An Explainable Approach to Parkinson’s Diagnosis Using the Contrastive Explanation Method—CEM
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset and Feature Description
2.2. Artificial Neural Network Methodology
2.3. Contrastive Explanation Method (CEM)
2.4. Deep Learning Model Development and Comprehensive Analysis Strategy
2.5. Working Environment
2.6. Justification of Model Selection and Explainability Approach
3. Results
3.1. Model Performance Results and Diagnostic Evaluation
3.2. Model Training Process and Convergence Analysis
3.3. Contrastive Explanation Method (CEM) Analysis
3.3.1. Non-PD Individual Case Study Analysis
3.3.2. Parkinson’s Patient Case Study Analysis
3.3.3. Comparative CEM Analysis and Clinical Implications
3.3.4. Cross-Validation of CEM Findings with Statistical Analysis
3.3.5. Explanations Derived from Local Interpretable Model-Agnostic Explanations (LIME) Analysis
3.3.6. Heatmap Analysis of Features and Patient–Control Comparison
3.3.7. Interpretability Insights from CEM Analysis
3.3.8. Pair Plot Analysis and Data Distribution—Non-PD Individual Case
3.3.9. Pair Plot Analysis and Data Distribution—Parkinson’s Patient Case
3.4. Explainable AI and Deep Learning in Recent PD Diagnostic Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PD | Parkinson’s Disease |
CEM | Contrastive Explanation Method |
XAI | Explainable Artificial Intelligence |
MRI | Magnetic Resonance Imaging |
DNN | Deep Neural Network |
MLP | Multilayer Perceptron |
WM | White Matter |
GM | Gray Matter |
CSF | Cerebrospinal Fluid |
IC | Intracranial Cavity |
PP | Pertinent Positive |
PN | Pertinent Negative |
ReLU | Rectified Linear Unit |
ROC | Receiver Operating Characteristic |
AUC | Area Under Curve |
PPV | Positive Predictive Value |
NPV | Negative Predictive Value |
MCC | Matthews Correlation Coefficient |
ANN | Artificial Neural Network |
References
- Si, X.; Guo, T.; Wang, Z.; Fang, Y.; Gu, L.; Cao, L.; Yang, W.; Gao, T.; Song, Z.; Tian, J.; et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease. NPJ Park. Dis. 2022, 8, 54. [Google Scholar] [CrossRef]
- Çetinel, G.; Sarıca, E.; Alkhatıb, A. The Role of Dysphonia and Voice Recordings in Diagnosis of Parkinson’s Disease. Int. J. Appl. Math. Electron. Comput. 2020, 8, 21–26. [Google Scholar] [CrossRef]
- Mulak, A.; Bonaz, B. Brain-gut-microbiota axis in Parkinson’s disease. World J. Gastroenterol. 2015, 21, 10609–10620. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, Y.; Song, J.; Sang, T.; Xia, T.; Xie, L.; Qiu, X.; Zeng, Q.; Luo, X. Research Progress of Microbiota-Gut-Brain Axis in Parkinson’s Disease. J. Integr. Neurosci. 2023, 22, 157. [Google Scholar] [CrossRef]
- Mak, E.; Su, L.; Williams, G.B.; Firbank, M.J.; Lawson, R.A.; Yarnall, A.J.; Duncan, G.W.; Owen, A.M.; Khoo, T.K.; Brooks, D.J.; et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 2015, 138, 2974–2986. [Google Scholar] [CrossRef] [PubMed]
- Ragothaman, A.; Miranda-Dominguez, O.; Brumbach, B.H.; Giritharan, A.; Fair, D.A.; Nutt, J.G.; Mancini, M.; Horak, F.B. Relationship Between Brain Volumes and Objective Balance and Gait Measures in Parkinson’s Disease. J. Park. Dis. 2022, 12, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.H.; Abdullah, J.Y.; Idris, Z.; Ghani, A.R.I.; Abdullah, J.M.; Wong, A.S.H.; Tharakan, J.; Win, S.M. Detailed Anatomical Volumetric Study of Deep Nuclei of Brain and Other Structures Between Parkinson’s Disease Patients Who Had Deep Brain Stimulation and Control Group. Malays. J. Med. Sci. 2020, 27, 53–60. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, C.; Chen, Y.; Gong, T.; Zhuo, M.; Zhao, C.; Sun, Z.; Chen, W.; Xiang, Y.; Wang, G. Glymphatic dysfunction exacerbates cognitive decline by triggering cortical degeneration in Parkinson’s disease: Evidence from diffusion-tensor MRI. Brain Commun. 2025, 7, fcaf029. [Google Scholar] [CrossRef] [PubMed]
