E.; Ota, M.; Higashi, S.; Arai, T.; et al. Handwriting Features of Multiple Drawing Tests for Early Detection of Alzheimer’s Disease: A Preliminary Result. Stud. Health Technol. Inform. 2019, 264, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Garre-Olmo, J.; Faúndez-Zanuy, M.; López-de-Ipiña, K.; Calvó-Perxas, L.; Turró-Garriga, O. Kinematic and Pressure Features of Handwriting and Drawing: Preliminary Results Between Patients with Mild Cognitive Impairment, Alzheimer Disease and Healthy Controls. Curr. Alzheimer Res. 2017, 14, 960–968. [Google Scholar] [CrossRef]
- Alegret, M.; Muñoz, N.; Roberto, N.; Rentz, D.M.; Valero, S.; Gil, S.; Marquié, M.; Hernández, I.; Riveros, C.; Sanabria, A.; et al. A Computerized Version of the Short Form of the Face-Name Associative Memory Exam (FACEmemory®) for the Early Detection of Alzheimer’s Disease. Alzheimers Res. Ther. 2020, 12, 25. [Google Scholar] [CrossRef]
- Bergeron, M.F.; Landset, S.; Zhou, X.; Ding, T.; Khoshgoftaar, T.M.; Zhao, F.; Du, B.; Chen, X.; Wang, X.; Zhong, L.; et al. Utility of MemTrax and Machine Learning Modeling in Classification of Mild Cognitive Impairment. J. Alzheimers Dis. 2020, 77, 1545–1558. [Google Scholar] [CrossRef]
- Eraslan Boz, H.; Limoncu, H.; Zygouris, S.; Tsolaki, M.; Giakoumis, D.; Votis, K.; Tzovaras, D.; Öztürk, V.; Yener, G.G. A New Tool to Assess Amnestic Mild Cognitive Impairment in Turkish Older Adults: Virtual Supermarket (VSM). Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2020, 27, 639–653. [Google Scholar] [CrossRef]
- Cabinio, M.; Rossetto, F.; Isernia, S.; Saibene, F.L.; Di Cesare, M.; Borgnis, F.; Pazzi, S.; Migliazza, T.; Alberoni, M.; Blasi, V.; et al. The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG). J. Clin. Med. 2020, 9, 1355. [Google Scholar] [CrossRef]
- Cerino, E.S.; Katz, M.J.; Wang, C.; Qin, J.; Gao, Q.; Hyun, J.; Hakun, J.G.; Roque, N.A.; Derby, C.A.; Lipton, R.B.; et al. Variability in Cognitive Performance on Mobile Devices Is Sensitive to Mild Cognitive Impairment: Results from the Einstein Aging Study. Front. Digit. Health 2021, 3, 758031. [Google Scholar] [CrossRef]
- Cheah, W.-T.; Hwang, J.-J.; Hong, S.-Y.; Fu, L.-C.; Chang, Y.-L.; Chen, T.-F.; Chen, I.-A.; Chou, C.-C. A Digital Screening System for Alzheimer Disease Based on a Neuropsychological Test and a Convolutional Neural Network: System Development and Validation. JMIR Med. Inform. 2022, 10, e31106. [Google Scholar] [CrossRef]
- Chin, J.; Kim, D.E.; Lee, H.; Yun, J.; Lee, B.H.; Park, J.; Yeom, J.; Shin, D.S.; Na, D.L. A Validation Study of the Inbrain CST: A Tablet Computer-Based Cognitive Screening Test for Elderly People with Cognitive Impairment. J. Korean Med. Sci. 2020, 35, e292. [Google Scholar] [CrossRef]
- Curiel, R.E.; Crocco, E.; Rosado, M.; Duara, R.; Greig, M.T.; Raffo, A.; Loewenstein, D.A. A Brief Computerized Paired Associate Test for the Detection of Mild Cognitive Impairment in Community-Dwelling Older Adults. J. Alzheimers Dis. 2016, 54, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Freedman, M.; Leach, L.; Carmela Tartaglia, M.; Stokes, K.A.; Goldberg, Y.; Spring, R.; Nourhaghighi, N.; Gee, T.; Strother, S.C.; Alhaj, M.O.; et al. The Toronto Cognitive Assessment (TorCA): Normative Data and Validation to Detect Amnestic Mild Cognitive Impairment. Alzheimers Res. Ther. 