Optimization of 16S RNA Sequencing and Evaluation of Metagenomic Analysis with Kraken 2 and KrakenUniq
Abstract
1. Introduction
2. Materials and Methods
2.1. Validation Samples
2.2. Bacterial DNA Extraction
2.3. Sanger PCR Amplification
2.4. MiSeqPCR Amplification
2.5. Sanger Library Sequencing
2.6. MiSeqLibrary Sequencing
2.7. Analysis Results
- (1)
- Paired-end detection of read files, if uploaded in the same batch;
- (2)
- Technology-specific quality filtering to trim or remove low-quality reads;
- (3)
- Establishment of a work list for the batch.
- (1)
- Quality filtering: R1 and R2 files are merged for Illumina data, and a sliding window (25 nt) is then applied to reads, enhancing the trimming of poor-quality sections with a low Phred score (<23 for this study) and the filtering of short reads (<20 nt in this study).
- (2)
- Read mapping: Reads passing the quality filters are mapped against the SmartGene 16S Centroid database without prior binning. The SmartGene “16S Centroid” database consists of non-redundant representative bacterial 16S rRNA sequences covering 17,314 species from 3439 genera as of November 2024. It is maintained and updated by AI and algorithms (patent #EP02215578).
- (3)
- Production of a quality report and display of the results: Results are grouped according to match quality (e.g., % coverage, number of mismatches, etc.), match specificity (matching a single species or not), and match consistency (close matches belonging to the same genus). The system produces a confidence score for the matching taxon, and it is not possible to provide a call at the species level; a call is made at the next taxon up, indicating all possible matching species and genera. Results are displayed in table format, along with the number of reads and relative abundance, with the possibility of consolidation at species, genus, and family levels, and the generation of a dynamic Krona diagram. Abundances are evaluated by counting the reads mapped to a particular species/genus/family.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Santé Publique France. Bulletin Epibac: Surveillance des Infections Invasives Bactériennes. Édition Nationale. 5 Mars 2024. Available online: https://www.santepubliquefrance.fr/content/download/610779/4219986?version=2 (accessed on 1 May 2025).
- Oethinger, M.; Warner, D.K.; Schindler, S.A.; Kobayashi, H.; Bauer, T.W. Diagnosing periprosthetic infection: False-positive intraoperative Gram stains. Clin. Orthop. Relat. Res. 2011, 469, 954–960. [Google Scholar] [CrossRef]
- Tang, Y.-W.; Ellis, N.M.; Hopkins, M.K.; Smith, D.H.; Dodge, D.E.; Persing, D.H. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J. Clin. Microbiol. 1998, 36, 3674–3679. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.W.; Hopkins, M.K.; Kolbert, C.P.; Hartley, P.A.; Severance, P.J.; Persing, D.H. Bordetella holmesii-like organisms associated with septicemia, endocarditis, and respiratory failure. Clin. Infect. Dis. 1998, 26, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Hollis, D.G.; Moss, C.W.; Daneshvar, M.I.; Meadows, L.; Jordan, J.; Hill, B. Characterization of Centers for Disease Control group NO-1, a fastidious, nonoxidative, gram-negative organism associated with dog and cat bites. J. Clin. Microbiol. 1993, 31, 746–748. [Google Scholar] [CrossRef]
- Ochman, H.; Lerat, E.; Daubin, V. Examining bacterial species under the specter of gene transfer and exchange. Proc. Natl. Acad. Sci. USA 2005, 102, 6595–6599. [Google Scholar] [CrossRef]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.-E.; Rolain, J.M.; Raoult, D. Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef]