- Pourmotahari, F.; Tabatabaei, S.M.; Borumandnia, N.; Khadembashi, N.; Olazadeh, K.; Alavimajd, H. A Study Over Brain Connectivity Network of Parkinson’s Patients, Using Nonparametric Bayesian Model. Basic Clin. Neurosci. J. 2024, 15, 61–72. [Google Scholar] [CrossRef]
- Pereira, J.B.; Aarsland, D.; Ginestet, C.E.; Lebedev, A.V.; Wahlund, L.O.; Simmons, A.; Volpe, G.; Westman, E. Aberrant cerebral network topology and mild cognitive impairment in early Parkinson’s disease. Hum. Brain Mapp. 2015, 36, 2980–2995. [Google Scholar] [CrossRef]
- Shinde, S.; Prasad, S.; Saboo, Y.; Kaushick, R.; Saini, J.; Pal, P.K.; Ingalhalikar, M. Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. NeuroImage Clin. 2019, 22, 101748. [Google Scholar] [CrossRef]
- Ghaheri, P.; Nasiri, H.; Shateri, A.; Homafar, A. Diagnosis of Parkinson’s disease based on voice signals using SHAP and hard voting ensemble method. Comput. Methods Biomech. Biomed. Eng. 2024, 27, 1858–1874. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, W.; Yu, H.; Wang, T.; Wang, X.; Liu, L.; Wen, Y. Prediction of Parkinson’s Disease Using Machine Learning Methods. Biomolecules 2023, 13, 1761. [Google Scholar] [CrossRef]
- McFall, G.P.; Bohn, L.; Gee, M.; Drouin, S.M.; Fah, H.; Han, W.; Li, L.; Camicioli, R.; Dixon, R.A. Identifying key multi-modal predictors of incipient dementia in Parkinson’s disease: A machine learning analysis and Tree SHAP interpretation. Front. Aging Neurosci. 2023, 15, 1124232. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, X.; Ding, X.; Zhang, P.; Su, L.; Wang, G. Diagnostic value of transcranial ultrasonography and clinical features for Parkinson’s disease based on XGBoost model and SHAP visualization analysis: A retrospective study. Eur. Radiol. 2025, 1–12. [Google Scholar] [CrossRef]
- Chen, B.; Xu, M.; Yu, H.; He, J.; Li, Y.; Song, D.; Fan, G.G. Detection of mild cognitive impairment in Parkinson’s disease using gradient boosting decision tree models based on multilevel DTI indices. J. Transl. Med. 2023, 21, 310. [Google Scholar] [CrossRef]
- Pang, H.; Yu, Z.; Yu, H.; Cao, J.; Li, Y.; Guo, M.; Cao, C.; Fan, G. Use of machine learning method on automatic classification of motor subtype of Parkinson’s disease based on multilevel indices of rs-fMRI. Park. Relat. Disord. 2021, 90, 65–72. [Google Scholar] [CrossRef] [PubMed]
- C D, P.A.; M P, A.; Kodipalli, A.; Rao, T. Exploring Computational Models for Parkinson’s Disease Diagnosis: Unveiling Insights with LIME and SHAP Explainability Techniques. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; pp. 1–6. [Google Scholar]
- Tiwari, U.; Jahanve, P.R.; Karna, S.; Pati, P.B.; KN, B.P. Parkinson’s Disease Severity Assessment: A Comparative Study & Interpretability Analysis. In Proceedings of the 2024 5th International Conference for Emerging Technology (INCET), Belgaum, India, 24–26 May 2024; pp. 1–5. [Google Scholar]
- Junaid, M.; Ali, S.; Eid, F.; El-Sappagh, S.; Abuhmed, T. Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson’s disease. Comput. Methods Programs Biomed. 2023, 234, 107495. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Bhatia, K.P.; Cardoso, F.; Comella, C.; Defazio, G.; Fung, V.S.C.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Kaji, R.; et al. Isolated Cervical Dystonia: Diagnosis and Classification. Mov. Disord. 2023, 38, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Przybyła-Kasperek, M.; Marfo, K.F. A multi-layer perceptron neural network for varied conditional attributes in tabular dispersed data. PLoS ONE 2024, 19, e0311041. [Google Scholar] [CrossRef]
- Eckle, K.; Schmidt-Hieber, J. A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Netw. 2019, 110, 232–242. [Google Scholar] [CrossRef]
- Kim, Y.; Panda, P. Revisiting Batch Normalization for Training Low-Latency Deep Spiking Neural Networks From Scratch. Front. Neurosci. 2021, 15, 773954. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Wang, J.; Wu, W. Spiking Neural Network Regularization with Fixed and Adaptive Drop-Keep Probabilities. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 4096–4109. [Google Scholar] [CrossRef]
