Comprehensive Characterization of a Cluster of Mucopolysaccharidosis IIIB in Ecuador
Abstract
1. Introduction
2. Methods
2.1. Clinical, Molecular, Biochemical and Demographic Characterization
2.2. Structural Data
2.3. Molecular Analysis of Maternal Ancestry
2.4. Statistical Analysis
3. Results
3.1. Cluster Characterization
3.2. Biochemical and Genetic Characterization
3.3. Clinical Characterization
3.4. mtDNA Analysis
3.5. Symptom Heterogeneity and Maternal Ancestry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montenegro, Y.H.A.; de Souza, C.F.M.; Kubaski, F.; Trapp, F.B.; Burin, M.G.; Michelin-Tirelli, K.; Leistner-Segal, S.; Facchin, A.C.B.; Medeiros, F.S.; Giugliani, L.; et al. Sanfilippo syndrome type B: Analysis of patients diagnosed by the MPS Brazil Network. Am. J. Med. Genet. Part A 2022, 188, 760–767. [Google Scholar] [CrossRef]
- Montenegro, Y.H.A.; Kubaski, F.; Trapp, F.B.; Riegel-Giugliani, M.; Souza, C.F.M.; Ribeiro, E.M.; Lourenço, C.M.; Cardoso-Dos-Santos, A.C.; Ribeiro, M.G.; Kim, C.A.; et al. Disease progression in Sanfilippo type B: Case series of Brazilian patients. Genet. Mol. Biol. 2024, 47, e20230285. [Google Scholar] [CrossRef]
- Kong, W.; Meng, Y.; Zou, L.; Yang, G.; Wang, J.; Shi, X. Mucopolysaccharidosis III in Mainland China: Natural history, clinical and molecular characteristics of 34 patients. J. Pediatr. Endocrinol. Metab. 2020, 33, 793–802. [Google Scholar] [CrossRef]
- Josahkian, J.A.; Trapp, F.B.; Burin, M.G.; Michelin-Tirelli, K.; Magalhães, A.P.P.S.; Sebastião, F.M.; Bender, F.; Mari, J.F.; Brusius-Facchin, A.C.; Leistner-Segal, S.; et al. Updated birth prevalence and relative frequency of mucopolysaccharidoses across Brazilian regions. Genet. Mol. Biol. 2021, 44, e20200138. [Google Scholar] [CrossRef]
- Beesley, C.E.; Jackson, M.; Young, E.P.; Vellodi, A.; Winchester, B.G. Molecular defects in Sanfilippo syndrome type B (mucopolysaccharidosis IIIB). J. Inherit. Metab. Dis. 2005, 28, 759–767. [Google Scholar] [CrossRef]
- Truxal, K.V.; Fu, H.; McCarty, D.M.; McNally, K.A.; Kunkler, K.L.; Zumberge, N.A.; Martin, L.; Aylward, S.C.; Alfano, L.N.; Berry, K.M.; et al. A prospective one-year natural history study of mucopolysaccharidosis types IIIA and IIIB: Implications for clinical trial design. Mol. Genet. Metab. 2016, 119, 239–248. [Google Scholar] [CrossRef]
- Irigonhê, A.T.D.; Moreira, A.M.T.; Valle, D.A.D.; Santos, M.L.S.F. MUCOPOLYSACARIDOSIS TYPE IIIB MISDIAGNOSED AS AN AUTISTIC SPECTRUM DISORDER: A CASE REPORT AND LITERATURE REVIEW. Rev. Paul. Pediatr. Orgao Of. Soc. Pediatr. Sao Paulo 2020, 39, e2019397. [Google Scholar] [CrossRef]
- Cabarcas, L.; Ramón, J.L.; Espinosa, E.; Guerrero, G.P.; Martínez, N.; Santamaría, N.; Lince, I.; Reyes, S. Historia natural de la mucopolisacaridosis III en una serie de pacientes colombianos [Natural history of mucopolysaccharidosis type III in a series of Colombian patients]. Rev. Neurol. 2024, 78, 171–177. [Google Scholar] [CrossRef]
