Inflammatory Markers and Genetic Variants in Gestational Diabetes and Pregnancy Complications: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GD | gestational diabetes |
NF-kB | nuclear factor kappa B |
STAT3 | signal transducer and activator of transcription (STAT3) |
TNF-α | tumor necrosis factor α |
IL | interleukin |
T2DM | type 2 diabetes mellitus |
T1DM | type 1 diabetes mellitus |
SNP | single nucleotide polymorphism |
IADP-SG | International Association of Diabetes and Pregnancy Study Groups |
HRP | horseradish peroxidase |
DNA | deoxyribonucleic acid |
PCR | polymerase chain reaction |
References
- Luo, J.Y.; Chen, L.G.; Yan, M.; Mei, Y.J.; Cui, Y.Q.; Jiang, M. Effect of individualized nutrition interventions on clinical outcomes of pregnant women with gestational diabetes mellitus. World J. Diabetes 2023, 14, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Omazić, J.; Muller, A.; Dumančić, B.; Kadivnik, M.; Aladrović, J.; Pađen, L.; Krilik, K.; Brkić, N.; Dobrošević, B.; Vuković, B.; et al. Metabolic and Immune Parameters in Pregnant Women with Impaired Glucose Metabolism—A Pilot Study. Metabolites 2024, 14, 551. [Google Scholar] [CrossRef]
- de Mendonça, E.L.S.S.; Fragoso, M.B.T.; de Oliveira, J.M.; Xavier, J.A.; Goulart, M.O.F.; de Oliveira, A.C.M. Gestational Diabetes Mellitus: The Crosslink among Inflammation, Nitroxidative Stress, Intestinal Microbiota and Alternative Therapies. Antioxidants 2022, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Khambule, L.; George, J.A. The Role of Inflammation in the Development of GDM and the Use of Markers of Inflammation in GDM Screening. In Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders; Springer International Publishing: Cham, Switzerland, 2019; pp. 217–242. [Google Scholar]
- Ha, L.X.; Wu, Y.Y.; Yin, T.; Yuan, Y.Y.; Du, Y.D. Effect of tumor necrosis factor-alpha on endometrial glucose transporter-4 expression in patients with polycystic ovary syndrome through nuclear factor-kappaB signaling pathway activation. J. Physiol. Pharmacol. 2021, 72, 41–47. [Google Scholar]
- Classen-Linke, I.; Müller-Newen, G.; Heinrich, P.C.; Beier, H.M.; von Rango, U. The cytokine receptor gp130 and its soluble form are under hormonal control in human endometrium and decidua. Mol. Hum. Reprod. 2004, 10, 495–504. [Google Scholar] [CrossRef]
- Omazić, J.; Viljetić, B.; Ivić, V.; Kadivnik, M.; Zibar, L.; Müller, A.; Wagner, J. Early markers of gestational diabetes mellitus: What we know and which way forward? Biochem. Medica 2021, 31, 030502. [Google Scholar] [CrossRef]
- Brogin Moreli, J.; Cirino Ruocco, A.M.; Vernini, J.M.; Rudge, M.V.C.; Calderon, I.M.P. Interleukin 10 and Tumor Necrosis Factor-Alpha in Pregnancy: Aspects of Interest in Clinical Obstetrics. Int. Sch. Res. Not. 2012, 2012, 230742. [Google Scholar] [CrossRef]