- Mondal, S.; Maity, R.; Nag, A. An efficient artificial neural network-based optimization techniques for the early prediction of coronary heart disease: Comprehensive analysis. Sci. Rep. 2025, 15, 4827. [Google Scholar] [CrossRef]
- Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [Google Scholar] [CrossRef]
- Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, P. Explanations based on the missing: Towards contrastive explanations with pertinent negatives. Adv. Neural Inf. Process. Syst. 2018, 31, 590–601. [Google Scholar]
- Verma, S.; Boonsanong, V.; Hoang, M.; Hines, K.; Dickerson, J.; Shah, C. Counterfactual explanations and algorithmic recourses for machine learning: A review. ACM Comput. Surv. 2024, 56, 1–42. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box models. ACM Comput. Surv. 2018, 51, 1–42. [Google Scholar] [CrossRef]
- Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4793–4813. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Zoubir, A.M.; Iskandler, D.R. Bootstrap methods and applications. IEEE Signal Process. Mag. 2007, 24, 10–19. [Google Scholar] [CrossRef]
- Klaise, J.; Van Looveren, A.; Vacanti, G.; Coca, A. Alibi explain: Algorithms for explaining machine learning models. J. Mach. Learn. Res. 2021, 22, 1–7. [Google Scholar]
- Yue, Y.; Zhang, X.; Lv, W.; Lai, H.Y.; Shen, T. Interplay between the glymphatic system and neurotoxic proteins in Parkinson’s disease and related disorders: Current knowledge and future directions. Neural Regen. Res. 2024, 19, 1973–1980. [Google Scholar] [CrossRef]
- Anjomshoae, S.; Främling, K.; Najjar, A. Explanations of Black-Box Model Predictions by Contextual Importance and Utility. In Explainable, Transparent Autonomous Agents and Multi-Agent Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 95–109. [Google Scholar] [CrossRef]
- Stepin, I.; Alonso, J.M.; Catala, A.; Pereira-Fariña, M. A Survey of Contrastive and Counterfactual Explanation Generation Methods for Explainable Artificial Intelligence. IEEE Access 2021, 9, 11974–12001. [Google Scholar] [CrossRef]
- Miller, T. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 2019, 267, 1–38. [Google Scholar] [CrossRef]
- Acikgoz, H.; Korkmaz, D.; Talan, T. An Automated Diagnosis of Parkinson’s Disease from MRI Scans Based on Enhanced Residual Dense Network with Attention Mechanism. J. Imaging Inform. Med. 2024, 9, 11974–12001. [Google Scholar] [CrossRef]
- Welton, T.; Hartono, S.; Lee, W.; Teh, P.Y.; Hou, W.; Chen, R.C.; Chen, C.; Lim, E.W.; Prakash, K.M.; Tan, L.C.S.; et al. Classification of Parkinson’s disease by deep learning on midbrain MRI. Front. Aging Neurosci. 2024, 16, 1425095. [Google Scholar] [CrossRef]
- Li, G.; Song, Y.; Liang, M.; Yu, J.; Zhai, R. PD-ARnet: A deep learning approach for Parkinson’s disease diagnosis from resting-state fMRI. J. Neural Eng. 2024, 21, 056016. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Qi, W.; Yu, X.; Wu, J.; Li, H. Parkinson’s image detection and classification based on deep learning. BMC Med. Imaging 2024, 24, 187. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, J.; Sun, S.; Chen, T.; Wang, R. Deep learning for Parkinson’s disease classification using multimodal and multi-sequences PET/MR images. EJNMMI Res. 2025, 15, 55. [Google Scholar] [CrossRef]
- Alrawis, M.; Mohammad, F.; Al-Ahmadi, S.; Al-Muhtadi, J. FCN-PD: An Advanced Deep Learning Framework for Parkinson’s Disease Diagnosis Using MRI Data. Diagnostics 2025, 15, 992. [Google Scholar] [CrossRef]
- Sangeetha, S.; Umarani, B. MRI image-based Parkinson’s disease classification using Deep Maxout fuzzy EfficientNet. Biomed. Signal Process. Control 2025, 103, 107416. [Google Scholar]
