The Diagnostic Utility of Prenatal Microarray in High-Risk Pregnancies: A Single-Center Experience in Enhancing Reproductive Care and Risk Stratification
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Inclusion Criteria
- Patients with an indication for prenatal CMA due to risks in the prenatal MSS; increased NT, AMA, IUGR; increased NT; the detection of a structural anomaly or a soft marker in a prenatal US; a family history of chromosomal abnormalities; and risk determination in NIPTs.
- Patients who signed an informed consent form and agreed to undergo prenatal genetic testing.
2.3. Exclusion Criteria
- Patients within whom biochemical risks were identified during prenatal screening but who did not have increased NT, prenatal USG abnormalities, or parental karyotype anomalies, which are required for a prenatal CMA indication.
- Patients who did not sign the informed consent form and declined to undergo prenatal genetic testing.
2.4. Parameters to Be Examined
- Presence of possible aneuploidy;
- Presence of possible microdeletions/microduplications;
- Mosaicism;
- Uniparental disomy (UPD).
2.5. Karyotype Analysis
2.6. CMA
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACOG | American College of Obstetrics and Gynecology |
AMA | Advanced maternal age |
AS | Amniocentesis |
AVSD | Atrioventricular septal defect |
CHD | Congenital heart disease |
CMA | Chromosomal microarray analysis |
CNS | Central nervous system |
CNV | Copy number variants |
CVS | Chorionic villus sampling |
FISH | Fluorescence in situ hybridization |
GUS | Genitourinary system |
IUGR | Intrauterine growth restriction |
MSS | Maternal serum screening |
NIPT | Non-invasive prenatal test |
NT | Nuchal translucency |
SNP | Single-nucleotide polymorphism |
UPD | Uniparental disomy |
VOUS | Variants of uncertain significance |
WES | Whole-exome sequencing |
References
- Kearney, H.M.; Thorland, E.C.; Brown, K.K.; Quintero-Rivera, F.; South, S.T. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 2011, 13, 680–685. [Google Scholar] [CrossRef]
- Levy, B.; Wapner, R. Prenatal diagnosis by chromosomal microarray analysis. Fertil. Steril. 2018, 109, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Wapner, R.J.; Martin, C.L.; Levy, B.; Ballif, B.C.; Eng, C.M.; Zachary, J.M.; Savage, M.; Platt, L.D.; Saltzman, D.; Grobman, W.A.; et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 2012, 367, 2175–2184. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, M.; Wang, H.; Guo, Y.; Chau, M.H.K.; Yan, H.; Cao, Y.; Kwok, Y.K.Y.; Chen, J.; Hui, A.S.Y.; et al. Clinical utility of expanded non-invasive prenatal screening and chromosomal microarray analysis in high-risk pregnancy. Ultrasound Obstet. Gynecol. 2021, 57, 459–465. [Google Scholar] [CrossRef] [PubMed]
- South, S.T.; Lee, C.; Lamb, A.N.; Higgins, A.W.; Kearney, H.M. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: Revision 2013. Genet. Med. 2013, 15, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Vogel, I.; Petersen, O.B.; Christensen, R.; Hyett, J.; Lou, S.; Vestergaard, E.M. Chromosomal microarray as primary diagnostic genomic tool for pregnancies at increased risk within a population-based combined first-trimester screening program. Ultrasound Obstet. Gynecol. 2018, 51, 480–486. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, T.; Wang, J.; Li, Q.; Wang, H.; Liu, S. Prenatal Diagnostic Value of Chromosomal Microarray in Fetuses with Nuchal Translucency Greater than 2.5 mm. Biomed. Res. Int. 2019, 2019, 6504159. [Google Scholar] [CrossRef]
