Nanopore 16S-Full Length and ITS Sequencing for Microbiota Identification in Intra-Abdominal Infections
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Information
2.2. Sample Collected and Processing
2.3. Clinical Identification
2.4. DNA Library Preparation and ONTsequence
2.5. Bioinformatics Analysis
3. Results
3.1. Clinical Characteristics of Patients with Intra-Abdominal Infections (IAIs)
3.2. Comparison of Conventional Clinical Culture and ONT Sequencing
3.3. ONT Sequencing Results and Diversity Metrics in IAI Patients
3.4. Pathogen Detection by Conventional Culture and ONT Sequencing
3.5. Association Between Microbial Composition Identified by ONT Sequencing and Clinical Phenotypes in IAI Patients
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IAI | Intra-abdominal infections |
TATs | Turnaround times |
C. albicans | Candida albicans |
E. coli | Escherichia coli |
ICU | Intensive Care Unit |
ONT sequencing | Oxford Nanopore sequencing |
References
- Sartelli, M. A focus on intra-abdominal infections. World J. Emerg. Surg. 2010, 5, 9. [Google Scholar] [CrossRef]
- Napolitano, L.M. Intra-abdominal Infections. Semin. Respir. Crit. Care Med. 2022, 43, 10–27. [Google Scholar] [CrossRef]
- Mulier, S.; Penninckx, F.; Verwaest, C.; Filez, L.; Aerts, R.; Fieuws, S.; Lauwers, P. Factors affecting mortality in generalized postoperative peritonitis: Multivariate analysis in 96 patients. World J. Surg. 2003, 27, 379–384. [Google Scholar] [CrossRef]
- Marcus, G.; Levy, S.; Salhab, G.; Mengesha, B.; Tzuman, O.; Shur, S.; Burke, E.; Mayeda, R.C.; Cochavi, L.; Perluk, I.; et al. Intra-abdominal Infections: The Role of Anaerobes, Enterococci, Fungi, and Multidrug-Resistant Organisms. Open Forum Infect. Dis. 2016, 3, ofw232. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Baughn, A.D.; Malamy, M.H. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 2004, 427, 441–444. [Google Scholar] [CrossRef]
- Heikema, A.P.; Horst-Kreft, D.; Boers, S.A.; Jansen, R.; Hiltemann, S.D.; de Koning, W.; Kraaij, R.; de Ridder, M.A.J.; van Houten, C.B.; Bont, L.J.; et al. Comparison of Illumina versus Nanopore 16S rRNA Gene Sequencing of the Human Nasal Microbiota. Genes 2020, 11, 1105. [Google Scholar] [CrossRef]
- Thompson, J.F.; Steinmann, K.E. Single molecule sequencing with a HeliScope genetic analysis system. Curr. Protoc. Mol. Biol. 2010, 92, 7.10.1–7.10.14. [Google Scholar] [CrossRef]
- D’Andreano, S.; Cuscó, A.; Francino, O. Rapid and real-time identification of fungi up to species level with long amplicon nanopore sequencing from clinical samples. Biol. Methods Protoc. 2020, 6, bpaa026. [Google Scholar] [CrossRef]
- Gu, W.; Deng, X.; Lee, M.; Sucu, Y.D.; Arevalo, S.; Stryke, D.; Federman, S.; Gopez, A.; Reyes, K.; Zorn, K.; et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med. 2021, 27, 115–124. [Google Scholar] [CrossRef]
- Visedthorn, S.; Klomkliew, P.; Sawaswong, V.; Sivapornnukul, P.; Chanchaem, P.; Saejew, T.; Pavatung, P.; Kanjanabuch, T.; Payungporn, S. Bacterial classification based on metagenomic analysis in peritoneal dialysis effluent of patients with chronic kidney disease. Biomed. Rep. 2024, 21, 102. [Google Scholar] [CrossRef]