- Pagano, G.; Niccolini, F.; Politis, M. Imaging in Parkinson’s Disease. Clin. Med. 2016, 16, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, R.; Mubarak, F. Neuroimaging in Parkinson Disease. In Parkinson’s Disease and Beyond—A Neurocognitive Approach; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Aminian, K.; Strafella, A.P. Affective Disorders in Parkinson’s Disease. Curr. Opin. Neurol. 2013, 26, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Tosserams, A.; Weerdesteyn, V.; Bal, T.; Bloem, B.R.; Solis-Escalante, T.; Nonnekes, J. Cortical Correlates of Gait Compensation Strategies in Parkinson Disease. Ann. Neurol. 2022, 91, 329–341. [Google Scholar] [CrossRef]
- Stuart, S.; Wagner, J.; Makeig, S.; Mancini, M. Brain Activity Response to Visual Cues for Gait Impairment in Parkinson’s Disease: An EEG Study. Neurorehabilit. Neural Repair 2021, 35, 996–1009. [Google Scholar] [CrossRef]
- Weintraub, D.; Simuni, T.; Caspell-Garcia, C.; Coffey, C.; Lasch, S.; Siderowf, A.; Aarsland, D.; Barone, P.; Burn, D.; Chahine, L.M.; et al. Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov. Disord. 2015, 30, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Brück, A.; Kurki, T.; Kaasinen, V.; Vahlberg, T.; Rinne, J.O. Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1467–1469. [Google Scholar] [CrossRef]
- Fearnley, J.M.; Lees, A.J. Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain A J. Neurol. 1991, 114 Pt 5, 2283–2301. [Google Scholar] [CrossRef]
- Huot, P.; Lévesque, M.; Parent, A. The fate of striatal dopaminergic neurons in Parkinson’s disease and Huntington’s chorea. Brain A J. Neurol. 2007, 130, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Sterling, N.W.; Lewis, M.M.; Du, G.; Huang, X. Structural Imaging and Parkinson’s Disease: Moving Toward Quantitative Markers of Disease Progression. J. Park. Dis. 2016, 6, 557–567. [Google Scholar] [CrossRef]
- Scamarcia, P.G.; Agosta, F.; Spinelli, E.G.; Basaia, S.; Stojković, T.; Stankovic, I.; Sarasso, E.; Canu, E.; Markovic, V.; Petrović, I.; et al. Longitudinal White Matter Damage Evolution in Parkinson’s Disease. Mov. Disord. 2022, 37, 315–324. [Google Scholar] [CrossRef]
- Mak, E.; Su, L.; Williams, G.B.; O’Brien, J.T. Neuroimaging correlates of cognitive impairment and dementia in Parkinson’s disease. Park. Relat. Disord. 2015, 21, 862–870. [Google Scholar] [CrossRef]
- Gotham, A.M.; Brown, R.G.; Marsden, C.D. Depression in Parkinson’s disease: A quantitative and qualitative analysis. J. Neurol. Neurosurg. Psychiatry 1986, 49, 381–389. [Google Scholar] [CrossRef]
- Aarsland, D.; Brønnick, K.; Ehrt, U.; De Deyn, P.P.; Tekin, S.; Emre, M.; Cummings, J.L. Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: Frequency, profile and associated care giver stress. J. Neurol. Neurosurg. Psychiatry 2007, 78, 36–42. [Google Scholar] [CrossRef]
- Camicioli, R.; Moore, M.M.; Kinney, A.; Corbridge, E.; Glassberg, K.; Kaye, J.A. Parkinson’s disease is associated with hippocampal atrophy. Mov. Disord. 2003, 18, 784–790. [Google Scholar] [CrossRef]
- Wu, T.; Hallett, M. The cerebellum in Parkinson’s disease. Brain 2013, 136, 696–709. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Liu, M.; Qiu, X.; Li, T.; Le, W. Cerebellar involvement in Parkinson’s disease: Pathophysiology and neuroimaging. Chin. Med. J. 2024, 137, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
Category | Parameter | Value | Description |
---|---|---|---|
Architecture | Input Layer | 17 neurons | Brain volumetric features used as input |
Hidden Layers | 6 layers | Progressive structure: 512 → 256 → 128 → 64 → 32 → 16 neurons | |
Activation Function | ReLU | Rectified Linear Unit for improved gradient flow and faster convergence | |
Output Layer | 2 neurons (Softmax) | Softmax activation for binary classification (PD vs. Control) | |
Regularization | Dropout Rate | 0.5 → 0.1 (gradual) | Decreasing dropout rates to prevent overfitting |
L2 Regularization | λ = 0.01 and 0.005 | Penalizes large weights to control model complexity | |
Batch Normalization | Applied at each layer | Stabilizes learning and reduces internal covariate shift | |
Optimization | Optimizer | Adam | Adaptive optimization algorithm for efficient learning |
Learning Rate | 0.001 (fixed) | Constant learning rate for stable convergence | |