- Gun Bilgic, D.; Gerik Celebi, H.B.; Aydin Gumus, A.; Bilgic, A.; Yazici, H.; Ceylaner, S.; Yilmaz, C.; Polat, M.; Akbal Sahin, M.; Dereli, F.; et al. Coinheritance of novel mutations in NAGLU causing mucopolysaccharidosis type IIIB and in DDHD2 causing spastic paraplegia54 in a Turkish family. J. Clin. Neurosci. 2020, 82 Pt B, 214–218. [Google Scholar] [CrossRef]
- Kubaski, F.; Sousa, I.; Amorim, T.; Pereira, D.; Silva, C.; Chaves, V.; Brusius-Facchin, A.C.; Netto, A.B.O.; Soares, J.; Vairo, F.; et al. Pilot study of newborn screening for six lysosomal diseases in Brazil. Mol. Genet. Metab. 2023, 140, 107654. [Google Scholar] [CrossRef]
- Brusius-Facchin, A.C.; Siebert, M.; Le~ao, D.; Rojas-Malaga, D.; Pasqualim, G.; Trapp, F.; Matte, U.; Giugliani, R.; Leistner-Segal, S. Phenotype-oriented NGS panels for mucopolysaccharidoses: Validation and potential use in the diagnostic flowchart. Genet. Mol. Biol. 2019, 42, 207–214. [Google Scholar] [CrossRef]
- Trapp, F.B.; Riegel, M.; Michelin-Tirelli, K.; da Silva, L.A.L.; Iop, G.D.; Bender-Pasetto, F.; Sebastião, F.M.; da Silva Moraes, I.; Lopes, F.F.; Dos Santos, O.R.T.; et al. Diagnostic networks for IEM in Brazil: Report on 10 years of activity of the LSD Brazil Network, helping Brazil and Latin America to identify patients with lysosomal storage diseases. J. Community Genet. 2025, 16, 439–444. [Google Scholar] [CrossRef]
- Zheng, W.; Wuyun, Q.; Li, Y.; Liu, Q.; Zhou, X.; Peng, C.; Zhu, Y.; Freddolino, L.; Zhang, Y. Deep-learning-based single-domain and multidomain protein structure prediction with D-I-TASSER. Nat. Biotechnol. 2025. [Google Scholar] [CrossRef]
- Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007, 35, W522–W525. [Google Scholar] [CrossRef]
- Dos Santos-Lopes, S.S.; de Oliveira, J.M.F.; de Queiroga Nascimento, D.; Montenegro, Y.H.A.; Leistner-Segal, S.; Brusius-Facchin, A.C.; Eufrazino Gondim, C.; Giugliani, R.; de Medeiros, P.F.V. Demographic, clinical, and ancestry characterization of a large cluster of mucopolysaccharidosis IV A in the Brazilian Northeast region. Am. J. Med. Genet. Part A 2021, 185, 2929–2940. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Brandon, M.C.; Ruiz-Pesini, E.; Mishmar, D.; Procaccio, V.; Lott, M.T.; Nguyen, K.C.; Spolim, S.; Patil, U.; Baldi, P.; Wallace, D.C. MITOMASTER: A bioinformatics tool for the analysis of mitochondrial DNA sequences. Hum. Mutat. 2009, 30, 1–6. [Google Scholar] [CrossRef]
- Kloss-Brandstätter, A.; Pacher, D.; Schönherr, S.; Weissensteiner, H.; Binna, R.; Specht, G.; Kronenberg, F. HaploGrep: A fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 2011, 32, 25–32. [Google Scholar] [CrossRef]
- Costa-Motta, F.M.; Bender, F.; Acosta, A.; Abé-Sandes, K.; Machado, T.; Bomfim, T.; Boa Sorte, T.; da Silva, D.; Bittles, A.; Giugliani, R.; et al. A community-based study of mucopolysaccharidosis type VI in Brazil: The influence of founder effect, endogamy and consanguinity. Hum. Hered. 2014, 77, 189–196. [Google Scholar] [CrossRef]
- Schmidtchen, A.; Greenberg, D.; Zhao, H.G.; Li, H.H.; Huang, Y.; Tieu, P.; Zhao, H.Z.; Cheng, S.; Zhao, Z.; Whitley, C.B.; et al. NAGLU mutations underlying Sanfilippo syndrome type B. Am. J. Hum. Genet. 1998, 62, 64–69. [Google Scholar] [CrossRef][Green Version]