- Lao, H.Y.; Wong, L.L.; Hui, Y.; Ng, T.T.; Chan, C.T.; Lo, H.W.; Yau, M.C.; Leung, E.C.; Wong, R.C.; Ho, A.Y.; et al. The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids. Front. Microbiol. 2023, 14, 1324494. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Bauer, M.J.; Luftinger, L.; Beisken, S.; Forde, B.M.; Balch, R.; Cotta, M.; Schlapbach, L.; Raman, S.; Shekar, K.; et al. Rapid nanopore sequencing and predictive susceptibility testing of positive blood cultures from intensive care patients with sepsis. Microbiol. Spectr. 2024, 12, e0306523. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, Y.; Chen, L.; Yan, X.; Xu, T.; Fu, M.; Han, Y.; Zhang, Y.; Zhang, B.; Cao, J.; et al. Nanopore sequencing of infectious fluid is a promising supplement for gold-standard culture in real-world clinical scenario. Front. Cell Infect. Microbiol. 2024, 14, 1330788. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Yu, F.; Zhang, D.; Hu, J.; Zhang, X.; Xiang, D.; Lou, B.; Chen, Y.; Zheng, S. Molecular rapid diagnostic testing for bloodstream infections: Nanopore targeted sequencing with pathogen-specific primers. J. Infect. 2024, 88, 106166. [Google Scholar] [CrossRef]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef]
- Harbarth, S.; Uckay, I. Are there patients with peritonitis who require empiric therapy for enterococcus? Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 73–77. [Google Scholar] [CrossRef]
- Sitges-Serra, A.; Lopez, M.J.; Girvent, M.; Almirall, S.; Sancho, J.J. Postoperative enterococcal infection after treatment of complicated intra-abdominal sepsis. Br. J. Surg. 2002, 89, 361–367. [Google Scholar] [CrossRef]
- Petersen, L.M.; Martin, I.W.; Moschetti, W.E.; Kershaw, C.M.; Tsongalis, G.J. Third-Generation Sequencing in the Clinical Laboratory: Exploring the Advantages and Challenges of Nanopore Sequencing. J. Clin. Microbiol. 2019, 58, 10–1128. [Google Scholar] [CrossRef]
- Rang, F.J.; Kloosterman, W.P.; de Ridder, J. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018, 19, 90. [Google Scholar] [CrossRef]
- Leggett, R.M.; Clark, M.D. A world of opportunities with nanopore sequencing. J. Exp. Bot. 2017, 68, 5419–5429. [Google Scholar] [CrossRef]
Sample | Gender | Age | Phenotype | hsCRP (mg/dL) | WBC Count | Operation | Antibiotic |
---|---|---|---|---|---|---|---|
1 | M | 27 | Acute appendicitis | 0.43 | 4960 | laparoscopic appendectomy | Amoxicillin, Metronidazole |
2 | F | 66 | Acute appendicitis | 1 | 12,130 | laparoscopic appendectomy | Flomoxef |
3 | F | 53 | S-colon perforation with fecal peritonitis | - | 6930 | Hartmann’s procedure (sigmoidectomy + end D-colostomy) | Piperacillin, Ceftriaxone, Flomoxef |
4 | F | 44 | Acute gastric ulcer with perforation Septic shock | 33.8 | 8030 | simple suture with omental patch and round ligament patch | Fluconazole, Flomoxef, Anidulafungin, Ertapenem, Micafungin |
5 | F | 84 | Duodenal perforated ulcer | 1.4 | 2200 | laparoscopic duodenorrhaphy | Ivermectin, Doripenem, Amphotericin B liposomal, Vancomycin, Amoxicillin, Flomoxef |
6 | M | 58 | Small bowel obstruction, volvulus-related | 1.3 | 6780 | volvulus s/p reduction operation | Metronidazole, Amoxicillin |
7 | F | 52 | perforation of Jejunum Ileum adhesion to T-colon | 13.4 | 15,840 | resection of small bowel with anastomosis and Repair of colon | Ampicillin, Ceftriaxone, Anidulafungin, Flomoxef, Piperacillin |
8 | M | 84 | Non-occlusive mesentery infarction Septic shock | 3.7 | 15,800 | small intestine resection (420 cm) and end-jejunostomy | Tigecycline, Cefepime, Flomoxef, Ertapenem, Anidulafungin, Micafungin |