- AbdulWahab, A.; Taj-Aldeen, S.J.; Ibrahim, E.B.; Talaq, E.; Abu-Madi, M.; Fotedar, R. Discrepancy in MALDI-TOF MS identification of uncommon Gram-negative bacteria from lower respiratory secretions in patients with cystic fibrosis. Infect. Drug Resist. 2015, 8, 83–88. [Google Scholar] [CrossRef]
- Petti, C.A.; Polage, C.R.; Schreckenberger, P. The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. J. Clin. Microbiol. 2005, 43, 6123–6125. [Google Scholar] [CrossRef]
- Han, X.Y.; Falsen, E. Characterization of oral strains of Cardiobacterium valvarum and emended description of the organism. J. Clin. Microbiol. 2005, 43, 2370–2374. [Google Scholar] [CrossRef]
- Woo, P.C.; Ng, K.H.; Lau, S.K.; Yip, K.T.; Fung, A.M.; Leung, K.W.; Tam, D.M.; Que, T.L.; Yuen, K.Y. Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J. Clin. Microbiol. 2003, 41, 1996–2001. [Google Scholar] [CrossRef]
- Bosshard, P.P.; Abels, S.; Altwegg, M.; Böttger, E.C.; Zbinden, R. Comparison of conventional and molecular methods for identification of aerobic catalase-negative gram-positive cocci in the clinical laboratory. J. Clin. Microbiol. 2004, 42, 2065–2073. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Rincon, N.; Wood, D.E.; Breitwieser, F.P.; Pockrandt, C.; Langmead, B.; Salzberg, S.L.; Steinegger, M. Metagenome analysis using the Kraken software suite. Nat. Protoc. 2022, 17, 2815–2839. [Google Scholar] [CrossRef]
- Bradford, L.M.; Carrillo, C.; Wong, A. Managing false positives during detection of pathogen sequences in shotgun metagenomics datasets. BMC Bioinform. 2024, 25, 372. [Google Scholar] [CrossRef] [PubMed]
- Marini, S.; Barquero, A.; Wadhwani, A.A.; Bian, J.; Ruiz, J.; Boucher, C.; Prosperi, M. OCTOPUS: Disk-based, Multiplatform, Mobile-friendly Metagenomics Classifier. bioRxiv 2024. [Google Scholar] [CrossRef]
- Breitwieser, F.P.; Baker, D.N.; Salzberg, S.L. KrakenUniq: Confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 2018, 19, 198. [Google Scholar] [CrossRef]
- Flajolet, P.; Fusy, É.; Gandouet, O.; Meunier, F. HyperLogLog: The analysis of a near-optimal cardinality estimation algorithm. Discret. Math. Theor. Comput. Sci. 2007, 137–156. [Google Scholar] [CrossRef]
- Heule, S.; Nunkesser, M.; Hall, A. HyperLogLog in practice: Algorithmic engineering of a state of the art cardinality estimation algorithm. In Proceedings of the 16th International Conference on Extending Database Technology, Genoa, Italy, 18–22 March 2013; pp. 683–692. [Google Scholar]
- Pinheiro, E.T.; Karygianni, L.; Candeiro, G.T.M.; Vilela, B.G.; Dantas, L.O.; Pereira, A.C.C.; Gomes, B.P.F.A.; Attin, T.; Thurnheer, T.; Russo, G. Metatranscriptome and Resistome of the Endodontic Microbiome. J. Endod. 2024, 50, 1059–1072.e4. [Google Scholar] [CrossRef]
- Shahzad, M.; Saeedullah, A.; Shabbir Khan, M.; Ali Ahmad, H.; Iddrissu, I.; Andrews, S.C. 16S rRNA gene amplicon sequencing data from the gut microbiota of adolescent Afghan refugees. Data Brief. 2024, 55, 110636. [Google Scholar] [CrossRef]
- Govender, K.N.; Eyre, D.W. Benchmarking taxonomic classifiers with Illumina and Nanopore sequence data for clinical metagenomic diagnostic applications. Microb. Genom. 2022, 8, mgen000886. [Google Scholar] [CrossRef]
- QCMD—Quality Control for Molecular Diagnostic. Available online: https://www.qcmd.org/fr/qcmd_eqa_schemes-fr/ (accessed on 29 June 2025).
- Moumile, K.; Merckx, J.; Glorion, C.; Berche, P.; Ferroni, A. Osteoarticular infections caused by Kingella kingae in children: Contribution of polymerase chain reaction to the microbiologic diagnosis. Pediatr. Infect. Dis. J. 2003, 22, 837–839. [Google Scholar] [CrossRef]
- Illumina. 16S Metagenomic Sequencing Library Preparation. Available online: http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 1 May 2025).