- Weber, B.; Guo, X.H.; Kleijer, W.J.; van de Kamp, J.J.; Poorthuis, B.J.; Hopwood, J.J. Sanfilippo type B syndrome (mucopolysaccharidosis III B): Allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes. Eur. J. Hum. Genet. 1999, 7, 34–44. [Google Scholar] [CrossRef]
- Ribera, A.; Haurigot, V.; Garcia, M.; Marcó, S.; Motas, S.; Villacampa, P.; Maggioni, L.; León, X.; Molas, M.; Sánchez, V.; et al. Biochemical, histological and functional correction of mucopolysaccharidosis type IIIB by intra-cerebrospinal fluid gene therapy. Hum. Mol. Genet. 2015, 24, 2078–2095. [Google Scholar] [CrossRef]
- Gómez, A.M.; García-Robles, R.; Suárez-Obando, F. Estimación de las frecuencias de las mucopolisacaridosis y análisis de agrupamiento espacial en los departamentos de Cundinamarca y Boyacá [Estimation of the mucopolysaccharidoses frequencies and cluster analysis in the Colombian provinces of Cundinamarca and Boyacá]. Biomedica 2012, 32, 602–609. [Google Scholar]
- Fernández-Hernández, L.; Reyna-Fabián, M.E.; Alcántara-Ortigoza, M.A.; Aláez-Verson, C.; Flores-Lagunes, L.L.; Carrillo-Sánchez, K.; González-Del Angel, A. Unusual clinical manifestations in a Mexican patient with Sanfilippo B syndrome. Diagnostics 2022, 12, 1268. [Google Scholar] [CrossRef]
- Ozkinay, F.; Emecen, D.A.; Kose, M.; Isik, E.; Bozaci, A.E.; Canda, E.; Tuysuz, B.; Zubarioglu, T.; Atik, T.; Onay, H. Clinical and genetic features of 13 patients with mucopolysaccharidosis type IIIB: Description of two novel NAGLU gene mutations. Mol. Genet. Metab. Rep. 2021, 27, 100732. [Google Scholar]
- Kang, Q.; Fang, Y.; Yang, Y.; Li, D.; Zheng, L.; Chen, X.; Tu, X.; Jin, C. Health service utilization, economic burden and quality of life of patients with mucopolysaccharidosis in China. Orphanet J. Rare Dis. 2024, 19, 324. [Google Scholar] [CrossRef]
- Bittles, A.H.; Black, M.L. Evolution in health and medicine Sackler colloquium: Consanguinity, human evolution, and complex diseases. Proc. Natl. Acad. Sci. USA 2010, 107 (Suppl. 1), 1779–1786. [Google Scholar] [CrossRef]
- Slatkin, M. A population-genetic test of founder effects and implications for Ashkenazi Jewish diseases. Am. J. Hum. Genet. 2004, 75, 282–293. [Google Scholar] [CrossRef]
- Basgalupp, S.P.; Altmann, V.; Vairo, F.P.E.; Schwartz, I.V.D.; Siebert, M.; MilitaoBrazilian Collaborative Group on Gaucher Disease. GBA1 variants in Brazilian Gaucher disease patients. Mol. Genet. Metab. Rep. 2023, 37, 101006. [Google Scholar] [CrossRef]
- Baeta, M.; Núñez, C.; Sosa, C.; Bolea, M.; Casalod, Y.; González-Andrade, F.; Roewer, L.; Martínez-Jarreta, B. Mitochondrial diversity in Amerindian Kichwa and Mestizo populations from Ecuador. Int. J. Leg. Med. 2012, 126, 299–302. [Google Scholar] [CrossRef]