Loss Function | Categorical cross-entropy | Standard loss function for multi-class classification with softmax | |
Training Settings | Batch Size | 32 | Mini-batch gradient descent used during training |
Epochs | 100 | Number of iterations over the entire training data |
Performance Metric | Value |
---|---|
Batch Size | 32 |
Training Time (s) | 6.00 |
Inference Time (s) | 0.23 |
Total Processing Time (s) | 6.23 |
Inference Time per Instance (ms) | 4.69 |
Metric | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
---|---|---|---|---|---|
Accuracy | 0.9375 | 0.9167 | 0.9362 | 0.9362 | 0.9787 |
Balanced Accuracy | 0.9375 | 0.9200 | 0.9375 | 0.9366 | 0.9792 |
Matthews CC | 0.8758 | 0.8459 | 0.8798 | 0.8732 | 0.9583 |
Precision/PPV | 0.9565 | 1.0000 | 1.0000 | 0.9565 | 1.0000 |
Sensitivity/Recall | 0.9167 | 0.8400 | 0.8750 | 0.9167 | 0.9583 |
Specificity | 0.9583 | 1.0000 | 1.0000 | 0.9565 | 1.0000 |
F1 Score | 0.9362 | 0.9130 | 0.9333 | 0.9362 | 0.9787 |
NPV | 0.9200 | 0.8519 | 0.8846 | 0.9167 | 0.9583 |
ROC AUC | 0.9948 | 1.0000 | 0.9511 | 0.9583 | 0.9909 |
Metric | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
---|---|---|---|---|---|
Accuracy | 0.7708 | 0.7500 | 0.8723 | 0.8298 | 0.8511 |
Balanced Accuracy | 0.7708 | 0.7530 | 0.8714 | 0.8288 | 0.8496 |
Matthews CC | 0.5538 | 0.5096 | 0.7468 | 0.6612 | 0.7070 |
Precision/PPV | 0.7241 | 0.8095 | 0.8462 | 0.8077 | 0.8148 |
Sensitivity/Recall | 0.8750 | 0.6800 | 0.9167 | 0.8750 | 0.9167 |
Specificity | 0.6667 | 0.8261 | 0.8261 | 0.7826 | 0.7826 |
F1 Score | 0.7925 | 0.7391 | 0.8800 | 0.8400 | 0.8627 |
NPV | 0.8421 | 0.7037 | 0.9048 | 0.8571 | 0.9000 |
ROC AUC | 0.8993 | 0.8504 | 0.9547 | 0.8913 | 0.9293 |
Metric | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
---|---|---|---|---|---|
Accuracy | 0.7083 | 0.6250 | 0.8298 | 0.6809 | 0.7872 |
Balanced Accuracy | 0.7083 | 0.6296 | 0.8297 | 0.6812 | 0.7880 |
Matthews CC | 0.4226 | 0.2647 | 0.6594 | 0.3623 | 0.5771 |
Precision/PPV | 0.6786 | 0.6842 | 0.8333 | 0.6957 | 0.8182 |
Sensitivity/Recall | 0.7917 | 0.5200 | 0.8333 | 0.6667 | 0.7500 |
Specificity | 0.6250 | 0.7391 | 0.8261 | 0.6957 | 0.8261 |
F1 Score | 0.7308 | 0.5909 | 0.8333 | 0.6809 | 0.7826 |
NPV | 0.7500 | 0.5862 | 0.8261 | 0.6667 | 0.7600 |
ROC AUC | 0.7535 | 0.7409 | 0.8442 | 0.8134 | 0.8007 |
Metric | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
---|---|---|---|---|---|
Accuracy | 0.7500 | 0.7917 | 0.8511 | 0.7021 | 0.6809 |
Balanced Accuracy | 0.7500 | 0.7948 | 0.8505 | 0.7029 | 0.6803 |
Matthews CC | 0.5071 | 0.5937 | 0.7024 | 0.4065 | 0.3612 |
Precision/PPV | 0.7143 | 0.8571 | 0.8400 | 0.7273 | 0.6800 |
Sensitivity/Recall | 0.8333 | 0.7200 | 0.8750 | 0.6667 | 0.7083 |
Specificity | 0.6667 | 0.8696 | 0.8261 | 0.7391 | 0.6522 |
F1 Score | 0.7692 | 0.7826 | 0.8571 | 0.6957 | 0.6939 |
NPV | 0.8000 | 0.7407 | 0.8636 | 0.6800 | 0.6818 |
ROC AUC | 0.8898 | 0.8583 | 0.8895 | 0.8025 | 0.8025 |
Metric | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
---|---|---|---|---|---|
Accuracy | 0.9792 | 0.8750 | 0.9149 | 0.9574 | 0.9149 |
Balanced Accuracy | 0.9792 | 0.8748 | 0.9149 | 0.9565 | 0.9139 |
Matthews CC | 0.9592 | 0.7496 | 0.8297 | 0.9180 | 0.8324 |
Precision/PPV | 0.9600 | 0.8800 | 0.9167 | 0.9231 | 0.8846 |
Sensitivity/Recall | 1.0000 | 0.8800 | 0.9167 | 1.0000 | 0.9583 |
Specificity | 0.9583 | 0.8696 | 0.9130 | 0.9130 | 0.8696 |
F1 Score | 0.9796 | 0.8800 | 0.9167 | 0.9600 | 0.9200 |
NPV | 1.0000 | 0.8696 | 0.9130 | 1.0000 | 0.9524 |
ROC AUC | 0.9983 | 0.9704 | 0.9221 | 0.9801 | 0.9837 |
Model | Accuracy | Balanced Accuracy | Matthews CC | Precision/PPV | Sensitivity/Recall | Specificity | F1 Score | NPV | ROC AUC |
---|---|---|---|---|---|---|---|---|---|
Deep Neural Network (DNN) | 0.9414 (0.9247–0.9617) | 0.9425 (0.9270–0.9623) | 0.8872 (0.8581–0.9253) | 0.9824 (0.9652–1.0000) | 0.9022 (0.8693–0.9333) | 0.9827 (0.9656–1.0000) | 0.9399 (0.9223–0.9611) | 0.9071 (0.8779–0.9359) | 0.9701 (0.9620–0.9953) |