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Fukui, Y.; Yamashita, T.; Hishikawa, N.; Kurata, T.; Sato, K.; Omote, Y.; Kono, S.; Yunoki, T.; Kawahara, Y.; Hatanaka, N.; et al. Computerized Touch-Panel Screening Tests for Detecting Mild Cognitive Impairment and Alzheimer’s Disease. Intern. Med. 2015, 54, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Gielis, K.; Vanden Abeele, M.-E.; Verbert, K.; Tournoy, J.; De Vos, M.; Vanden Abeele, V. Detecting Mild Cognitive Impairment via Digital Biomarkers of Cognitive Performance Found in Klondike Solitaire: A Machine-Learning Study. Digit. Biomark. 2021, 5, 44–52. [Google Scholar] [CrossRef]
- Groppell, S.; Soto-Ruiz, K.M.; Flores, B.; Dawkins, W.; Smith, I.; Eagleman, D.M.; Katz, Y. A Rapid, Mobile Neurocognitive Screening Test to Aid in Identifying Cognitive Impairment and Dementia (BrainCheck): Cohort Study. JMIR Aging 2019, 2, e12615. [Google Scholar] [CrossRef]
- Isernia, S.; Cabinio, M.; Di Tella, S.; Pazzi, S.; Vannetti, F.; Gerli, F.; Mosca, I.E.; Lombardi, G.; Macchi, C.; Sorbi, S.; et al. Diagnostic Validity of the Smart Aging Serious Game: An Innovative Tool for Digital Phenotyping of Mild Neurocognitive Disorder. J. Alzheimers Dis. 2021, 83, 1789–1801. [Google Scholar] [CrossRef]
- Ishiwata, A.; Kitamura, S.; Nomura, T.; Nemoto, R.; Ishii, C.; Wakamatsu, N.; Katayama, Y. Early Identification of Cognitive Impairment and Dementia: Results from Four Years of the Community Consultation Center. Arch. Gerontol. Geriatr. 2014, 59, 457–461. [Google Scholar] [CrossRef]
- Kobayashi, M.; Yamada, Y.; Shinkawa, K.; Nemoto, M.; Nemoto, K.; Arai, T. Automated Early Detection of Alzheimer’s Disease by Capturing Impairments in Multiple Cognitive Domains with Multiple Drawing Tasks. J. Alzheimers Dis. 2022, 88, 1075–1089. [Google Scholar] [CrossRef]
- Li, A.; Li, J.; Zhang, D.; Wu, W.; Zhao, J.; Qiang, Y. Synergy through Integration of Digital Cognitive Tests and Wearable Devices for Mild Cognitive Impairment Screening. Front. Hum. Neurosci. 2023, 17, 1183457. [Google Scholar] [CrossRef]
- Li, K.; Ma, X.; Chen, T.; Xin, J.; Wang, C.; Wu, B.; Ogihara, A.; Zhou, S.; Liu, J.; Huang, S.; et al. A New Early Warning Method for Mild Cognitive Impairment Due to Alzheimer’s Disease Based on Dynamic Evaluation of the “Spatial Executive Process”. Digit. Health 2023, 9, 20552076231194938. [Google Scholar] [CrossRef]
- Memória, C.M.; Yassuda, M.S.; Nakano, E.Y.; Forlenza, O.V. Contributions of the Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment (CANS-MCI) for the Diagnosis of MCI in Brazil. Int. Psychogeriatr. 2014, 26, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Herde, L.; Preische, O.; Zeller, A.; Heymann, P.; Robens, S.; Elbing, U.; Laske, C. Diagnostic Value of Digital Clock Drawing Test in Comparison with CERAD Neuropsychological Battery Total Score for Discrimination of Patients in the Early Course of Alzheimer’s Disease from Healthy Individuals. Sci. Rep. 2019, 9, 3543. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Preische, O.; Heymann, P.; Elbing, U.; Laske, C. Diagnostic Value of a Tablet-Based Drawing Task for Discrimination of Patients in the Early Course of Alzheimer’s Disease from Healthy Individuals. J. Alzheimers Dis. 2017, 55, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Na, S.; Seo, S.W.; Kim, Y.J.; Yoo, H.; Lee, E.-S. Correlation Analysis between Subtest Scores of CERAD-K and a Newly Developed Tablet Computer-Based Digital Cognitive Test (Inbrain CST). Front. Aging Neurosci. 2023, 15, 1178324. [Google Scholar] [CrossRef]