- Stefflova, K.; Dulik, M.C.; Pai, A.A.; Walker, A.H.; Zeigler-Johnson, C.M.; Gueye, S.M.; Schurr, T.G.; Rebbeck, T.R. Evaluation of group genetic ancestry of populations from Philadelphia and Dakar in the context of sex-biased admixture in the Americas. PLoS ONE 2009, 4, e7842. [Google Scholar] [CrossRef][Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Baeta, M.; Núñez, C.; González-Andrade, F.; Sosa, C.; Casalod, Y.; Bolea, M.; Zweynert, S.; Cruz, O.W.V.; González-Solorzano, J.; Geppert, M.; et al. Mitochondrial analysis revealed high homogeneity in the Waorani population-the last nomadic group of hunter-gatherers from Ecuador. Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 313–314. [Google Scholar] [CrossRef]
- Zambrano, A.K.; Gaviria, A.; Cobos-Navarrete, S.; Gruezo, C.; Rodríguez-Pollit, C.; Armendáriz-Castillo, I.; García-Cárdenas, J.M.; Guerrero, S.; López-Cortés, A.; Leone, P.E.; et al. The three-hybrid genetic composition of an Ecuadorian population using AIMs-InDels compared with autosomes, mitochondrial DNA and Y chromosome data. Sci. Rep. 2019, 9, 9247. [Google Scholar] [CrossRef]
- Watson, E.; Forster, P.; Richards, M.; Bandelt, H.J. Mitochondrial footprints of human expansions in Africa. Am. J. Hum. Genet. 1997, 61, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Behar, D.M.; Villems, R.; Soodyall, H.; Blue-Smith, J.; Pereira, L.; Metspalu, E.; Scozzari, R.; Makkan, H.; Tzur, S.; Comas, D.; et al. The dawn of human matrilineal diversity. Am. J. Hum. Genet. 2008, 82, 1130–1140. [Google Scholar] [CrossRef]
- Loogväli, E.L.; Roostalu, U.; Malyarchuk, B.A.; Derenko, M.V.; Kivisild, T.; Metspalu, E.; Tambets, K.; Reidla, M.; Tolk, H.V.; Parik, J.; et al. Disuniting uniformity: A pied cladistic canvas of mtDNA haplogroup H in Eurasia. Mol. Biol. Evol. 2004, 21, 2012–2021. [Google Scholar] [CrossRef] [PubMed]
- Richards, M.; Macaulay, V.; Hickey, E.; Vega, E.; Sykes, B.; Guida, V.; Rengo, C.; Sellitto, D.; Cruciani, F.; Kivisild, T.; et al. Tracing European founder lineages in the Near Eastern mtDNA pool. Am. J. Hum. Genet. 2000, 67, 1251–1276. [Google Scholar] [CrossRef] [PubMed]
- Keyser, C.; Bouakaze, C.; Crubézy, E.; Nikolaev, V.G.; Montagnon, D.; Reis, T.; Ludes, B. Ancient DNA provides new insights into the history of south Siberian Kurgan people. Hum. Genet. 2009, 126, 395–410. [Google Scholar] [CrossRef]
- Pimenoff, V.N.; de Oliveira, C.M.; Bravo, I.G. Transmission between Archaic and Modern Human Ancestors during the Evolution of the Oncogenic Human Papillomavirus 16. Mol. Biol. Evol. 2017, 34, 4–19. [Google Scholar] [CrossRef]
- Palanichamy, M.G.; Sun, C.; Agrawal, S.; Bandelt, H.J.; Kong, Q.P.; Khan, F.; Wang, C.Y.; Chaudhuri, T.K.; Palla, V.; Zhang, Y.P. Phylogeny of mitochondrial DNA macrohaplogroup N in India, based on complete sequencing: Implications for the peopling of South Asia. Am. J. Hum. Genet. 2004, 75, 966–978. [Google Scholar] [CrossRef]
No. | Gender | Current Age (Yrs) | Age at Diagnosis (Yrs) | NAGLU Activity (nmol/17 h/mg) | Urinary GAG (μg/mg Creatine) Disaccharide Method | Affected Family Members | DNA Variants | Parents Consanguinity | Reported Age of Onset of Symptoms (Yrs) | Initial Symptoms | Age (Yrs) 1st Seizure | Behavioral Problems | Current Status | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ds | mono-ks | hs-0s | hs-ns | di-ks | |||||||||||||