9 | F | 76 | Gastric ulcer perforation, type III | 3.7 | 2770 | simple closure with round ligament patch | Oxacillin, Tatumcef, Metronidazole, Micafungin, Ertapenem |
10 | F | 46 | Gastric ulcer with perforation, antrum, anterior wall/ intra-peritoneal abscess | 7.3 | 6110 | simple closure with round ligament patch | Ampicillin, Sulbactam, Micafungin, Ertapenem |
11 | M | 78 | Duodenal perforation | 41.5 | 4800 | primary repair of perforation and Foley sump drain drainage; debridement of retroperitoneum | Vancomycin, Flomoxef, Gentamicin, Piperacillin, Tazobactam, Piperacillin, Anidulafungin |
12 | M | 41 | Bowel perforation | 11.5 | 19,150 | small bowel resection, subtotal colectomy (with rectal stump remain); end-jejunostomy | Metronidazole, Cefepime, Anidulafungin, Amoxicillin, Flomoxef, Cefoperazone, Sulbactam |
13 | F | 69 | Perforation over gastrojejunostomy with generalized peritonitis | 22.8 | 8720 | take down of the gastrojejunostomy and reconstruction of a gastrojejunostomy | Ceftriaxone, Micafungin, Ertapenem |
14 | M | 60 | Gastric ulcer perforation, type III | 0.7 | 5770 | hemigastrectomy + B-II reconstruction (isoperistaltic, antecolic) | Micafungin, Vancomycin, Ertapenem, Cefuroxime |
15 | M | 79 | Duodenal ulcer perforation | 2.1 | 22,240 | laparoscopic duodenorrhaphy | Fluconazole, Micafungin, Ceftriaxone, Ertapenem |
16 | M | 46 | Perforated gastric ulcer | 2.8 | 9660 | primary closure with omentum patch | Amoxicillin, Ampicillin, Sulbactam, Vancomycin, Micafungin, Ertapenem |
1 | 2 | 3 | 4 | 5 | 7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total counts | 5109 | 16,235 | 8555 | 19,716 | 10,420 | 15,827 | 11,654 | 15,171 | 15,139 | 16,195 | 11,429 | 1094 | 3895 | 375 |
Fisher’s alpha | 38.27 | 29.46 | 33.54 | 28.43 | 7.94 | 7.44 | 7.8 | 14.86 | 14.87 | 14.7 | 7.82 | 27.88 | 19.41 | 46.88 |
Inverse Simpson’s index | 6.13 | 1.9 | 1.22 | 1.67 | 1.39 | 1.49 | 1.65 | 1.75 | 2.1 | 1.67 | 1.74 | 2.1 | 1.88 | 1.82 |
Richness | 41 | 47 | 70 | 128 | 22 | 24 | 43 | 44 | 31 | 48 | 24.0 | 29 | 43 | 11 |
Shannon diversity index | 0.51 | 1.34 | 2.18 | 1.74 | 1.47 | 1.35 | 1.23 | 1.13 | 1.01 | 1.27 | 1.09 | 1.15 | 1.62 | 1 |
Pielou’s evenness | 0.14 | 0.35 | 0.51 | 0.36 | 0.48 | 0.42 | 0.33 | 0.3 | 0.3 | 0.33 | 0.34 | 0.34 | 0.43 | 0.42 |
Bacteria | 420 | 5248 | 8546 | 19,676 | 3179 | 8130 | 6240 | 6585 | 4674 | 6769 | 5191 | 323 | 1137 | 24 |
Eukaryote (candida) | 66 | 0 | 0 | 0 | 4116 | 60 | 57 | 9 | 7 | 30 | 347 | 5 | 111 | 148 |
Unclassified counts | 4481 | 10,987 | 9 | 40 | 3125 | 7637 | 5357 | 8577 | 10,458 | 8404 | 5891 | 766 | 2647 | 203 |
Sample | Clinical Culture | Nanopore Detection (Read Count %) |
---|---|---|
1 | Escherichia coli | Escherichia (0.21%) |
2 | Escherichia coli Finegoldia magna * | Escherichia (3.43%) |
3 | Klebsiella pneumoniae Morganella morganii Enterococcus avium Pavimonas micra * Finegoldia magna * | Enterococcus (0.01%) Morganella (0.01%) Enterococcus (0.63%) |
4 | Streptococcus mitis group Lactobacillus sp. Veillonella dispar * | Streptococcus (61.89%) Lactobacillus (0.72%), Veillonella (10%) |
5 | Candida albicans | Candida (56.42%) |
06 | - | - |
07 | Citrobacter koseri Streptococcus anginosus Enterococcus faecalis | Citrobacter (0.31%) Staphylococcus (40.1%) Enterococcus (0.26%) |
08 | Klebsiella pneumoniae | - |
09 | Staphylococcus aureus | Staphylococcus (0.02%) |
10 | - | Staphylococcus (74.26%) † |
11 | Escherichia coli Proteus vulgaris | Escherichia (7.36%) Proteus (7.56%) |