- Noguchi-Shinohara, M.; Domoto, C.; Yoshida, T.; Niwa, K.; Yuki-Nozaki, S.; Samuraki-Yokohama, M.; Sakai, K.; Hamaguchi, T.; Ono, K.; Iwasa, K.; et al. A New Computerized Assessment Battery for Cognition (C-ABC) to Detect Mild Cognitive Impairment and Dementia around 5 Min. PLoS ONE 2020, 15, e0243469. [Google Scholar] [CrossRef]
- Park, J.-H.; Jung, M.; Kim, J.; Park, H.Y.; Kim, J.-R.; Park, J.-H. Validity of a Novel Computerized Screening Test System for Mild Cognitive Impairment. Int. Psychogeriatr. 2018, 30, 1455–1463. [Google Scholar] [CrossRef]
- Possin, K.; Moskowitz, T.; Erlhoff, S.; Rogers, K.; Johnson, E.; Steele, N.; Higgins, J.; Stiver, J.; Alioto, A.; Farias, S.; et al. The Brain Health Assessment for Detecting and Diagnosing Neurocognitive Disorders. J. Am. Geriatr. Soc. 2018, 66, 150–156. [Google Scholar] [CrossRef]
- Robens, S.; Heymann, P.; Gienger, R.; Hett, A.; Müller, S.; Laske, C.; Loy, R.; Ostermann, T.; Elbing, U. The Digital Tree Drawing Test for Screening of Early Dementia: An Explorative Study Comparing Healthy Controls, Patients with Mild Cognitive Impairment, and Patients with Early Dementia of the Alzheimer Type. J. Alzheimers Dis. 2019, 68, 1561–1574. [Google Scholar] [CrossRef]
- Rodríguez-Salgado, A.M.; Llibre-Guerra, J.J.; Tsoy, E.; Peñalver-Guia, A.I.; Bringas, G.; Erlhoff, S.J.; Kramer, J.H.; Allen, I.E.; Valcour, V.; Miller, B.L.; et al. A Brief Digital Cognitive Assessment for Detection of Cognitive Impairment in Cuban Older Adults. J. Alzheimers Dis. 2021, 79, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Satler, C.; Beham, F.; Garcias, A.; Tomaz, C.; Tavares, M. Computerized Spatial Delayed Recognition Span Task: A Specific Tool to Assess Visuospatial Working Memory. Front. Aging Neurosci. 2015, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Scharre, D.W.; Chang, S.I.; Nagaraja, H.N.; Vrettos, N.E.; Bornstein, R.A. Digitally Translated Self-Administered Gerocognitive Examination (eSAGE): Relationship with Its Validated Paper Version, Neuropsychological Evaluations, and Clinical Assessments. Alzheimers Res. Ther. 2017, 9, 44. [Google Scholar] [CrossRef]
- Shigemori, T.; Harbi, Z.; Kawanaka, H.; Hicks, Y.; Setchi, R.; Takase, H.; Tsuruoka, S. Feature Extraction Method for Clock Drawing Test; Ding, L., Pang, C., Kew, L., Jain, L., Howlett, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 60, pp. 1707–1714. [Google Scholar]
- Sloane, K.L.; Mefford, J.A.; Zhao, Z.; Xu, M.; Zhou, G.; Fabian, R.; Wright, A.E.; Glenn, S. Validation of a Mobile, Sensor-Based Neurobehavioral Assessment with Digital Signal Processing and Machine-Learning Analytics. Cogn. Behav. Neurol. 2022, 35, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Suzumura, S.; Osawa, A.; Maeda, N.; Sano, Y.; Kandori, A.; Mizuguchi, T.; Yin, Y.; Kondo, I. Differences among Patients with Alzheimer’s Disease, Older Adults with Mild Cognitive Impairment and Healthy Older Adults in Finger Dexterity. Geriatr. Gerontol. Int. 2018, 18, 907–914. [Google Scholar] [CrossRef]
- Tamura, T.; Tshji, M.; Higashi, Y.; Sekine, M.; Kohdabashi, A.; Fujimoto, T.; Mitsuyama, M. New Computer-Based Cognitive Function Test for the Elderly. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 1, 692–694. [Google Scholar]