- Mademont-Soler, I.; Morales, C.; Soler, A.; Martínez-Crespo, J.M.; Shen, Y.; Margarit, E.; Clusellas, N.; Obón, M.; Wu, B.L.; Sánchez, A. Prenatal diagnosis of chromosomal abnormalities in fetuses with abnormal cardiac ultrasound findings: Evaluation of chromosomal microarray-based analysis. Ultrasound Obstet. Gynecol. 2013, 41, 375–382. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Ru, T.; Wang, Y.; Xu, Y.; Yang, Y.; Wu, X.; Cram, D.S.; Hu, Y. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. Prenat. Diagn. 2016, 36, 321–327. [Google Scholar] [CrossRef]
- Huang, R.; Fu, F.; Zhou, H.; Zhang, L.; Lei, T.; Cheng, K.; Yan, S.; Guo, F.; Wang, Y.; Ma, C.; et al. Prenatal diagnosis in the fetal hyperechogenic kidneys: Assessment using chromosomal microarray analysis and exome sequencing. Hum. Genet. 2023, 142, 835–847. [Google Scholar] [CrossRef]
- Xie, X.; Wu, X.; Su, L.; Cai, M.; Li, Y.; Huang, H.; Xu, L. Application of Single Nucleotide Polymorphism Microarray in Prenatal Diagnosis of Fetuses with Central Nervous System Abnormalities. Int. J. Gen. Med. 2021, 14, 4239–4246. [Google Scholar] [CrossRef]
- Donnelly, J.C.; Platt, L.D.; Rebarber, A.; Zachary, J.; Grobman, W.A.; Wapner, R.J. Association of copy number variants with specific ultrasonographically detected fetal anomalies. Obstet. Gynecol. 2014, 124, 83–90. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists Committee on Genetics. Committee opinion no. 581: The use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. 2013, 122, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.L.; Shaffer, L.G.; Chitty, L.S.; Rosenfeld, J.A.; Crolla, J.A. The clinical utility of microarray technologies applied to prenatal cytogenetics in the presence of a normal conventional karyotype: A review of the literature. Prenat. Diagn. 2013, 33, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Bütün, Z.; Kayapınar, M.; Şenol, G.; Akca, E.; Gökalp, E.E.; Artan, S. Comparison of conventional karyotype analysis and CMA results with ultrasound findings in pregnancies with normal QF-PCR results. Turk. J. Obstet. Gynecol. 2025, 22, 106. [Google Scholar] [CrossRef] [PubMed]
- Benn, P.; Cuckle, H.; Pergament, E. Non-invasive prenatal testing for aneuploidy: Current status and future prospects. Ultrasound Obstet. Gynecol. 2013, 42, 15–33. [Google Scholar] [CrossRef]
- Grati, F.R.; Malvestiti, F.; Ferreira, J.C.; Bajaj, K.; Gaetani, E.; Agrati, C.; Grimi, B.; Dulcetti, F.; Ruggeri, A.M.; De Toffol, S.; et al. Fetoplacental mosaicism: Potential implications for false-positive and false-negative noninvasive prenatal screening results. Genet. Med. 2014, 16, 620–624. [Google Scholar] [CrossRef]
- Pertile, M.D.; Halks-Miller, M.; Flowers, N.; Barbacioru, C.; Kinnings, S.L.; Vavrek, D.; Seltzer, W.K.; Bianchi, D.W. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci. Transl. Med. 2017, 9, eaan1240. [Google Scholar] [CrossRef]