- Thaxton, J.E.; Sharma, S. REVIEW ARTICLE: Interleukin-10: A Multi-Faceted Agent of Pregnancy. Am. J. Reprod. Immunol. 2010, 63, 482–491. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Gu, B.; Xu, Y. Whether the risk of gestational diabetes mellitus is affected by TNF-α, IL-6, IL-10 or ADIPOQ polymorphisms: A meta-analysis. Diabetol. Metab. Syndr. 2020, 12, 81. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, X.; Chen, H. Association of Single Nucleotide Polymorphisms of the IL-6, IL-10, and TNF-α Genes with Susceptibility to Gestational Diabetes Mellitus. Genet. Test. Mol. Biomark. 2020, 24, 390–398. [Google Scholar] [CrossRef]
- Liu, J.; Song, G.; Zhao, G.; Meng, T. Association between TNF-α polymorphisms and gestational diabetes mellitus: A meta-analysis and trial sequential analysis. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2021, 37, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, C.; Mi, Y. IL-6 gene rs1800795 polymorphism and diabetes mellitus: A comprehensive analysis involving 42,150 participants from a meta-analysis. Diabetol. Metab. Syndr. 2022, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Obirikorang, C.; Lokpo, S.Y.; Owiredu, W.K.B.A.; Ahenkorah-Fondjo, L.; Osei-Yeboah, J.; Duedu, K.O.; Adejumo, E.N.; Ametepe, S.; Asamoah, E.A.; Coffie, S.A.; et al. Association between Interleukin-6 Gene Polymorphism (rs1800795 and rs1800796) and Type 2 Diabetes Mellitus in a Ghanaian Population: A Case-Control Study in the Ho Municipality. BioMed Res. Int. 2024, 2024, 3610879. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Tang, L.; Li, L.; Li, L. The roles of ADIPOQ rs266729 and MTNR1B rs10830963 polymorphisms in patients with gestational diabetes mellitus: A meta-analysis. Gene 2020, 730, 144302. [Google Scholar] [CrossRef]
- Beltcheva, O.; Boyadzhieva, M.; Angelova, O.; Mitev, V.; Kaneva, R.; Atanasova, I. The rs266729 single-nucleotide polymorphism in the adiponectin gene shows association with gestational diabetes. Arch. Gynecol. Obstet. 2014, 289, 743–748. [Google Scholar] [CrossRef]
- Kaftan, A.N.; Hussain, M.K. Association of adiponectin gene polymorphism rs266729 with type two diabetes mellitus in Iraqi population. A pilot study. Gene 2015, 570, 95–99. [Google Scholar] [CrossRef]
- Sun, P.; Liu, L.; Chen, J.; Chen, Y.; Shi, L.; Imam, M.U.; Chen, Y.; Pei, X.; Xu, Y.; Guo, Y.; et al. The polymorphism of rs266729 in adiponectin gene and type 2 diabetes mellitus: A Meta-Analysis. Medicine 2017, 96, e8745. [Google Scholar] [CrossRef]
- Carlson, R.V.; Boyd, K.M.; Webb, D.J. The revision of the Declaration of Helsinki: Past, present and future. Br. J. Clin. Pharmacol. 2004, 57, 695–713. [Google Scholar] [CrossRef]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Lowe, L.P.; Dyer, A.R.; Oats, J.J.; Buchanan, T.A. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, e98. [Google Scholar] [CrossRef]
- Amirian, A.; Mahani, M.B.; Abdi, F. Role of interleukin-6 (IL-6) in predicting gestational diabetes mellitus. Obstet. Gynecol. Sci. 2020, 63, 407–416. [Google Scholar] [CrossRef]
- Cordell Heather, J.; Clayton, D.G. Genetic association studies. Lancet 2005, 366, 1121–1131. [Google Scholar] [CrossRef]