- Wilks, H.; Aschenbrenner, A.; Gordon, B.; Balota, D.; Fagan, A.; Musiek, E.; Balls-Berry, J.; Benzinger, T.; Cruchaga, C.; Morris, J.; et al. Sharper in the Morning: Cognitive Time of Day Effects Revealed with High-Frequency Smartphone Testing. J. Clin. Exp. Neuropsychol. 2021, 43, 825–837. [Google Scholar] [CrossRef]
- Wong, A.; Fong, C.-H.; Mok, V.C.-T.; Leung, K.-T.; Tong, R.K.-Y. Computerized Cognitive Screen (CoCoSc): A Self-Administered Computerized Test for Screening for Cognitive Impairment in Community Social Centers. J. Alzheimers Dis. 2017, 59, 1299–1306. [Google Scholar] [CrossRef]
- Wu, J.; Tu, J.; Liu, Z.; Cao, L.; He, Y.; Huang, J.; Tao, J.; Wong, M.N.K.; Chen, L.; Lee, T.M.C.; et al. An Effective Test (EOmciSS) for Screening Older Adults with Mild Cognitive Impairment in a Community Setting: Development and Validation Study. J. Med. Internet Res. 2023, 25, e40858. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Vidal, J.-S.; de Rotrou, J.; Sikkes, S.A.M.; Rigaud, A.-S.; Plichart, M. Can a Tablet-Based Cancellation Test Identify Cognitive Impairment in Older Adults? PLoS ONE 2017, 12, e0181809. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Kobayashi, M.; Shinkawa, K.; Nemoto, M.; Ota, M.; Nemoto, K.; Arai, T. Automated Analysis of Drawing Process for Detecting Prodromal and Clinical Dementia. In Proceedings of the 2022 IEEE International Conference on Digital Health (ICDH), Barcelona, Spain, 11–15 July 2022; pp. 1–6. [Google Scholar]
- Ye, S.; Sun, K.; Huynh, D.; Phi, H.Q.; Ko, B.; Huang, B.; Hosseini Ghomi, R. A Computerized Cognitive Test Battery for Detection of Dementia and Mild Cognitive Impairment: Instrument Validation Study. JMIR Aging 2022, 5, e36825. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Yoshizumi, T.; Ota, M.; Ekoyama, S.; Arai, T. Development of Cognitive Level Estimation Model Using Mobile Applications. Alzheimer’s Dement. 2019, 15, 957–958. [Google Scholar] [CrossRef]
- Zygouris, S.; Giakoumis, D.; Votis, K.; Doumpoulakis, S.; Ntovas, K.; Segkouli, S.; Karagiannidis, C.; Tzovaras, D.; Tsolaki, M. Can a Virtual Reality Cognitive Training Application Fulfill a Dual Role? Using the Virtual Supermarket Cognitive Training Application as a Screening Tool for Mild Cognitive Impairment. J. Alzheimers Dis. 2015, 44, 1333–1347. [Google Scholar] [CrossRef]
- Zygouris, S.; Iliadou, P.; Lazarou, E.; Giakoumis, D.; Votis, K.; Alexiadis, A.; Triantafyllidis, A.; Segkouli, S.; Tzovaras, D.; Tsiatsos, T.; et al. Detection of Mild Cognitive Impairment in an At-Risk Group of Older Adults: Can a Novel Self-Administered Serious Game-Based Screening Test Improve Diagnostic Accuracy? J. Alzheimers Dis. 2020, 78, 405–412. [Google Scholar] [CrossRef]
- Morrison, R.; Pei, H.; Novak, G.; Kaufer, D.; Welsh-Bohmer, K.; Ruhmel, S.; Narayan, V.A. Validation of a Novel Computerized Selfadministered Memory-Screening Test with Automated Reporting (SAMSTAR) in Patients with Mild Cognitive Impairment and Normal Control Participants: A Randomized, Crossover, Controlled Study. Neuropsychopharmacology 2016, 41, S345–S346. [Google Scholar] [CrossRef]
- Yu, N.-Y.; Chang, S.-H. Characterization of the Fine Motor Problems in Patients with Cognitive Dysfunction—A Computerized Handwriting Analysis. Hum. Mov. Sci. 2019, 65, 71–79. [Google Scholar] [CrossRef]