- Simmon, K.E.; Croft, A.C.; Petti, C.A. Application of SmartGene IDNS software to partial 16S rRNA gene sequences for a di-verse group of bacteria in a clinical laboratory. J. Clin. Microbiol. 2006, 44, 4400–4406. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.; Lau, S.K.; Teng, J.L.; Tse, H.; Yuen, K.Y. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 2008, 14, 908–934. [Google Scholar] [CrossRef]
- Mignard, S.; Flandrois, J.P. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J. Microbiol. Methods 2006, 67, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Harmsen, D.; Mellmann, A.; Meier, C.; Schumann, P.; Peters, G.; von Eiff, C. Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J. Clin. Microbiol. 2004, 42, 4988–4995. [Google Scholar] [CrossRef]
- Cloud, J.L.; Conville, P.S.; Croft, A.; Harmsen, D.; Witebsky, F.G.; Carroll, K.C. Evaluation of partial 16S ribosomal DNA sequencing for identification of Nocardia species by using the MicroSeq 500 system with an expanded database. J. Clin. Microbiol. 2004, 42, 578–584. [Google Scholar] [CrossRef]
- Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar] [CrossRef]
- Woese, C.R.; Gutell, R.; Gupta, R.; Noller, H.F. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 1983, 47, 621–669. [Google Scholar] [CrossRef] [PubMed]
- Shine, J.; Dalgarno, L. Growth-dependent changes in terminal heterogeneity involving 3′-adenylate of bacterial 16S ribosomal RNA. Nature 1975, 256, 232–233. [Google Scholar] [CrossRef]
- Woese, C.R.; Fox, G.E.; Zablen, L.; Uchida, T.; Bonen, L.; Pechman, K.; Lewis, B.J.; Stahl, D. Conservation of primary structure in 16S ribosomal RNA. Nature 1975, 254, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Kommedal, O.; Kvello, K.; Skjastad, R.; Langeland, N.; Wiker, H.G. Direct 16S rRNA gene sequencing from clinical specimens, with special focus on polybacterial samples and interpretation of mixed DNA chromatograms. J. Clin. Microbiol. 2009, 47, 3562–3568. [Google Scholar] [CrossRef] [PubMed]
- Papa Mze, N.; Fernand-Laurent, C.; Daugabel, S.; Zanzouri, O.; Marque Juillet, S. Optimization of HIV Sequencing Method Using Vela Sentosa Library on Miseq Ilumina Platform. Genes 2024, 15, 259. [Google Scholar] [CrossRef]
- Kang, S.B.; Kim, H.; Kim, S.; Kim, J.; Park, S.K.; Lee, C.W.; Kim, K.O.; Seo, G.S.; Kim, M.S.; Cha, J.M.; et al. Potential Oral Microbial Markers for Differential Diagnosis of Crohn’s Disease and Ulcerative Colitis Using Machine Learning Models. Microorganisms 2023, 11, 1665. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.M.; Lyu, W.N.; Tsai, M.L.; Liu, C.L.; Lai, L.C.; Tsai, M.H.; Chuang, E.Y. To compare the performance of prokaryotic taxonomy classifiers using curated 16S full-length rRNA sequences. Comput. Biol. Med. 2022, 145, 105416. [Google Scholar] [CrossRef]
- Lu, J.; Salzberg, S.L. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome 2020, 8, 124. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, 633–642. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef]