- Clarke, G.; Anderson, C.; Pettersson, F.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Basic statistical analysis in genetic case-control studies. Nat. Protoc. 2011, 6, 121–133. [Google Scholar] [CrossRef]
- da Silva Pereira, B.L.; Polina, E.R.; Crispim, D.; Sbruzzi, R.C.; Canani, L.H.; Dos Santos, K.G. Interleukin-10-1082A>G (rs1800896) polymorphism is associated with diabetic retinopathy in type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 138, 187–192. [Google Scholar] [CrossRef]
- Omazić, J.; Muller, A.; Kadivnik, M.; Dobrošević, B.; Vuković, B.; Florijančić, M.; Wagner, J. Comparative Assessment of Immune Cell Subset Ratios (NKT/NK, Th/Tc, B1/B2) in Gestational Diabetes and Healthy Pregnancy: Links to Biochemical and Immunochemical Profiles. Metabolites 2025, 15, 378. [Google Scholar] [CrossRef]
Median (Interquartile Range) | p * | ||||
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | ||
(1) | (2) | (3) | (4) | ||
IL-6 | 2.4 (1.85–3.4) | 2.6 (1.9–3.9) | 2.3 (1.5–3.2) | 3.25 (2.53–4.4) | <0.001 |
IL-10 | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | >0.99 |
TNF-α | 4.29 (0–5.5) | 0 (0–4.2) | 4.2 (0–5.2) | 4.47 (0–5.6) | 0.08 |
adiponectin | 16 (3.2–33.1) | 7.65 (4.53–14.5) | 17.6 (6.15–30.1) | 17.2 (6.53–22.3) | 0.09 |
C-reactive protein | 2.7 (1.43–4.2) | 4 (2.75–7.4) | 4.35 (2.5–8) | 6.35 (2.38–8.9) | <0.001 |
Genotype [n (%)] | Odds Ratio (95% Confidence Interval) | p | |||
---|---|---|---|---|---|
Control | GD | ||||
codominant | GG | 72 (90) | 70 (85) | 1.0 | 0.39 * |
CG | 8 (10) | 11 (14) | 1.41 (0.54–3.72) | ||
CC | 0 | 1 (1) | - | ||
allele | G | 152 (95) | 151 (92) | 1.64 (0.66–4.06) | 0.29 † |
C | 8 (5) | 13 (8) | |||
dominant | GG | 72 (90) | 70 (85) | 1.0 | 0.37 * |
CG-CC | 8 (10) | 12 (15) | 1.54 (0.59–4.0) | ||
recessive | GG-CG | 80 (100) | 81 (99) | 1.0 | 0.24 * |
CC | 0 | 1 (1) | - | ||
superdominant | GG-CC | 72 (90) | 71 (87) | 1.0 | 0.50 * |
CG | 8 (10) | 11 (13) | 1.39 (0.53–3.67) |
Genotype [n (%)] | Odds Ratio (95% Confidence Interval) | p * | |||
---|---|---|---|---|---|
Control | GD | ||||
codominant | TT | 30 (38) | 30 (36) | 1.0 | 0.95 |
TC | 35(43) | 35 (43) | 1.0 (0.50–1.99) | ||
CC | 15 (19) | 17 (21) | 1.13 (0.48–2.68) | ||
allele | T | 95 (59) | 95 (58) | 1.06 (0.68–1.65) | 0.79 |
C | 65 (41) | 69 (42) | |||
dominant | TT | 30 (37) | 30 (37) | 1.0 | 0.90 |
TC-CC | 50 (63) | 52 (63) | 1.04 (0.55–1.97) | ||
recessive | TT-TC | 65 (81) | 65 (79) | 1.0 | 0.89 |
CC | 15 (19) | 17 (21) | 1.13 (0.52–2.46) | ||
superdominant | TT-CC | 45 (56) | 47 (57) | 1.0 | 0.89 |
TC | 35 (44) | 35 (43) | 0.96 (0.51–1.78) |
Genotype [n (%)] | Odds Ratio (95% Confidence Interval) | p | |||
---|---|---|---|---|---|
Control | GD | ||||
codominant | GG | 57 (71) | 63 (77) | 1.0 | 0.70 * |
AG | 20 (25) | 16 (20) | 0.72 (0.34–1.53) | ||
AA | 3 (4) | 3 (4) | 0.90 (0.18–4.66) | ||
allele | G | 134 (84) | 142 (87) | 0.79 (0.43–1.48) | 0.47 † |
A | 26 (16) | 22 (13) | |||
dominant | GG | 57 (71) | 63 (77) | 1.0 | 0.70 * |
AA-AA | 3 (4) | 3 (4) | 0.90 (0.18–4.66) | ||
recessive | GG-AG | 77 (96) | 79 (96) | 1.0 | 0.98 * |
AA | 3 (4) | 3 (4) | 0.97 (0.19–4.98) | ||
