Low Preoperative Cachexia Index Is Associated with Severe Postoperative Morbidity in Patients Undergoing Gastrectomy for Gastric Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Assessment of SMI, CXI, and Cancer Cachexia
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Laboratory and Inflammatory Parameters
3.3. Surgical, Oncologic, and Postoperative Outcomes
3.4. Predictors of Major Postoperative Complications
3.5. Discriminative Ability of CXI and Age for Major Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASA | American Society of Anesthesiologists |
BMI | Body Mass Index |
CD | Clavien–Dindo |
CI | Confidence Interval |
CRP | C-Reactive Protein |
CT | Computed Tomography |
CXI | Cancer Cachexia Index |
GC | Gastric Cancer |
IQR | Interquartile Range |
L3 | Third Lumbar Vertebra |
NLR | Neutrophil-to-Lymphocyte Ratio |
OR | Odds Ratio |
OS | Overall Survival |
ROC | Receiver Operating Characteristic |
SD | Standard Deviation |
SMI | Skeletal Muscle Index |
TNM | Tumor, Node, Metastasis |
WHO | World Health Organization |
References
- Yamamoto, H.; Watanabe, Y.; Sato, Y.; Maehata, T.; Itoh, F. Non-Invasive Early Molecular Detection of Gastric Cancers. Cancers 2020, 12, 2880. [Google Scholar] [CrossRef] [PubMed]
- Sasahara, M.; Kanda, M.; Ito, S.; Mochizuki, Y.; Teramoto, H.; Ishigure, K.; Murai, T.; Asada, T.; Ishiyama, A.; Matsushita, H.; et al. The Preoperative Prognostic Nutritional Index Predicts Short-Term and Long-Term Outcomes of Patients with Stage II/III Gastric Cancer: Analysis of a Multi-Institution Dataset. Dig. Surg. 2020, 37, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Voeten, D.M.; van der Werf, L.R.; Gisbertz, S.S.; Ruurda, J.P.; Henegouwen, M.I.v.B.; van Hillegersberg, R.; van Det, M.J.; van Duijvendijk, P.; van Esser, S.; van Etten, B.; et al. Postoperative intensive care unit stay after minimally invasive esophagectomy shows large hospital variation. Results from the Dutch Upper Gastrointestinal Cancer Audit. Eur. J. Surg. Oncol. 2021, 47, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.Y.; Shah, S.C.; Lin, J.J.; Kim, M.K.; Itzkowitz, S.H.; Wang, C.P. Shattering the monolith: Burden of gastrointestinal cancer in Asian Americans, Native Hawaiians, and Pacific Islanders in the United States. Lancet Reg. Health Am. 2024, 41, 100954. [Google Scholar] [CrossRef]
- Gonçalves, D.C.; Gomes, S.P.; Seelaender, M. Metabolic, Inflammatory, and Molecular Impact of Cancer Cachexia on the Liver. Int. J. Mol. Sci. 2024, 25, 11945. [Google Scholar] [CrossRef]
- Matei, B.; Winters-Stone, K.M.; Raber, J. Examining the Mechanisms Behind Exercise’s Multifaceted Impacts on Body Composition, Cognition, and the Gut Microbiome in Cancer Survivors: Exploring the Links to Oxidative Stress and Inflammation. Antioxidants 2023, 12, 1423. [Google Scholar] [CrossRef]
- Zhang, F.M.; Zhuang, C.L.; Dong, Q.T.; Yu, Z.; Cheng, J.; Shen, X.; Wang, S.-L. Characteristics and prognostic impact of cancer cachexia defined by the Asian Working Group for Cachexia consensus in patients with curable gastric cancer. Clin. Nutr. 2024, 43, 1524–1531. [Google Scholar] [CrossRef]
- Kim, I.H.; Kang, S.J.; Choi, W.; Na Seo, A.; Eom, B.W.; Kang, B.; Kim, B.J.; Min, B.-H.; Tae, C.H.; Choi, C.I.; et al. Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline). J. Gastric Cancer 2025, 25, 5–114. [Google Scholar] [CrossRef]