- Pockrandt, C.; Zimin, A.V.; Salzberg, S.L. Metagenomic classification with KrakenUniq on low-memory computers. J. Open Source Softw. 2022, 7, 4908. [Google Scholar] [CrossRef] [PubMed]
- Crossley, B.M.; Bai, J.; Glaser, A.; Maes, R.; Porter, E.; Killian, M.L.; Clement, T.; Toohey-Kurth, K. Guidelines for Sanger sequencing and molecular assay monitoring. J. Vet. Diagn. Investig. 2020, 32, 767–775. [Google Scholar] [CrossRef] [PubMed]
Methods | Sanger/NCBI | ||||
---|---|---|---|---|---|
Sample | Max Score | Total Score | % Query Cover | % Per.Ident | Species |
QCMD1 | 1218 | 1218 | 100 | 99.55 | Serratia mancesens |
QCMD2 | 1358 | 8128 | 100 | 99.86 | Enterococcus faecium |
QCMD3 | 1264 | 1264 | 100 | 99.85 | Staphylococcus aureus |
QCMD4 | 1465 | 1465 | 100 | 100 | Staphylococcus epidermidis |
QCMD5 | 963 | 963 | 99 | 99.62 | Escherichia coli |
QCMD6 | ND | ND | ND | ND | ND |
QCMD7 | 1423 | 11,245 | 100 | 99.87 | Klebsiella pneumoniae |
QCMD8 | 1589 | 1589 | 100 | 99.77 | Acinetobacter baumanii |
Methods | Sample | Mapped Reads | % Mapped Reads | % Reads Genus | Genus |
---|---|---|---|---|---|
Smartgene | QCMD1 | 156,342 | 93.3 | 93.66 | Serratia |
QCMD2 | 141,434 | 95.65 | 95.3 | Enterococcus | |
QCMD3 | 188,746 | 95 | 98.6 | Staphylococcus | |
QCMD4 | 116,822 | 95.77 | 98.46 | Staphylococcus | |
QCMD5 | 160,715 | 93.82 | 95.95 | Escherichia | |
QCMD6 | 165,592 | 93.5 | 52.02 | Acinetobacter | |
40.09 | Klebsiella | ||||
QCMD7 | 157,750 | 93.7 | 87.57 | Klebsiella | |
QCMD8 | 123,272 | 92 | 97.65 | Aceinetobacter | |
KrakenUniq | QCMD1 | 158,363 | 99.25 | 97.64 | Serratia |
QCMD2 | 141,513 | 99.52 | 97.48 | Enterococcus | |
QCMD3 | 189,218 | 99.5 | 99.17 | Staphylococcus | |
QCMD4 | 117,091 | 99.28 | 99.11 | Staphylococcus | |
QCMD5 | 162,476 | 99.56 | 89.4 | Escherichia | |
QCMD6 | 165,392 | 99.83 | 69.87 | Acinetobacter | |
20 | Klebsiella | ||||
QCMD7 | 158,227 | 99.67 | 65.75 | Klebsiella | |
QCMD8 | 123,647 | 99.77 | 98.92 | Acinetobacter | |
Kraken 2 | QCMD1 | 158,376 | 99.26 | 28.27 | Pseudomonas |
QCMD2 | 141,520 | 99.53 | 67.79 | Enterococcus | |
QCMD3 | 189,263 | 99.52 | 55.45 | Staphylococcus | |
QCMD4 | 117,149 | 99.33 | 56.66 | Staphylococcus | |
QCMD5 | 162,405 | 99.51 | 39.65 | Enterococcus | |
QCMD6 | 165,385 | 99.83 | 25.14 | Klebsiella | |
21.21 | Acinetobacter | ||||
QCMD7 | 158,256 | 99.69 | 32.56 | Klebsiella | |
QCMD8 | 123,671 | 99.79 | 60.25 | Acinetobacter |
Database | Samples | Total Read | Mapped Reads | % Mapped Reads | Coverage Domain | Coverage Phylum | Reads Genus | % Reads Genus | Genus |
---|---|---|---|---|---|---|---|---|---|
SILVA138 | QCMD1 | 159,562 | 156,959 | 98.37 | 99.99 | 99.99 | 88,649 | 86.78 | Serratia |
QCMD2 | 142,190 | 141,501 | 99.52 | 100 | 99.22 | 13,598 | 34.97 | Streptococcus | |
12,248 | 31.5 | Enterococcus | |||||||
QCMD3 | 190,175 | 189,271 | 99.52 | 100 | 99.99 | 76,282 | 81.38 | Staphylococcus | |
QCMD4 | 117,944 | 117,128 | 99.31 | 99.99 | 99.99 | 46,259 | 81.26 | Staphylococcus | |