- Liu, X.; Liu, S.; Wang, H.; Hu, T. Potentials and challenges of chromosomal microarray analysis in prenatal diagnosis. Front. Genet. 2022, 13, 938183. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Chen, J.S.; Shiao, Y.M.; Chen, Y.J.; Chen, C.H.; Chu, W.C.; Wu, Y.C. Prenatal Diagnosis Using Chromosomal Microarray Analysis in High-Risk Pregnancies. J. Clin. Med. 2022, 11, 3624. [Google Scholar] [CrossRef]
- Xue, S.; Liu, Y.; Wang, L.; Zhang, L.; Chang, B.; Ding, G.; Dai, P. Clinical application of chromosome microarray analysis and karyotyping in prenatal diagnosis in Northwest China. Front. Genet. 2024, 15, 1347942. [Google Scholar] [CrossRef]
- Kim, U.; Jung, Y.M.; Oh, S.; Bae, J.H.; Lee, J.; Park, C.W.; Park, J.S.; Jun, J.K.; Lee, S.M. Chromosomal Microarray Analysis in Fetuses with Ultrasonographic Soft Markers: A Meta-Analysis of the Current Evidence. J. Korean Med. Sci. 2024, 39, e70. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.M.; Hoang, N.T.; Nguyen, T.T.; Tran, H.; Trinh, H.N. Chromosomal Anomalies in Fetuses with Increased Nuchal Translucency: A Vietnamese Retrospective Study. Cureus 2024, 16, e72235. [Google Scholar] [CrossRef] [PubMed]
- Riggs, E.R.; Wain, K.E.; Riethmaier, D.; Smith-Packard, B.; Faucett, W.A.; Hoppman, N.; Thorland, E.C.; Patel, V.C.; Miller, D.T. Chromosomal microarray impacts clinical management. Clin. Genet. 2014, 85, 147–153. [Google Scholar] [CrossRef] [PubMed]
Sample | Results (Hg19) | Week | USG | Maternal Age | Group |
---|---|---|---|---|---|
AS | 16p13.11(14975292_16295863)x1 | 23 + 4 | Enlarged ventricle | 30 | USG findings |
AS | 16p12.2p11.2(21575087_29319922)x1 | 26 | Enlarged ventricle | 35 | USG findings |
AS | Trisomy 21 | 21 + 2 | Hepatic calcification, echogenic cardiac focus | 28 | USG findings |
AS | 15q11.2(22766739_23226254)x1 | 22 | Ambiguous genitals, hydronephrosis | 20 | Congenital anomaly |
AS | Trisomy 21 | 23 + 2 | Renal pyelectasis | 33 | Congenital anomaly |
AS | Trisomy 13 | 24 + 3 | Ventriculomegaly, renal pyelectasis, hypospadias, coarctation of the aorta | 38 | Multiple findings |
AS | Trisomy 18 | 30 | Anal atresia, polyhydramnios, IUGR, single umbilical artery | 24 | Multiple findings |
AS | Trisomy 21 | 18 + 3 | Renal pelviectasis, AVSD a | 36 | Multiple findings |
AS | 8p23.3p23.1(170692_12009597)x3 9p24.3p11.2(10201_44888946)x3, 9q13q22.33(68158106_101087286)x3 | 16 + 6 | Cleft palate, CHD | 35 | Multiple findings |
AS | Klinefelter Syndrome | 22 | Pulmonary stenosis, cleft lip and palate, renal pelviectasis, thymus hypoplasia | 26 | Multiple findings |
AS | Trisomy 18 | 28 | Clenched hand, VSD | 26 | Multiple findings |
AS | Trisomy 18 | 22 | IUGR, clench hand, mandibular hypoplasia, VSD, horseshoe kidney | 35 | Multiple findings |
AS | Trisomy 21 | 17 | Duodenal atresia, NT:6 mm | 39 | Multiple findings |
AS | Trisomy 13 | 23 | Inferior vermis hypoplasia, polyhydramnios, mesocardia, TGA b | 37 | Multiple findings |
Chord sample | Trisomy 13 | 24 | Cleft lip/palate, hyperecogenic bowel, hypoplastic left heart, aortic coarctation, holoprosencephaly | 24 | Multiple findings |
AS | 22q11.21(18877787_21461607)x1, Di George | 28 | Truncus arteriosus, hypoplastic thymus, VSD | 35 | CHD |
AS | Trisomy 21 | 21 + 4 | Hypoplastic nasal bone, AVSD a | 33 | CHD |
AS | 14q32.2q32.33(99718925_107289511)x1 | 32 | Craniosynostosis, hypoplastic left heart, aortic hypoplasia, doubled collecting system of the left kidney | 25 | CHD |
AS | Klinefelter Syndrome | 16 + 3 | TGA b | 38 | CHD |