Support Vector Machine (SVM) | 0.8151 (0.7743–0.8553) | 0.8150 (0.7753–0.8542) | 0.6363 (0.5576–0.7126) | 0.8000 (0.7604–0.8311) | 0.8541 (0.7663–0.9083) | 0.7759 (0.7217–0.8174) | 0.8234 (0.7745–0.8640) | 0.8426 (0.7706–0.8933) | 0.9053 (0.8750–0.9335) |
Logistic Regression | 0.7267 (0.6640–0.7885) | 0.7278 (0.6660–0.7888) | 0.4582 (0.3353–0.5791) | 0.7421 (0.6854–0.7997) | 0.7137 (0.6120–0.8000) | 0.7420 (0.6793–0.8087) | 0.7245 (0.6472–0.7925) | 0.7186 (0.6503–0.7844) | 0.7906 (0.7579–0.8232) |
K-Nearest Neighbors (KNN) | 0.7541 (0.7032–0.8094) | 0.7546 (0.7033–0.8099) | 0.5120 (0.4085–0.6215) | 0.7622 (0.7031–0.8243) | 0.7604 (0.6940–0.8273) | 0.7488 (0.6753–0.8203) | 0.7588 (0.7097–0.8099) | 0.7527 (0.6929–0.8142) | 0.8482 (0.8137–0.8834) |
AdaBoost | 0.9289 (0.8989–0.9576) | 0.9285 (0.8985–0.9572) | 0.8590 (0.7982–0.9174) | 0.9132 (0.8892–0.9375) | 0.9519 (0.9103–0.9917) | 0.9050 (0.8783–0.9315) | 0.9318 (0.9027–0.9598) | 0.9480 (0.9035–0.9905) | 0.9713 (0.9453–0.9895) |
Variables | Original Value | PN Value | Change | PP Value | Interpretation |
---|---|---|---|---|---|
Age | −0.186 | −0.189 | → | −3.38 × 10−9 | Minimal contribution |
White Matter (WM) | −0.514 | −0.514 | → | 9.82 × 10−9 | Minimal contribution |
Gray Matter (GM) | 0.979 | 0.979 | → | −2.13 × 10−8 | Important: Strong positive contribution to “Normal” class |
CSF | 0.558 | −0.649 | ↓↓ | −1.18 × 10−8 | Critical: Important decrease required for class change |
Total Brain (BrainWM + GM) | 0.630 | 1.378 | ↑↑ | −1.73 × 10−8 | Critical: Important increase required for class change |
Intracranial Cavity (IC) | 0.875 | 0.875 | → | 2.21 × 10−8 | Minimal contribution |
Cerebrum | 0.562 | 0.562 | → | 2.97 × 10−8 | Minimal contribution |
Cerebellum | 0.649 | 0.649 | → | 3.00 × 10−9 | Minimal contribution |
Brainstem | 1.316 | 1.316 | → | 0.035 | Important: Contribution to “Normal” class |
Lateral Ventricle | −0.375 | 0.347 | ↑↑ | −2.29 × 10−10 | Critical: Largest change required feature |
Caudate Nucleus | 0.759 | 2.737 | ↑↑↑ | −1.26 × 10−8 | Critical: Very large increase for class change |
Putamen | 1.353 | 2.105 | ↑↑ | −3.53 × 10−8 | Critical: Important increase for class change |
Thalamus | 0.909 | 0.971 | ↑ | −2.52 × 10−8 | Moderate contribution |
Globus Pallidus | −0.641 | −0.641 | → | 2.62 × 10−8 | Minimal contribution |
Hippocampus | 0.711 | 0.711 | → | 0.150 | Important: Strong contribution to “Normal” class |
Amygdala | −0.553 | −0.553 | → | −2.12 × 10−8 | Minimal contribution |
Nucleus Accumbens | 0.423 | 0.845 | ↑↑ | 6.93 × 10−9 | Important: Increase required for class change |
Variables | Original Value | PN Value | Change | PP Value | Interpretation |
---|---|---|---|---|---|
Age | −0.186 | −0.186 | → | −3.38 × 10−9 | Minimal contribution |
White Matter (WM) | 1.371 | 1.371 | → | 0.042 | Important: Positive contribution to “Disease” class |
Gray Matter (GM) | −0.794 | −0.794 | → | 2.78 × 10−8 | Important indicator in disease diagnosis |
CSF | −0.126 | 0.463 | ↑↑ | −0.039 | Critical: Important increase required for class change |
Total Brain (BrainWM + GM) | 0.876 | 0.876 | → | 2.41 × 10−9 | Minimal contribution |
Intracranial Cavity (IC) | 0.706 | 0.706 | → | 2.80 × 10−8 | Minimal contribution |
Cerebrum | 0.921 | 0.921 | → | −1.98 × 10−8 | Minimal contribution |
Cerebellum | 0.209 | 0.209 | → | −6.07 × 10−9 | Minimal contribution |
Brainstem | 0.470 | 1.365 | ↑↑ | −9.54 × 10−9 | Critical: Important increase for class change |
Lateral Ventricle | −0.375 | −0.375 | → | −2.29 × 10−10 | Minimal contribution |
Caudate Nucleus | −0.858 | −1.110 | ↓ | 2.24 × 10−9 | Decreased indicator in disease diagnosis |
Putamen | −0.296 | −0.296 | → | 7.79 × 10−9 | Important indicator in disease diagnosis |
Thalamus | 0.292 | 0.292 | → | 0.083 | Important: Contribution to “Disease” class |
Globus Pallidus | −0.261 | 0.653 | ↑↑ | −6.81 × 10−9 | Critical: Important increase for class change |
Hippocampus | −1.958 | −1.958 | → | −0.156 | Critical: Strongest indicator of “Disease” class |
Amygdala | −0.498 | −0.498 | → | −0.014 | Important: Contribution to “Disease” class |