12 | Escherichia coli Klebsiella pneumoniae Proteus vulgaris | Escherichia (0.01%) Klebsiella (45.12%) Proteus (0.01%) |
13 | Viridans streptococci | Streptococcus (89.19%) |
14 | - | Streptococcus (59.45%) † |
15 | Candida albicans | Candida (86.05%) |
16 | Candida albicans | Candida (8.91%) |
Site | ID | TOP 5 Genus Level of Bacterium | Total Identify Reads | ||||
---|---|---|---|---|---|---|---|
Lower gastrointestinal tract | 1 | Sinocapsa | Streptococcus | Prevotella | Parvimonas | Dialister | 486 |
28.% | 12.14% | 8.64% | 8.02% | 3.5% | |||
2 | Streptococcus | Bacteroides | Enterocloster | Odoribacter | Sinocapsa | 5248 | |
27.12% | 19.47% | 18.29% | 8.54% | 4.95% | |||
3 | Prevotella | Parvimonas | Dialister | Acidaminococcus | Fusobacterium | 8546 | |
29.17% | 26.41% | 10.46% | 9.48% | 4.03% | |||
7 | Prevotella | Streptococcus | Fusobacterium | Dialister | Megasphaera | 8190 | |
44.64% | 40.10% | 6.56% | 3.13% | 2.76% | |||
12 | Klebsiella | Staphylococcus | Phocaeicola | Bacteroides | Streptococcus | 6799 | |
45.12% | 40% | 2.66% | 2.33% | 2.04% | |||
Upper gastrointestinal tract | 4 | Streptococcus | Veillonella | Prevotella | Oribacterium | Granulicatella | 19,676 |
61.89% | 10% | 7.62% | 2.63% | 2.38% | |||
5 | Candida sp. | Lactobacillus | Limosilactobacillus | Streptococcus | Ligilactobacillus | 7295 | |
56.43% | 19.06% | 16.29% | 6.39% | 0.43% | |||
9 | Streptococcus | Veillonella | Gemella | Granulicatella | Candida sp. | 6297 | |
78.88% | 7.64% | 3.19% | 2.43% | 0.87% | |||
10 | Streptococcus | Gemella | Granulicatella | Rothia | Neisseria | 6594 | |
74.21% | 13.78% | 3.65% | 2.18% | 1.76% | |||
11 | Bacteroides | Proteus | Escherichia | Shigella | Bilophila | 4681 | |
68.92% | 7.56% | 7.34% | 4.83% | 3.16% | |||
13 | Streptococcus | Saccharomyces | Veillonella | Granulicatella | Prevotella | 5538 | |
81.91% | 5.31% | 4.08% | 2.60% | 2.08% | |||
14 | Streptococcus | Oribacterium | Veillonella | Granulicatella | Gemella | 328 | |
59.45% | 6.71% | 6.71% | 5.49% | 3.34% | |||
15 | Candida | Bacteroides | Staphylococcus | Streptococcus | Gemella | 1248 | |
86.05% | 4.07% | 2.91% | 2.33% | 1.74% | |||
16 | Parvimonas | Staphylococcus | Candida | Prevotella | Porphyromonas | 172 | |
9.63% | 9.07% | 8.91% | 8.11% | 8.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.-J.; Chen, Y.-S.; Lin, H.-C.; Chen, Y.-J.; Lai, K.-L.; Mao, Y.-C.; Liu, P.-Y.; Chuang, H.-N. Nanopore 16S-Full Length and ITS Sequencing for Microbiota Identification in Intra-Abdominal Infections. Diagnostics 2025, 15, 2257. https://doi.org/10.3390/diagnostics15172257
Liao J-J, Chen Y-S, Lin H-C, Chen Y-J, Lai K-L, Mao Y-C, Liu P-Y, Chuang H-N. Nanopore 16S-Full Length and ITS Sequencing for Microbiota Identification in Intra-Abdominal Infections. Diagnostics. 2025; 15(17):2257. https://doi.org/10.3390/diagnostics15172257
Chicago/Turabian StyleLiao, Jian-Jhou, Yong-Sian Chen, Hui-Chen Lin, Yi-Ju Chen, Kuo-Lung Lai, Yan-Chiao Mao, Po-Yu Liu, and Han-Ni Chuang. 2025. "Nanopore 16S-Full Length and ITS Sequencing for Microbiota Identification in Intra-Abdominal Infections" Diagnostics 15, no. 17: 2257. https://doi.org/10.3390/diagnostics15172257
APA StyleLiao, J.-J., Chen, Y.-S., Lin, H.-C., Chen, Y.-J., Lai, K.-L., Mao, Y.-C., Liu, P.-Y., & Chuang, H.-N. (2025). Nanopore 16S-Full Length and ITS Sequencing for Microbiota Identification in Intra-Abdominal Infections. Diagnostics, 15(17), 2257. https://doi.org/10.3390/diagnostics15172257