- Yonemura, Y.; Ishibashi, H.; Mizumoto, A.; Tukiyama, G.; Liu, Y.; Wakama, S.; Sako, S.; Takao, N.; Kitai, T.; Katayama, K.; et al. The Development of Peritoneal Metastasis from Gastric Cancer and Rationale of Treatment According to the Mechanism. J. Clin. Med. 2022, 11, 458. [Google Scholar] [CrossRef]
- Rijken, A.; Lurvink, R.J.; Luyer, M.D.P.; Nieuwenhuijzen, G.A.P.; van Erning, F.N.; van Sandick, J.W.; de Hingh, I.H.J.T. The Burden of Peritoneal Metastases from Gastric Cancer: A Systematic Review on the Incidence, Risk Factors and Survival. J. Clin. Med. 2021, 10, 4882. [Google Scholar] [CrossRef]
- Bas, O.; Sahin, T.K.; Karahan, L.; Rizzo, A.; Guven, D.C. Prognostic significance of the cachexia index (CXI) in patients with cancer: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2025, 68, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Bardakci, M.; Esmer, D.D.; Hafizoglu, E.; Karaman, K.; Kuzu, O.F.; Karakas, H.; Gungorer, B.; Uncu, D. Evaluation of Clinical and Prognostic Factors for Primary Gastric Diffuse Large B-Cell Lymphoma: Single-Center Experience. J. Cancer Res. Ther. 2023, 19, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.R.; Sayers, J.; Yule, M.S.; Drake, T.M.; Dolan, R.D.; McMillan, D.C.; Laird, B.J.A.; Wigmore, S.J.; Skipworth, R.J.E. The prognostic impact of pre-treatment cachexia in resectional surgery for oesophagogastric cancer: A meta-analysis and meta-regression. Br. J. Surg. 2023, 110, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Wan, Q.; Zhao, R.; Zuo, X.; Chen, Y.; Li, T. Cachexia Index as a Prognostic Indicator in Patients with Gastric Cancer: A Retrospective Study. Cancers 2022, 14, 4400. [Google Scholar] [CrossRef]
- Go, S.I.; Park, M.J.; Park, S.; Kang, M.H.; Kim, H.G.; Kang, J.H.; Kim, J.H.; Lee, G.W. Cachexia index as a potential biomarker for cancer cachexia and a prognostic indicator in diffuse large B-cell lymphoma. J. Cachexia Sarcopenia Muscle 2021, 12, 2211–2219. [Google Scholar] [CrossRef]
- Argın, V.; Sunar, A.O.; Özduman, M.Ö.; Dincer, M.; Senger, S.; Gülmez, S.; Uzun, O.; Polat, E.; Duman, M. The Diagnostic Value of Hemogram Parameters in Gastric Cancer and Intestinal Metaplasia. Laparosc. Endosc. Surg. Sci. 2025, 32, 67–71. [Google Scholar] [CrossRef]
- James, V.; Ashcraft, E.; Cheng, C.; Elbahlawan, L. Hypoalbuminemia is associated with adverse outcomes in critically ill children with cancer. Front. Oncol. 2025, 15, 1576639. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, B.; Zhang, Y.; Yang, C.; Bo, C.; Guo, Y.; Cheng, Y.; He, L. Prognostic Significance of the Cachexia Index in Patients with Non-Small-Cell Lung Cancer and Brain Metastases after Stereotactic Radiotherapy. Clin. Med. Insights Oncol. 2024, 18, 11795549231222362. [Google Scholar] [CrossRef]
- Shimagaki, T.; Sugimachi, K.; Tomino, T.; Onishi, E.; Koga, N.; Kasagi, Y.; Sugiyama, M.; Kimura, Y.; Morita, M. Cachexia index as a prognostic marker in patients undergoing biliary tract cancer resection. Surg. Today 2025, 1, 1–11. [Google Scholar] [CrossRef]
- Burkart, M.; Schieber, M.; Basu, S.; Shah, P.; Venugopal, P.; Borgia, J.A.; Gordon, L.; Karmali, R. Evaluation of the impact of cachexia on clinical outcomes in aggressive lymphoma. Br. J. Haematol. 2019, 186, 45–53. [Google Scholar] [CrossRef]