AS | Turner Syndrome | 25 | Aortic hypoplasia | 21 | CHD |
AS | 4p16.3p11(84414_49620838)x3, 13q11q12.11(19020095_21578150)x1 | 23 + 2 | Pulmonary hypoplasia, VSD, Fallot tetralogy, overriding aorta, clenched hand | 23 | CHD |
CVS | Turner Syndrome | 14 + 1 | Hypoplastic left heart | 23 | CHD |
AS | Trisomy 13 | 21 + 5 | AVSD a | 23 | CHD |
AS | Trisomy 21 | 17 + 2 | VSD, echogenic liver focus | 37 | CHD |
AS | 11q23.3q25(119110984_134946504)x1, 11q23.3(118545797_119103406)x3 | 22 + 4 | Hypoplastic left heart | 31 | CHD |
AS | Xq27.2q28(140856453_155234707)x1, 4q28.3q35.2(134134331_190484505)x3 | 23 | VSD, truncus arteriosus, left-sided gall bladder | 33 | CHD |
AS | Trisomy 18 | 22 | IUGR, Perimembranous VSD | 35 | CHD |
AS | 13q21.33q33.2(73157290_105760332)x1 | 30 | Vermian hypoplasia, Pes equinovarus | 25 | CNS anomaly |
AS | 16p11.2(29323692_30364805)x3 | 22 + 5 | hydrocephaly, lemon sign, cerebellar hypoplasia, left multicyclic dysplastic kidney, sacral meningomyelocele. | 37 | CNS anomaly |
AS | Trisomy 21 | 16 + 5 | Alobar holoprosencephaly | 37 | CNS anomaly |
CVS | Trisomy 18 | 12 | NT:7 mm | 43 | Increased NT |
CVS | Trisomy 21 | 12 + 5 | NT:5, cystic hygroma | 32 | Increased NT |
AS | 10p11.1(38784659_39150257)x1, 10q11.22q11.23(49262918_51832748)x1 | 16 | NT 2.6 | 36 | Increased NT |
AS | Trisomy 21 | 13 + 4 | NT 5, diffuse edema, echogenic cardiac focus | 38 | Increased NT |
CVS | 4q31.3q35.2(155190509_191044208)x3 | 13 | NT:4 mm | 39 | Increased NT |
AS | Trisomy 13 | 18 | Polydactyly of the right foot, hyperecogenic heart | 37 | Skeletal anomaly |
AS | Xp22.31(6453470_8126718)x0 | 15 + 4 | N | 23 | Biochemical risk |
AS | 4q22.2q22.3(94006191_97808388)x1 | 17 | N | 34 | Biochemical risk |
AS | 15q11.2(22766739_23226254)x1 | 22 | N | 20 | Other |
AS | 47,XYY | 20 + 4 | CSP c | 38 | Other |
CVS | 6q14.3q22.31(85761559_120871846)x1 | NA | NA | 25 | Other |
AS | Mosaic UPD of chromosome 3 | 20 | CSP c | 41 | Other |
AS | Trisomy 18 | 17 | Megacystic, clenched hand, hydrops, club foot, VSD | 40 | Hydrops |
AS | Trisomy 21 | 28 | Hydrops, polyhydramnios | 34 | Hydrops |
AS | Yp11.31p11.2(2657176_10057648)x2,Yq11.1q11.221(13133499_19567718)x2,Yq11.222q11.223(20804835_24522333)x0 | 20 | N | 24 | NIPT risk |
AS | Trisomy 21 | 19 + 2 | Fallot tetralogy | 35 | NIPT risk |
CVS | Trisomy 21 | 13 + 5 | NIPT Tr.21 risk | 24 | NIPT risk |
AS | 16q11.2q23.1(46501717_75493481)x3 | 14 | N | 24 | NIPT risk |
AS | Trisomy 21 | 17 | NT:3.4 MM | 17 | NIPT risk |
Results (Hg19) | Size | Detected by Karyotyping | Week | USG |
---|---|---|---|---|
16p13.11(14975292_16295863)x1 | 1.32 Mb | No | 23 + 4 | Enlarged ventricle |
16p12.2p11.2(21575087_29319922)x1 | 7.74 Mb | Yes | 26 | Enlarged ventricle |
15q11.2(22766739_23226254)x1 | 460 Kb | No | 22 | Ambiguous genitals, hydronephrosis |
8p23.3p23.1(170692_12009597)x3 9p24.3p11.2(10201_44888946)x3 9q13q22.33(68158106_101087286)x3 | 11.8 Mb 44.8 Mb 33 Mb | Yes | 16 + 6 | Cleft palate, CHD |
22q11.21(18877787_21461607)x1 | 2.583 Kb | No | 28 | Truncus Arteriosus, hypoplastic thymus, VSD |
14q32.2q32.33(99718925_107289511)x1 | 7.5 Mb | Yes | 32 | Craniosynostosis, hypoplastic left heart, aortic hypoplasia, doubled collecting system of the left kidney |