Nucleus Accumbens | −0.670 | −0.670 | → | −0.023 | Important: Contribution to “Disease” class |
Brain Region | Non-PD Individual (PP Value) | Parkinson’s Patient (PP Value) | Clinical Significance |
---|---|---|---|
Hippocampus | +0.150 (protective factor) | −0.156 (strongest disease indicator) | Most dramatic discriminative feature |
Brainstem | +0.035 (contribution to normal diagnosis) | −9.54 × 10−9 (minimal) | Protective effect for normal diagnosis |
White Matter (WM) | 9.82 × 10−9 (minimal) | +0.042 (disease indicator) | Disease-specific change |
Thalamus | −2.52 × 10−8 (minimal) | +0.083 (contribution to disease diagnosis) | Important role in disease process |
Caudate Nucleus | Increase → disease risk | −0.858 (decrease → existing disease) | Opposite patterns: risk vs. existing disease |
Putamen | Increase → disease risk | −0.296 (decrease → existing disease) | Indicator of basal ganglia atrophy |
CSF | Decrease → disease risk | Increase → risk of return to normal diagnosis | Difference in compensatory mechanism |
Amygdala | −2.12 × 10−8 (minimal) | −0.014 (disease contribution) | Limbic system involvement |
Nucleus Accumbens | Increase → disease risk | −0.023 (disease contribution) | Change in reward system |
Variables | Control [Median (Min–Max)] | PD [Median (Min–Max)] | p-Value * |
---|---|---|---|
Age | 58.00 (51.00–69.00) | 58.00 (52.00–70.00) | 0.276 |
White Matter (WM) | 545.19 (13.59–1276.61) | 618.33 (16.64–1221.45) | 0.019 |
Gray Matter (GM) | 650.78 (126.05–1325.84) | 663.33 (55.74–1298.71) | 0.06 |
Cerebro Spinal Fluid | 200.76 (2.20–868.65) | 194.16 (2.21–481.94) | 0.709 |
Brain (WM + GM) | 1273.15 (730.91–2276.11) | 1322.65 (728.48–1799.69) | 0.162 |
Intracranial Cavity | 1460.38 (1064.54–3144.76) | 1520.79 (909.82–2016.61) | 0.187 |
Cerebrum | 1120.45 (643.49–1948.99) | 1168.45 (572.24–1597.53) | 0.146 |
Cerebelum | 134.98 (61.21–288.69) | 136.02 (93.68–187.96) | 0.549 |
Brainstem | 25.34 (12.25–38.31) | 21.50 (9.71–36.47) | <0.001 |
Lateral ventricles | 0.44 (0.01–103.71) | 0.19 (0.01–75.10) | <0.001 |
Caudate | 10.12 (1.48–30.15) | 12.04 (1.82–24.02) | <0.001 |
Putamen | 6.42 (2.74–26.87) | 6.12 (1.29–17.38) | 0.08 |
Thalamus | 10.52 (1.17–41.03) | 11.64 (6.47–21.37) | 0.091 |
Globus Pallidus | 1.02 (0.02–6.43) | 0.96 (0.25–2.36) | 0.078 |
Hippocampus | 6.61 (0.96–19.87) | 6.35 (1.15–10.36) | 0.21 |
Amygdala | 0.31 (0.01–4.58) | 0.12 (0.02–5.64) | 0.001 |
Accumbens | 0.25 (0.01–1.25) | 0.11 (0.01–1.57) | <0.001 |
Reference | Dataset Type/Modality | ML Model(s) Used | XAI Method | Target/Task | Performance Results |
---|---|---|---|---|---|
Pang et al. (2021) [17] | Resting-state functional magnetic resonance imaging data | SVM | SHAP | Motor subtype classification of PD using multilevel rs-fMRI indices | SVM; AUC: 0.917 |
McFall et al. (2023) [14] | PD patients without dementia, recruited between 2003 and 2009 from the University of Alberta Movement Disorders Clinic | RF, LR, Gradient Boosting | TreeSHAP | Risk prediction of dementia progression in non-dementia PD patients | Random forest; AUC: 0.84 |
Chen et al. (2023) [16] | Diffusion tensor imaging data | DT, RF, XGBoost | SHAP | Automatic classification of PD patients with mild cognitive impairment using DTI-based features | XGBoost; accuracy: 91.67% |
Junaid et al. (2023) [20] | Data extracted from the Parkinson’s Progression Markers Initiative | RF, LGBM, extra tree classifier, SVM, stochastic gradient descent | SHAP + LIME | Multi-class prediction of PD progression using multimodal time series data | LGBM; accuracy: 94.89% |
Zhang et al. (2023) [13] | Data extracted from the Parkinson’s Progression Markers Initiative | Decision tree (DT), KNN, Naive Bayes, neural network, penalized LR, random forest, SVM, Extreme Gradient Boosting | SHAP | Risk prediction of PD based on multi-domain factors | Penalized logistic regression; AUC: 0.94 |