superdominant | GG-AA | 60 (75) | 66 (81) | 1.0 | 0.40 * |
AG | 20 (25) | 16 (19) | 0.73 (0.35–1.53) |
Genotype [n (%)] | Odds Ratio (95% Confidence Interval) | p * | |||
---|---|---|---|---|---|
Control | GD | ||||
codominant | CC | 31 (39) | 43 (53) | 1.0 | 0.09 |
CG | 44 (55) | 31 (38) | 0.51 (0.26–0.97) | ||
GG | 5 (6) | 8 (9) | 1.15 (0.34–3.86) | ||
allele | C | 106 (66) | 117 (47) | 0.79 (0.49–1.26) | 0.32 |
G | 54 (34) | 47 (29) | |||
dominant | CC | 31 (39) | 43 (53) | 1.0 | 0.08 |
CG-GG | 49 (61) | 39 (47) | 0.57 (0.31–1.07) | ||
recessive | CC-CG | 75 (94) | 74 (90) | 1.0 | 0.41 |
GG | 5 (6) | 8 (10) | 1.62 (0.51–5.19) | ||
superdominant | CC-GG | 36 (45) | 51 (62) | 1.0 | 0.03 |
CG | 44 (55) | 31 (38) | 0.50 (0.27–0.93) |
Median (Interquartile Range) | p * | ||||
---|---|---|---|---|---|
rs1800796 (IL-6) | CC | CG | GG | ||
IL-6 | Group 1 | - | 2.4 (2.1–3.8) | 2.4 (1.8–3.4) | 0.80 |
Group 2 | - | 1.5 (n = 1) | 2.6 (1.9–3.9) | 0.13 | |
Group 3 | - | 2.0 (1.5–4.2) | 2.3 (1.6–3.3) | 0.60 | |
Group 4 | 6.5 (n = 1) | 4.1 (2.9–5.7) | 3.1 (2.5–4.2) | 0.25 | |
rs1800896 (IL-10) | CC | TC | TT | ||
IL-10 | Group 1 | - | - | - | - |
Group 2 | - | - | - | - | |
Group 3 | - | - | - | - | |
Group 4 | - | - | - | - | |
rs1800629 (TNF-α) | AA | AG | GG | ||
TNF-α | Group 1 | - | 4.3 (0–6.2) | 2.2 (0–4.9) | 0.62 |
Group 2 | 0 (0–9.7) | 0 (0–1.0) | 0 (0–4.6) | 0.79 | |
Group 3 | 2.1 (0–5.5) | 0 (0–5) | 4.5 (0–5.4) | 0.49 | |
Group 4 | 0 (n = 1) | 0 (0–5.2) | 4.8 (0–5.8) | 0.19 | |
rs266729 (AdipoQ) | CC | CG | GG | ||
adiponectin | Group 1 | 12.8 (3.8–27.7) | 19.4 (2.3–44.6) | 21.9 (15.2–18.7) | 0.82 |
Group 2 | 7.6 (4.7–21.3) | 8.4 (4.6–14.5) | 4.6 (3.2–25.0) | 0.88 | |
Group 3 | 18.0 (5.4–21.3) | 15.1 (8.3–30.4) | 13.8 (3.9–50.5) | 0.99 | |
Group 4 | 17.2 (5.3–29.6) | 15.4 (7.9–21.8) | 21.4 (19.1–24.7) | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omazić, J.; Muller, A.; Kadivnik, M.; Kralik, K.; Vidosavljević, D.; Wagner, J. Inflammatory Markers and Genetic Variants in Gestational Diabetes and Pregnancy Complications: A Cross-Sectional Study. Diagnostics 2025, 15, 2153. https://doi.org/10.3390/diagnostics15172153
Omazić J, Muller A, Kadivnik M, Kralik K, Vidosavljević D, Wagner J. Inflammatory Markers and Genetic Variants in Gestational Diabetes and Pregnancy Complications: A Cross-Sectional Study. Diagnostics. 2025; 15(17):2153. https://doi.org/10.3390/diagnostics15172153
Chicago/Turabian StyleOmazić, Jelena, Andrijana Muller, Mirta Kadivnik, Kristina Kralik, Domagoj Vidosavljević, and Jasenka Wagner. 2025. "Inflammatory Markers and Genetic Variants in Gestational Diabetes and Pregnancy Complications: A Cross-Sectional Study" Diagnostics 15, no. 17: 2153. https://doi.org/10.3390/diagnostics15172153
APA StyleOmazić, J., Muller, A., Kadivnik, M., Kralik, K., Vidosavljević, D., & Wagner, J. (2025). Inflammatory Markers and Genetic Variants in Gestational Diabetes and Pregnancy Complications: A Cross-Sectional Study. Diagnostics, 15(17), 2153. https://doi.org/10.3390/diagnostics15172153