- Um Din, N.; Maronnat, F.; Pariel, S.; Badra, F.; Belmin, J. A Digital Clock Drawing Test on Tablet for the Diagnosis of Neurocognitive Disorders in Older Adults. Stud. Health Technol. Inform. 2024, 316, 1878–1882. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Xing, Y.; Zhang, Z.-H.; Zhang, Q.-G.; Dong, M.; Wang, H.; Cai, L.; Wang, X.; Tang, Y. Validation of a Computerized Cognitive Training Tool to Assess Cognitive Impairment and Enable Differentiation Between Mild Cognitive Impairment and Dementia. J. Alzheimers Dis. 2023, 96, 93–101. [Google Scholar] [CrossRef]
- Li, A.; Li, J.; Chai, J.; Wu, W.; Chaudhary, S.; Zhao, J.; Qiang, Y. Detection of Mild Cognitive Impairment Through Hand Motor Function Under Digital Cognitive Test: Mixed Methods Study. JMIR Mhealth Uhealth 2024, 12, e48777. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, L.; Shen, J.; Chen, J.; Zhang, H.; Li, Y. A Tablet-Based Multi-Dimensional Drawing System Can Effectively Distinguish Patients with Amnestic MCI from Healthy Individuals. Sci. Rep. 2024, 14, 982. [Google Scholar] [CrossRef]
- An, D.; Shin, J.S.; Bae, N.; Seo, S.W.; Na, D.L. Validity of the Tablet-Based Digital Cognitive Test (SCST) in Identifying Different Degrees of Cognitive Impairment. J. Korean Med. Sci. 2024, 39, e247. [Google Scholar] [CrossRef]
- Li, A.; Xue, C.; Wu, R.; Wu, W.; Zhao, J.; Qiang, Y. Unearthing Subtle Cognitive Variations: A Digital Screening Tool for Detecting and Monitoring Mild Cognitive Impairment. Int. J. Hum. Comput. Interact. 2025, 41, 2579–2599. [Google Scholar] [CrossRef]
- Rigby, T.; Gregoire, A.M.; Reader, J.; Kahsay, Y.; Fisher, J.; Kairys, A.; Bhaumik, A.K.; Rahman-Filipiak, A.; Maher, A.C.; Hampstead, B.M.; et al. Identification of Amnestic Mild Cognitive Impairment among Black and White Community-Dwelling Older Adults Using NIH Toolbox Cognition Tablet Battery. J. Int. Neuropsychol. Soc. 2024, 30, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Mychajliw, C.; Holz, H.; Minuth, N.; Dawidowsky, K.; Eschweiler, G.W.; Metzger, F.G.; Wortha, F. Performance Differences of a Touch-Based Serial Reaction Time Task in Healthy Older Participants and Older Participants with Cognitive Impairment on a Tablet: Experimental Study. JMIR Aging 2024, 7, e48265. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H. Discriminant Power of Smartphone-Derived Keystroke Dynamics for Mild Cognitive Impairment Compared to a Neuropsychological Screening Test: Cross-Sectional Study. J. Med. Internet Res. 2024, 26, e59247. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.I.; Kunicki, Z.J.; Emrani, S.; Strenger, J.; De Vito, A.N.; Britton, K.J.; Dion, C.; Harrington, K.D.; Roque, N.; Salloway, S.; et al. Remote and In-Clinic Digital Cognitive Screening Tools Outperform the MoCA to Distinguish Cerebral Amyloid Status among Cognitively Healthy Older Adults. Alzheimers Dement. 2023, 15, e12500. [Google Scholar] [CrossRef]
- Nurgalieva, L.; Jara Laconich, J.J.; Baez, M.; Casati, F.; Marchese, M. A Systematic Literature Review of Research-Derived Touchscreen Design Guidelines for Older Adults. IEEE Access 2019, 7, 22035–22058. [Google Scholar] [CrossRef]
- McInnes, M.D.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 2018, 319, 388–396. [Google Scholar] [CrossRef]
- Berron, D.; Glanz, W.; Clark, L.; Basche, K.; Grande, X.; Güsten, J.; Billette, O.V.; Hempen, I.; Naveed, M.H.; Diersch, N.; et al. A Remote Digital Memory Composite to Detect Cognitive Impairment in Memory Clinic Samples in Unsupervised Settings Using Mobile Devices. npj Digit. Med. 2024, 7, 79. [Google Scholar] [CrossRef]