Ghaheri et al. (2024) [12] | Voice signals | Extreme Gradient Boosting (XGBoost), Light Gradient Boosting (LGBM), bagging, ensemble model | SHAP | Early-stage diagnosis of PD using acoustic biomarkers and feature importance interpretation | Ensemble method; accuracy: 85.42% |
Tiwari et al. (2024) [19] | Data extracted from the Parkinson’s Progression Markers Initiative | AdaBoost, XGBoost, Gradient Boosting Classifier, DT, KNN, LR, Gaussian Naive Bayes (GNB) | LIME | Severity assessment of PD using clinical features and LIME explainability | AdaBoost; accuracy: 93.2% |
CD et al. (2024) [18] | Voice signals | RF, DT, LR, KNN, SVM, Gradient Boosting, AdaBoost, XGBoost, CatBoost | SHAP + LIME | Diagnosis of PD using multiple ML models with SHAP and LIME explainability | XGBoost; accuracy: 94.8% |
Ge et al. (2025) [15] | Transcranial ultrasonography + clinical | XGBoost | SHAP | Early diagnosis of PD using transcranial ultrasonography and clinical features | XGBoost; AUC: 0.81 |
Acikgoz et al. (2024) [41] | T2-weighted structural MRI | SE-ResNeXt with attention mechanism | — | Early diagnosis of PD using residual dense network | Accuracy: 94.44%, precision: 91.67%, sensitivity: 91.67%, specificity: 95.83%, F1 score: 91.67%, MCC: 87.50% |
Welton et al. (2024) [42] | Midbrain MRI (SMWI, QSM, NMS) | Heuron IPD (DL model for N1 morphology), Heuron NI (DL model for N1 volume) | — | Diagnosis of PD using nigrosome-1 imaging features | AUC: 0.92 (N1 morphology), 0.90 (N1 volume), 0.94 (QSM-NMS composite marker), 0.98 (radiologist) |
Li et al. (2024) [43] | Resting-state fMRI (PPMI dataset) | PD-ARnet (dual-branch 3D DL model) | — | Automated diagnosis of PD using ALFF and ReHo features | Accuracy: 91.6%, AUC: 92.8%, F1: 90.2%, precision: 94.7%, recall: 86.2% |
Li et al. (2024) [44] | Structural MRI (582 images from 108 patients) | Improved YOLOv5 with CA, dynamic convolution, decoupling head | — | Detection and classification of Parkinson’s disease using enhanced deep learning model | Precision: 0.961, recall: 0.974, mAP: 0.986 |
Chang et al. (2025) [45] | Multimodal and multi-sequence PET/MR (CFT-PET, ADC-MRI) | ResNet18 (modified) | — | Classification of PD vs. MSA and normal controls | Best model (CFT-ADC): AUC = 0.96, accuracy = 0.97 (train); accuracy = 0.70 (test) |
Alrawis et al. (2025) [46] | Structural MRI (PPMI, OASIS, MIRIAD) | FCN-PD (EfficientNet + Attention + FCN) | — | Diagnosis of PD using multi-dataset MRI data with hybrid deep architecture | Accuracy: 97.2% (PPMI), 95.6% (OASIS), 96.8% (MIRIAD) |
Sangeetha et al. (2025) [47] | Structural MRI (axial, sagittal, coronal views) | ShCNN-Fuzzy-ZFNet, Deep Maxout Network, EfficientNet-B3 with attention | — | MRI-based PD classification using fuzzy convolutional hybrid model | Accuracy: 92.6%; TNR: 91.8%; TPR: 91.3%; NPV: 91.3%; PPV: 91.5% |
Present Study | Volumetric structural MRI (brain morphometry) | SVM, LR, KNN, AdaBoost, Deep Neural Network (best) | Contrastive Explanation Method (CEM) | Diagnosis and feature-level interpretation of PD-related brain changes | Deep Neural Network; accuracy: 95.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balikci Cicek, I.; Kucukakcali, Z.; Deniz, B.; Algül, F.E. An Explainable Approach to Parkinson’s Diagnosis Using the Contrastive Explanation Method—CEM. Diagnostics 2025, 15, 2069. https://doi.org/10.3390/diagnostics15162069
Balikci Cicek I, Kucukakcali Z, Deniz B, Algül FE. An Explainable Approach to Parkinson’s Diagnosis Using the Contrastive Explanation Method—CEM. Diagnostics. 2025; 15(16):2069. https://doi.org/10.3390/diagnostics15162069
Chicago/Turabian StyleBalikci Cicek, Ipek, Zeynep Kucukakcali, Birgul Deniz, and Fatma Ebru Algül. 2025. "An Explainable Approach to Parkinson’s Diagnosis Using the Contrastive Explanation Method—CEM" Diagnostics 15, no. 16: 2069. https://doi.org/10.3390/diagnostics15162069
APA StyleBalikci Cicek, I., Kucukakcali, Z., Deniz, B., & Algül, F. E. (2025). An Explainable Approach to Parkinson’s Diagnosis Using the Contrastive Explanation Method—CEM. Diagnostics, 15(16), 2069. https://doi.org/10.3390/diagnostics15162069