QCMD5 | 163,198 | 161,758 | 99.12 | 99.99 | 100 | 34,210 | 50.31 | Escherichia–Shigella | |
QCMD6 | 165,669 | 165,240 | 99.74 | 99.99 | 99.99 | 85,118 | 83.59 | Acinetobacter | |
QCMD7 | 158,745 | 157,643 | 99.31 | 100 | 99.99 | 7798 | 25.6 | Enterobacter | |
7060 | 23.18 | Klebsiella | |||||||
QCMD8 | 123,933 | 123,558 | 99.7 | 99.99 | 100 | 119,341 | 98.34 | Acinetobacter | |
Greengenes 13.5 | QCMD1 | 159,562 | 156,917 | 98.34 | 99.99 | 99.99 | 17,029 | 72.03 | Serratia |
QCMD2 | 142,190 | 141,477 | 99.5 | 99.99 | 100 | 13,146 | 51.8 | Enterococcus | |
QCMD3 | 190,175 | 189,236 | 99.51 | 99.99 | 100 | 75,474 | 94.42 | Staphylococcus | |
QCMD4 | 117,944 | 117,103 | 99.29 | 100 | 99.99 | 44,765 | 94.22 | Staphylococcus | |
QCMD5 | 163,198 | 161,725 | 99.1 | 100 | 100 | 1694 | 11.23 | Serratia | |
QCMD6 | 165,669 | 165,223 | 99.73 | 100 | 99.99 | 55,180 | 86.58 | Acinetobacter | |
4100 | 6.433 | Klebsiella | |||||||
QCMD7 | 158,745 | 157,627 | 99.3 | 99.99 | 100 | 8492 | 49.97 | Klebsiella | |
QCMD8 | 123,933 | 123,552 | 99.69 | 100 | 100 | 78,297 | 98.75 | Acinetobacter | |
RDP 11.5 | QCMD1 | 159,562 | 156,925 | 98.35 | 100 | 99.99 | 90,122 | 93.07 | Serratia |
QCMD2 | 142,190 | 141,486 | 99.5 | 100 | 100 | 10,255 | 38.52 | Enterococcus | |
QCMD3 | 190,175 | 189,245 | 99.51 | 99.99 | 100 | 48,119 | 94.91 | Staphylococcus | |
QCMD4 | 117,944 | 117,106 | 99.29 | 100 | 100 | 28,241 | 94.71 | Staphylococcus | |
QCMD5 | 163,198 | 161,735 | 99.1 | 100 | 100 | 26,615 | 85.38 | Escherichia–Shigella | |
QCMD6 | 165,669 | 165,226 | 99.73 | 99.99 | 100 | 23,369 | 69.72 | Acinetobacter | |
QCMD7 | 158,745 | 157,636 | 99.3 | 99.99 | 100 | 5054 | 29.05 | Klebsiella | |
99.99 | 100 | 3287 | 18.9 | Enterobacter | |||||
QCMD8 | 123,233 | 123,558 | 99.7 | 99.99 | 100 | 33,037 | 92.47 | Acinetobacter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papa Mze, N.; Fernand-Laurent, C.; Maxence, S.; Zanzouri, O.; Daugabel, S.; Marque Juillet, S. Optimization of 16S RNA Sequencing and Evaluation of Metagenomic Analysis with Kraken 2 and KrakenUniq. Diagnostics 2025, 15, 2175. https://doi.org/10.3390/diagnostics15172175
Papa Mze N, Fernand-Laurent C, Maxence S, Zanzouri O, Daugabel S, Marque Juillet S. Optimization of 16S RNA Sequencing and Evaluation of Metagenomic Analysis with Kraken 2 and KrakenUniq. Diagnostics. 2025; 15(17):2175. https://doi.org/10.3390/diagnostics15172175
Chicago/Turabian StylePapa Mze, Nasserdine, Cécile Fernand-Laurent, Sonnentrucker Maxence, Olfa Zanzouri, Solen Daugabel, and Stéphanie Marque Juillet. 2025. "Optimization of 16S RNA Sequencing and Evaluation of Metagenomic Analysis with Kraken 2 and KrakenUniq" Diagnostics 15, no. 17: 2175. https://doi.org/10.3390/diagnostics15172175
APA StylePapa Mze, N., Fernand-Laurent, C., Maxence, S., Zanzouri, O., Daugabel, S., & Marque Juillet, S. (2025). Optimization of 16S RNA Sequencing and Evaluation of Metagenomic Analysis with Kraken 2 and KrakenUniq. Diagnostics, 15(17), 2175. https://doi.org/10.3390/diagnostics15172175