- Wan, Q.; Wang, Z.; Zhao, R.; Tu, T.; Shen, X.; Shen, Y.; Li, T.; Chen, Y.; Song, Y. CT-determined low skeletal muscle mass predicts worse overall survival of gastric cancer in patients with cachexia. Cancer Med. 2022, 12, 1492–1500. [Google Scholar] [CrossRef]
- Kurk, S.; Peeters, P.; Stellato, R.; Dorresteijn, B.; de Jong, P.; Jourdan, M.; Creemers, G.J.; Erdkamp, F.; de Jongh, F.; Kint, P.; et al. Skeletal muscle mass loss and dose-limiting toxicities in metastatic colorectal cancer patients. J. Cachexia Sarcopenia Muscle 2019, 10, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Lee, J.; Jeong, W.K.; Kim, S.T.; Kim, J.H.; Hong, J.Y.; Kang, W.K.; Kim, K.M.; Sohn, I.; Choi, D. Prognostic significance of sarcopenia in microsatellite-stable gastric cancer patients treated with programmed death-1 inhibitors. Gastric Cancer 2021, 24, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Oke, S.M.; Rye, B.; Malietzis, G.; Baldwin-Cleland, R.; Bottle, A.; Gabe, S.M.; Lung, P.F.C. Survival and CT defined sarcopenia in patients with intestinal failure on home parenteral support. Clin. Nutr. 2020, 39, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Köksal, B.G.; Bollucuoğlu, K.; Şahin, E.; Bayram, M.G.; Küçükosman, G.; Ayoğlu, H. The effect of anesthesia methods on the neutrophil–lymphocyte ratio in patients undergoing forearm surgery: A monocentric and retrospective study. Medicine 2024, 103, e40290. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Motoori, M.; Fujitani, K.; Sugimura, K.; Miyata, H.; Nakatsuka, R.; Nishizawa, Y.; Komatsu, H.; Miyazaki, S.; Komori, T.; Kashiwazaki, M.; et al. Skeletal muscle loss during neoadjuvant chemotherapy is an independent risk factor for postoperative infectious complications in patients with advanced esophageal cancer. Oncology 2018, 95, 281–287. [Google Scholar] [CrossRef]
- Ida, S.; Watanabe, M.; Yoshida, N.; Baba, Y.; Umezaki, N.; Harada, K.; Karashima, R.; Imamura, Y.; Iwagami, S.; Baba, H. Sarcopenia Is a Predictor of Postoperative Respiratory Complications in Patients with Esophageal Cancer. Ann. Surg. Oncol. 2015, 22, 4432–4437. [Google Scholar] [CrossRef]
- Qi, Q.; Geng, Y.; Sun, M.; Chen, H.; Wang, P.; Chen, Z.; Meng, Z.; Li, J.; Liu, L. Prognostic Value of Systemic Inflammation Response Index in Patients with Gastric Cancer. J. Surg. Oncol. 2020, 122, 737–745. [Google Scholar] [CrossRef]
- Sakurai, K.; Kubo, N.; Hasegawa, T.; Nishimura, J.; Iseki, Y.; Nishii, T.; Inoue, T.; Yashiro, M.; Nishiguchi, Y.; Maeda, K. The Cancer Cachexia Index Can Be Used to Prognostically Predict Patients with Gastric Cancer Undergoing Gastrectomy. Ann. Nutr. Metab. 2023, 79, 511–521. [Google Scholar] [CrossRef]
- Jiang, N.; Deng, J.Y.; Liu, Y.; Ke, B.; Liu, H.G. The Role of Preoperative Albumin to Globulin Ratio in Predicting the Outcomes of Gastric Cancer Patients. Clin. Nutr. 2021, 40, 4026–4032. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Z.; Chen, Y. Prognostic value of pretreatment systemic immune-inflammation index in gastric cancer: A meta-analysis. Front. Oncol. 2021, 11, 537140. [Google Scholar] [CrossRef]