4p16.3p11(84414_49620838)x3, 13q11q12.11(19020095_21578150)x1 | 49.5 Mb 2.6 Mb | Yes No | 23 + 2 | Pulmonary hypoplasia, VSD, Fallot tetralogy, overriding aorta, clenched hand |
11q23.3q25(119110984_134946504)x1 11q23.3(118545797_119103406)x3 | 15.8 Mb 558 Kb | Yes No | 22 + 4 | Hypoplastic left heart |
Xq27.2q28(140856453_155234707)x1 4q28.3q35.2(134134331_190484505)x3 | 14.2 Mb 56.3 Mb | Yes | 23 | VSD, truncus arteriosus, left-sided gall bladder |
13q21.33q33.2(73157290_105760332)x1 | 33 Mb | Yes | 30 | Vermian hypoplasia, Pes equinovarus |
16p11.2(29323692_30364805)x3 | 1.04 Mb | No | 22 + 5 | Hydrocephaly, lemon sign, cerebellar hypoplasia, left multicyclic dysplastic kidney, Sacral meningomyelocele. |
10p11.1(38784659_39150257)x1, 10q11.22q11.23(49262918_51832748)x1 | 366 Kb 2.6 Mb | No | 16 | NT 2.6 |
4q31.3q35.2(155190509_191044208)x3 | 36 Mb | Yes | 13 | NT:4mm |
Xp22.31(6453470_8126718)x0 | 1.7 Mb | No | 15 + 4 | N |
4q22.2q22.3(94006191_97808388)x1 | 3.8 Mb | No | 17 | N |
15q11.2(22766739_23226254)x1 | 460 Kb | No | 22 | N |
6q14.3q22.31(85761559_120871846)x1 | 35.1 Mb | Yes | NA | NA |
Mosaic UPD of whole chromosome 3 | No | 20 | CSP | |
Yp11.31p11.2(2657176_10057648)x2, Yq11.1q11.221(13133499_19567718)x2, Yq11.222q11.223(20804835_24522333)x0 | 7.4 Mb 6.4 Mb 3.7 Mb | Yes | 20 | N |
16q11.2q23.1(46501717_75493481)x3 | 29 Mb | Yes | 14 | N |
Indications | N | Abnormal | P/LP a CNV | Aneuploidy | Abnormal Rate (%) |
---|---|---|---|---|---|
USG findings | 41 | 3 | 2 | 1 | 0.073 |
Congenital anomaly | 39 | 2 | 1 | 1 | 0.053 |
Multiple indications | 38 | 10 | 1 | 9 | 0.26 |
CHD | 35 | 13 | 5 | 8 | 0.37 |
CNS anomaly | 34 | 3 | 2 | 1 | 0.088 |
Increased NT | 33 | 5 | 2 | 3 | 0.15 |
Skeletal anomaly | 26 | 1 | - | 1 | 0.038 |
Biochemical risk | 19 | 2 | 1 | 1 | 0.105 |
Other (family history) | 18 | 3 | 2 | 1 | 0.17 |
Hydrops | 15 | 2 | - | 2 | 0.14 |
NIPT risk | 12 | 7 | 2 | 5 | 0.58 |
AMA | 21 | 1 | - | 1 | 0.047 |
Cystic hygroma | 6 | 5 | - | 5 | 0.83 |
IUGR | 5 | - | - | - | 0 |
Anhydramnios/oligohydramnios | 3 | - | - | - | 0 |
Total | 344 | 57 | 18 | 39 | 0.165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakır, A.; Alay, M.T.; Tekbaş, U.C.; Sucu, S.; Kalay, İ.; Saat, H. The Diagnostic Utility of Prenatal Microarray in High-Risk Pregnancies: A Single-Center Experience in Enhancing Reproductive Care and Risk Stratification. Diagnostics 2025, 15, 2129. https://doi.org/10.3390/diagnostics15172129
Bakır A, Alay MT, Tekbaş UC, Sucu S, Kalay İ, Saat H. The Diagnostic Utility of Prenatal Microarray in High-Risk Pregnancies: A Single-Center Experience in Enhancing Reproductive Care and Risk Stratification. Diagnostics. 2025; 15(17):2129. https://doi.org/10.3390/diagnostics15172129
Chicago/Turabian StyleBakır, Abdullatif, Mustafa Tarık Alay, Umut Can Tekbaş, Sadun Sucu, İrem Kalay, and Hanife Saat. 2025. "The Diagnostic Utility of Prenatal Microarray in High-Risk Pregnancies: A Single-Center Experience in Enhancing Reproductive Care and Risk Stratification" Diagnostics 15, no. 17: 2129. https://doi.org/10.3390/diagnostics15172129
APA StyleBakır, A., Alay, M. T., Tekbaş, U. C., Sucu, S., Kalay, İ., & Saat, H. (2025). The Diagnostic Utility of Prenatal Microarray in High-Risk Pregnancies: A Single-Center Experience in Enhancing Reproductive Care and Risk Stratification. Diagnostics, 15(17), 2129. https://doi.org/10.3390/diagnostics15172129