Authors Year | Cognitive Testings | Duration (min) | Administration Mode | Cognitive Domains Assessed | Diagnostic Performance |
---|---|---|---|---|---|
An 2024 [76] | Seoul Digital Cognitive Test | 30 | NS | Attention, language, visuospatial function, memory, executive function | se: 0.81 spe: 0.89 |
Cheah 2022 [34] | Rey-Osterrieth Complex Figure | - | Assessor-administered | Visuospatial constructional capabilities and visual memory function (immediate and recall), copying | se: 0.85 spe: 0.91 |
Curiel 2016 [36] | Miami Test of Semantic Interference and Learning | 8–10 | NS | Semantic memory, categorization | se: 0.85 spe: 0.84 |
Garre-Olmo 2017 [28] | 7 tasks: figure copying (simple spiral, 3D house, crossed pentagons), clock drawing test, sentence copying, writing a dictated sentence and a spontaneous sentence | 10–15 | Assessor-administered | Kinesthetic, visuospatial function, motor features | For the task writing a dictated sentence: se: 1.00 spe: 1.00 |
Li 2024 [74] | Drawing and Dragging Tasks | 15 | Self-administered | Orientation, selective and sustained attention, visual memory and reconstruction, visuospatial organization, and hand motor skills | se: 0.86 spe: 0.91 |
Park 2018 [51] | Mobile cognitive function test system for screening mild cognitive impairment | 10 | Assessor-administered | Memory, orientation, attention, visuospatial ability, language, executive function, reaction time | se: 0.99 spe: 0.93 |
Rodrigues-Salgado 2021 [54] | Brain Health Assessment | 10 | Assessor-administered | Memory, processing speed and executive function, visuospatial ability, language | se: 0.87 spe: 0.85 |
Saxton 2009 [21] | Computer Assessment of Mild Cognitive Impairment | 20 | Self-administered | Verbal and visual memory, attention, psychomotor speed, language, spatial and executive functioning | se: 0.86 spe: 0.94 |
Wu 2023 [63] | Efficient Online MCI Screening System | 10 | Self-administered | Memory, visual attention, flexibility, visuospatial and executive function, cognitive proceeding speed | se: 0.85 spe: 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Um Din, N.; Maronnat, F.; Oquendo, B.; Pariel, S.; Lafuente-Lafuente, C.; Badra, F.; Belmin, J. Diagnostic Accuracy of Touchscreen-Based Tests for Mild Cognitive Disorders: A Systematic Review and Meta-Analysis. Diagnostics 2025, 15, 2383. https://doi.org/10.3390/diagnostics15182383
Um Din N, Maronnat F, Oquendo B, Pariel S, Lafuente-Lafuente C, Badra F, Belmin J. Diagnostic Accuracy of Touchscreen-Based Tests for Mild Cognitive Disorders: A Systematic Review and Meta-Analysis. Diagnostics. 2025; 15(18):2383. https://doi.org/10.3390/diagnostics15182383
Chicago/Turabian StyleUm Din, Nathavy, Florian Maronnat, Bruno Oquendo, Sylvie Pariel, Carmelo Lafuente-Lafuente, Fadi Badra, and Joël Belmin. 2025. "Diagnostic Accuracy of Touchscreen-Based Tests for Mild Cognitive Disorders: A Systematic Review and Meta-Analysis" Diagnostics 15, no. 18: 2383. https://doi.org/10.3390/diagnostics15182383
APA StyleUm Din, N., Maronnat, F., Oquendo, B., Pariel, S., Lafuente-Lafuente, C., Badra, F., & Belmin, J. (2025). Diagnostic Accuracy of Touchscreen-Based Tests for Mild Cognitive Disorders: A Systematic Review and Meta-Analysis. Diagnostics, 15(18), 2383. https://doi.org/10.3390/diagnostics15182383