- Wei, C.; Yu, Z.; Wang, G.; Zhou, Y.; Tian, L. Low pretreatment albumin-to-globulin ratio predicts poor prognosis in gastric cancer: Insight from a meta-analysis. Front. Oncol. 2021, 10, 623046. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Jiang, H.; Xu, Q.; Zhang, Y.; Li, W.; Chen, X.; Wang, L.; Liu, J.; Zhao, P. Risk factors for pneumonia after radical gastrectomy for gastric cancer: A systematic review and meta-analysis. BMC Cancer 2025, 25, 840. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Ge, X.; Liu, Z.; Wang, Y.; Li, J.; Chen, H.; Zhao, Q. Postoperative C-reactive protein/albumin ratio as a novel predictor for short-term complications following gastrectomy of gastric cancer. World J. Surg. Oncol. 2017, 15, 191. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, Y.; Zhang, L.; Xue, Y.; Zhang, S.; Li, X.; Song, H. In gastric cancer patients receiving neoadjuvant chemotherapy systemic inflammation response index is a useful prognostic indicator. Pathol. Oncol. Res. 2021, 27, 1609811. [Google Scholar] [CrossRef]
- Blauwhoff-Buskermolen, S.; Versteeg, K.S.; de van der Schueren, M.A.; den Braver, N.R.; Berkhof, J.; Langius, J.A.E.; Verheul, H.M.W. Loss of Muscle Mass During Chemotherapy Is Predictive for Poor Survival of Patients with Metastatic Colorectal Cancer. J. Clin. Oncol. 2016, 34, 1339–1344. [Google Scholar] [CrossRef]
Characteristics | Low CXI (n = 150) | High CXI (n = 151) | p-Value | |
---|---|---|---|---|
Age | 64.57 ± 12.90 | 60.50 ± 11.66 | 0.004 | |
Height (cm) | 167.77 ± 7.90 | 168.48 ± 8.75 | 0.465 | |
Weight (kg) | 68.95 ± 13.44 | 72.23 ± 15.65 | 0.052 | |
BMI (kg/m2) | 24.44 ± 4.23 | 25.31 ± 4.36 | 0.079 | |
Gender | Female | 48 (32.0%) | 39 (25.8%) | 0.238 |
Male | 102 (68.0%) | 112 (74.2%) | ||
Smoking | 88 (58.7%) | 72 (47.7%) | 0.056 | |
Alcohol consumption | 40 (26.7%) | 32 (21.2%) | 0.266 | |
Hypertension | 45 (29.8%) | 43 (28.7%) | 0.829 | |
Diabetes | 17 (11.3%) | 24 (15.9%) | 0.249 | |
Cachexia (Fearon’s criteria), n (%) | 88 (58.7%) | 32 (21.2%) | <0.001 |
Characteristics | Low CXI (n = 150) | High CXI (n = 151) | p-Value |
---|---|---|---|
SMA (cm2) | 41.75 ± 8.34 | 48.05 ± 9.94 | 0.001 |
Preoperative albumin (g/dL) | 3.85 ± 0.53 | 4.19 ± 0.41 | 0.001 |
Postoperative albumin (g/dL) | 2.95 ± 0.37 | 3.17 ± 0.40 | 0.001 |
Preoperative DNI | 0.10 (0.10–20.40) | 0.10 (0.10–9.90) | 0.093 |
Postoperative DNI | 0.30 (0.10–12.00) | 0.10 (0.10–49.40) | 0.617 |
CRP | 9.91 ± 2.98 | 3.19 ± 0.89 | 0.001 |
Hemoglobin | 12.59 ± 1.42 | 12.35 ± 1.45 | 0.154 |
Preoperative platelet count | 260.99 ± 101.42 | 230.51 ± 74.48 | 0.003 |
Postoperative platelet count | 247.01 ± 92.75 | 218.59 ± 76.64 | 0.004 |
Preoperative lymphocyte count | 1.38 ± 0.53 | 2.21 ± 3.82 | 0.009 |
Postoperative lymphocyte count | 0.85 ± 0.51 | 1.31 ± 4.13 | 0.177 |
SMI (cm2/m2) | 41.75 ± 8.34 | 48.05 ± 9.94 | 0.001 |
NLR | 3.80 ± 2.39 | 1.73 ± 0.61 | 0.001 |
Characteristics | Low CXI (n = 150) | High CXI (n = 151) | p-Value | |
---|---|---|---|---|
Length of hospital stay (day) | 8 (3–92) | 7 (2–61) | 0.001 | |
received neoadjuvant CT | 107 (71.3%) | 118 (78.1%) | 0.174 | |
ICU stay (day) | 2 (1–74) | 2 (1–49) | 0.129 | |
Surgical technique | Laparotomy | 136 (90.7%) | 120 (79.5%) | 0.006 |
Laparoscopy | 14 (9.3%) | 31 (20.5%) | ||
T stage | I | 9 (6.0%) a | 26 (17.2%) b | 0.003 |
II | 28 (18.6%) a | 24 (15.9%) a | ||
III | 70 (46.7%) a | 77 (51.0%) a | ||
IV | 43 (28.7%) a | 24 (15.9%) b | ||
TNM Stage | I | 24 (16.0%) | 43 (28.5%) | 0.072 |
II | 50 (33.3%) | 45 (29.8%) | ||
III | 69 (46.0%) | 56 (37.1%) | ||
IV | 7 (4.7%) | 7 (4.6%) | ||
Mortality Rate | 4 (2.7%) | 1 (0.7%) | 0.174 | |
Morbidity Rate | 40 (26.8%) | 32 (21.3%) | 0.265 | |