1 | M | 13 | 6.3 | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | Second cousins | 5 | Neuropsychomotor developmental delay | - | - | Alive |
2 | F | 20 | 12 | Undetectable | 58.44 | 83.80 | 98.55 | 18.76 | 5.83 | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | Third cousins | 0.5 | Hernia, hearing loss | 8 | Alive | |
3 | F | - | - | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | Alive |
4 | M | 20 | 12 | Undetectable | 135.89 | 174.05 | 206.66 | 38.34 | 32.04 | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | 1.5 | Neuropsychomotor developmental delay | - | - | Alive |
5 | F | 15 | 2 | Undetectable | - | - | - | - | - | Brother | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | - |
6 | M | 17 | 4 | Undetectable | 70.36 | 46.27 | 84.39 | 16.10 | 7.56 | Sister | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | - |
7 | F | 13 | 6 | Undetectable | 62.52 | 30.91 | 163.37 | 37.25 | 4.78 | Brother | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | First cousins | - | - | - | Hyperactivity | - |
8 | M | 17 | 10 | Undetectable | 63.59 | 6.04 | 188.73 | 41.35 | 3.72 | Sister | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | First cousins | - | - | - | - | - |
9 | M | 24 | 17 | Undetectable | 54.07 | 305.15 | 270.43 | 53.09 | 119.13 | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | 2 | Neuropsychomotor developmental delay | - | - | Alive |
10 | M | 20 | 2 | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | Alive |
11 | M | 17 | 10 | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | 8 | Neuropsychomotor developmental delay | 10 | - | - |
12 | F | - | - | Undetectable | 76.14 | 140.48 | 213.88 | 37.09 | 31.08 | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | |
13 | F | 10 | 3.1 | Undetectable | 68.56 | 191.52 | 261.31 | 53.37 | 93.51 | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | 3.1 | Neuropsychomotor developmental delay | - | - | Alive |
14 | M | 26 | 20 | Undetectable | 101.78 | 27.96 | 177.22 | 31.33 | 8.06 | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | 5 | Neuropsychomotor developmental delay | - | - | Alive |
15 | F | 24 | 7 | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | First cousins | 4 | Neuropsychomotor developmental delay | - | - | Alive |
16 | F | - | - | Undetectable | 74.70 | 23.46 | 163.75 | 31.44 | 3.65 | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | Alive | ||||
17 | F | 24 | 7 | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | 4 | Neuropsychomotor developmental delay | - | - | Alive |
18 | F | - | - | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | Alive |
19 | F | 11 | - | Undetectable | 116.23 | 56.80 | 117.08 | 24.86 | 11.01 | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | Second cousins | - | - | - | Alive | |
20 | M | 22 | 14 | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | 12 | Neuropsychomotor developmental delay | Present | 14 | Alive |
21 | F | 17 | - | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | - |
22 | F | 18 | - | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | - |
23 | M | - | - | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1487T>C p.(Leu496Pro)/ | - | - | - | - | - | - |
24 | M | - | - | Undetectable | - | - | - | - | - | - | c.1487T>C p.(Leu496Pro)/c.1445G>A (p.Arg482Gln) | - | - | - | - | - | - |
Neuropsychomotor Developmental Milestone | Age | |
---|---|---|
Mean | SD | |
Sitting without support | ||
Acquisition (months) (n = 1) | 16 | - |
Loss | - | - |
Walking | ||
Acquisition (months) (n = 11) | 18 | 5.67 |
Loss (years) (n = 3) | 10.3 | 2.51 |
Speaking two-syllable words | ||
Acquisition (months) (n = 8) | 16 | 11.61 |
Loss (years) (n = 0) | - | - |
Two-word phrases | ||
Acquisition (months) (n = 5) | 26.40 | 12.44 |
Loss (years) (n = 10) | 6.4 | 2.95 |
Clinical Symptom | Male Patients (10) | Female Patients (10 *) | Prevalence of Symptom in Patients (%) |
---|---|---|---|
Neuropsychomotor developmental delay | 9 | 6 | 75% |
Neurological regression | 9 | 4 | 65% |
Hepatomegaly | 7 | 4 | 55% |
Growth retardation | 6 | 4 | 50% |
Coarse face | 5 | 4 | 45% |
Hernia | 4 | 4 | 40% |
Heart disease/Valvulopathy | 1 | 3 | 20% |
Upper respiratory tract infection | 2 | 0 | 10% |
Hearing impairment | 1 | 0 | 5% |
Dysostosis multiplex | 1 | 0 | 5% |
Gibbosity | 1 | 0 | 5% |
Respiratory difficulty | 1 | 0 | 5% |
Splenomegaly | 1 | 0 | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro Moreira, M.L.; Montenegro, Y.H.A.; Salatino-Oliveira, A.; Montano, H.Q.; Bareiro, R.F.N.; Santos-Lopes, S.S.d.; Silva, T.R.d.; Azevedo, L.K.S.; Silva, K.B.L.d.; Moreira, A.W.d.A.; et al. Comprehensive Characterization of a Cluster of Mucopolysaccharidosis IIIB in Ecuador. Diagnostics 2025, 15, 2337. https://doi.org/10.3390/diagnostics15182337
Castro Moreira ML, Montenegro YHA, Salatino-Oliveira A, Montano HQ, Bareiro RFN, Santos-Lopes SSd, Silva TRd, Azevedo LKS, Silva KBLd, Moreira AWdA, et al. Comprehensive Characterization of a Cluster of Mucopolysaccharidosis IIIB in Ecuador. Diagnostics. 2025; 15(18):2337. https://doi.org/10.3390/diagnostics15182337
Chicago/Turabian StyleCastro Moreira, María Lucía, Yorran Hardman Araújo Montenegro, Angélica Salatino-Oliveira, Héctor Quintero Montano, Rodolfo F. Niz Bareiro, Simone Silva dos Santos-Lopes, Thiago Ramos da Silva, Lucas Kelvy Sales Azevedo, Karyme Beatrice Lourenço da Silva, Affonso Weslley de Almeida Moreira, and et al. 2025. "Comprehensive Characterization of a Cluster of Mucopolysaccharidosis IIIB in Ecuador" Diagnostics 15, no. 18: 2337. https://doi.org/10.3390/diagnostics15182337
APA StyleCastro Moreira, M. L., Montenegro, Y. H. A., Salatino-Oliveira, A., Montano, H. Q., Bareiro, R. F. N., Santos-Lopes, S. S. d., Silva, T. R. d., Azevedo, L. K. S., Silva, K. B. L. d., Moreira, A. W. d. A., Araujo, S. S., Kubaski, F., Trapp, F. B., Brusius-Facchin, A. C., Sebastião, F. M., Michelin-Tirelli, K., Baldo, G., Giugliani, R., & Palhares, D. (2025). Comprehensive Characterization of a Cluster of Mucopolysaccharidosis IIIB in Ecuador. Diagnostics, 15(18), 2337. https://doi.org/10.3390/diagnostics15182337