Intraoperative blood loss (mL) | 187 (115–410) | 163 (80–325) | 0.054 | |
Intraoperative transfusion, n (%) | 21/150 (14.0%) | 18/151 (11.9%) | 0.710 | |
Clavien–Dindo Grade < III | 6 (4.0%) | 18 (11.9%) | 0.011 | |
Clavien–Dindo Grade ≥ III | 34 (22.7%) | 14 (9.3%) | 0.002 |
Variables | Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | p | OR (95% CI) | B | SE | p | OR (95% CI) | ||
SMA (cm2) | −0.011 | 0.0054 | 0.033 | 0.989 (0.978–0.999) | −0.008 | 0.009 | 0.362 | 0.992 (0.975–1.009) | |
Age | 0.048 | 0.0151 | 0.002 | 1.049 (1.019–1.081) | 0.041 | 0.016 | 0.012 | 1.041 (1.009–1.075) | |
BMI (kg/m2) | −0.114 | 0.0413 | 0.006 | 0.892 (0.823–0.967) | −0.048 | 0.058 | 0.408 | 0.953 (0.851–1.068) | |
CXI | −0.021 | 0.0051 | 0.001 | 0.979 (0.969–0.989) | −0.021 | 0.008 | 0.005 | 0.979 (0.964–0.994) | |
CRP | 0.105 | 0.0376 | 0.005 | 1.111 (1.032–1.195) | −0.066 | 0.061 | 0.278 | 0.936 (0.832–1.054) | |
Surgical Approach (Laparoscopy vs. Open) | −1.550 | 0.741 | 0.037 | 0.212 (0.050–0.908) | −0.348 | 0.833 | 0.676 | 0.706 (0.138–3.612) | |
Gender (Female–Male) | −0.234 | 0.361 | 0.516 | 0.791 (0.390–1.604) | 0.742 | 0.511 | 0.146 | 2.100 (0.771–5.719) | |
Albumin | −1.050 | 0.293 | 0.001 | 0.350 (0.197–0.622) | −1.004 | 0.577 | 0.082 | 0.367 (0.118–1.136) | |
Diabetes | 1.430 | 0.743 | 0.054 | 4.192 (0.977–17.980) | −0.760 | 0.864 | 0.379 | 0.468 (0.086–2.544) | |
Hypertension | 0.126 | 0.353 | 0.721 | 1.134 (0.568–2.265) | −0.331 | 0.417 | 0.426 | 0.718 (0.317–1.625) | |
Smoking | 1.890 | 0.428 | 0.001 | 6.595 (2.851–15.257) | 2.355 | 0.589 | 0.001 | 10.539 (3.321–33.443) | |
Neoadjuvant CT | 0.028 | 0.372 | 0.940 | 1.029 (0.496–2.133) | 0.748 | 0.4460 | 0.093 | 2.113 (0.882–5.061) | |
TNM Stage | II–I | 0.336 | 0.748 | 0.653 | 1.400 (0.323–6.065) | 0.310 | 0.9770 | 0.751 | 1.364 (0.201–9.254) |
III–I | 0.521 | 0.651 | 0.423 | 1.684 (0.470–6.030) | −0.851 | 0.9120 | 0.351 | 0.427 (0.071–2.552) | |
IV–I | 1.443 | 0.663 | 0.029 | 4.235 (1.155–15.532) | −0.770 | 0.963 | 0.424 | 0.463 (0.070–3.055) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gül, M.C.; Çolakoğlu, M.K.; Öter, V.; Karaca, N.; Eroğlu, S.E.; Ökten, R.S.; Bostancı, E.B. Low Preoperative Cachexia Index Is Associated with Severe Postoperative Morbidity in Patients Undergoing Gastrectomy for Gastric Cancer. Diagnostics 2025, 15, 2284. https://doi.org/10.3390/diagnostics15182284
Gül MC, Çolakoğlu MK, Öter V, Karaca N, Eroğlu SE, Ökten RS, Bostancı EB. Low Preoperative Cachexia Index Is Associated with Severe Postoperative Morbidity in Patients Undergoing Gastrectomy for Gastric Cancer. Diagnostics. 2025; 15(18):2284. https://doi.org/10.3390/diagnostics15182284
Chicago/Turabian StyleGül, Melih Can, Muhammet Kadri Çolakoğlu, Volkan Öter, Neslihan Karaca, Sadettin Emre Eroğlu, Rıza Sarper Ökten, and Erdal Birol Bostancı. 2025. "Low Preoperative Cachexia Index Is Associated with Severe Postoperative Morbidity in Patients Undergoing Gastrectomy for Gastric Cancer" Diagnostics 15, no. 18: 2284. https://doi.org/10.3390/diagnostics15182284
APA StyleGül, M. C., Çolakoğlu, M. K., Öter, V., Karaca, N., Eroğlu, S. E., Ökten, R. S., & Bostancı, E. B. (2025). Low Preoperative Cachexia Index Is Associated with Severe Postoperative Morbidity in Patients Undergoing Gastrectomy for Gastric Cancer. Diagnostics, 15(18), 2284. https://doi.org/10.3390/diagnostics15182284