Evaluating Simplified IVIM Diffusion Imaging for Breast Cancer Diagnosis and Pathological Correlation
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MRI Protocol
2.3. Image Analysis and Post-Processing
2.4. Clinicopathological Assessment
- Luminal A: ER-positive and/or PR-positive, HER2-negative, and histologic grade 1 or 2.
- Luminal B: ER-positive and/or PR-positive with HER2 overexpression, or tumors otherwise meeting Luminal A criteria but with histologic grade 3.
- HER2-enriched: ER-negative, PR-negative, and HER2-positive.
- Triple-negative (TN): ER-negative, PR-negative, and HER2-negative. Ki-67 expression was assessed to distinguish between Luminal A and Luminal B tumors. A Ki-67 index ≥30% was considered high, indicating a more proliferative phenotype.
- ER and PR:
- Positive: ≥1% of tumor nuclei showing positive staining.
- Negative: <1% staining of tumor nuclei.
- Indeterminate: Applied when pre-analytic variables compromise interpretation (e.g., poor fixation or processing).
- HER2:
- Score 0: No staining or incomplete, faint/barely perceptible membrane staining in ≤10% of tumor cells.
- Score 1+: Incomplete, faint/barely perceptible membrane staining in >10% of tumor cells.
- Score 2+: Incomplete and/or weak-to-moderate circumferential membrane staining in >10% of tumor cells, or complete, intense staining in ≤10% of tumor cells.
- Score 3+: Complete, intense circumferential membrane staining in >10% of tumor cells.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2023, 73, 229–263. [Google Scholar]
- Mann, R.M.; Cho, N.; Moy, L. Breast MRI: State of the art. Radiology 2019, 292, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.; Lei, W.; Craft, P.; Cawson, J.; Morris, I.; Walleser, S.; Griffiths, A.; Parker, S.; Houssami, N. A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur. J. Cancer 2007, 43, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K. Abbreviated magnetic resonance imaging (MRI) for breast cancer screening: Rationale, concept, and transfer to clinical practice. Annu. Rev. Med. 2019, 70, 501–519. [Google Scholar] [CrossRef] [PubMed]
- Mürtz, P.; Ziegler, M.; Grigoryan, M.; Block, W.; Savchenko, O.; Luetkens, J.A.; Attenberger, U. Pieper Simplified intravoxel incoherent motion DWI for differentiating malignant from benign breast lesions. Eur. Radiol. Exp. 2022, 6, 48. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, M.; Min, Z.; Lu, J.; Lei, X.; Zhang, X. Meta-analysis of diffusion-weighted MRI in the detection of breast cancer. Acta Radiol. 2016, 57, 651–660. [Google Scholar] [CrossRef]
- Ma, D.; Lu, F.; Zou, X.; Zhang, H.; Li, Y.; Zhang, L.; Chen, L.; Qin, D.; Wang, B. Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions. Magn. Reson. Imaging 2017, 36, 175–179. [Google Scholar] [CrossRef]
- Dijkstra, H.; Dorrius, M.D.; Wielema, M.; Pijnappel, R.M.; Oudkerk, M.; Sijens, P.E. Quantitative DWI implemented after DCE-MRI yields increased specificity for BI-RADS 3 and 4 breast lesions. J. Magn. Reson. Imaging 2016, 44, 1642–1649. [Google Scholar] [CrossRef]
- Li, K.; Machireddy, A.; Tudorica, A.; Moloney, B.; Oh, K.Y.; Jafarian, N.; Partridge, S.C.; Li, X.; Huang, W. Discrimination of malignant and benign breast lesions using quantitative multiparametric MRI: A preliminary study. Tomography 2020, 6, 148–159. [Google Scholar] [CrossRef]
- Le Bihan, D.; Iima, M.; Federau, C.; Sigmund, E.E. Intravoxel Incoherent Motion (IVIM) MRI: Principles and Applications. CRC Press. 2018, 36, 175–179. [Google Scholar]
- Ma, D.; Lu, F.; Zou, X.; Zhang, H.; Li, Y.; Zhang, L.; Chen, L.; Qin, D.; Wang, B. Intravoxel incoherent motion diffusion-weighted imaging for quantitative differentiation of breast tumors: A meta-analysis. Front. Oncol. 2020, 10, 585486. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Chan, Q.; Liu, Z.; Zhang, J.; He, H.; Zhang, S.; Liang, C. Intravoxel incoherent motion MR imaging for breast lesions: Comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. Eur. Radiol. 2016, 26, 3888–3898. [Google Scholar] [CrossRef]
- Zhao, M.; Fu, K.; Zhang, L.; Guo, W.; Wu, Q.; Bai, X.; Li, Z.; Guo, Q.; Tian, J. Intravoxel incoherent motion MRI for breast cancer: Comparison with benign lesions and evaluation of heterogeneity in different tumor regions with prognostic factors and molecular classification. Oncol. Lett. 2018, 16, 5100–5112. [Google Scholar] [PubMed]
- Cho, G.Y.; Moy, L.; Kim, S.G.; Baete, S.H.; Moccaldi, M.; Babb, J.S.; Sodickson, D.K.; Sigmund, E.E. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: Comparison with malignant status, histological subtype, and molecular prognostic factors. Eur. Radiol. 2016, 26, 2547–2558. [Google Scholar] [CrossRef] [PubMed]
- Iima, M.; Yano, K.; Kataoka, M.; Umehana, M.; Murata, K.; Kanao, S.; Togashi, K.; Le Bihan, D. Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: Differentiation of malignant and benign breast lesions. Investig. Radiol. 2015, 50, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liang, C.; Liu, Z.; Zhang, S.; Huang, B. Intravoxel incoherent motion in evaluation of breast lesions: Comparison with conventional DWI. Eur. J. Radiol. 2013, 82, e782–e789. [Google Scholar] [CrossRef]
- Silvera, S.; Oppenheim, C.; Touzé, E.; Ducreux, D.; Page, P.; Domigo, V.; Mas, J.-L.; Roux, F.-X.; Frédy, D.; Meder, J.-F. Spontaneous intracerebral hematoma on diffusion-weighted images: Influence of T2-shine-through and T2-blackout. Am. J. Neuroradiol. 2007, 28, 447–452. [Google Scholar]
- Goebell, E.; Fiehler, J.; Martens, T.; Hagel, C.; Forkert, N.D.; Russjan, A.; Rosenkranz, M.; Buhk, J.H.; Groth, M.; Sedlacik, J. Impact of protein content on proton diffusibility in intracranial cysts. Rofo 2013, 185, 60–65. [Google Scholar] [CrossRef]
- Cho, G.Y.; Moy, L.; Zhang, J.L.; Baete, S.; Lattanzi, R.; Moccaldi, M.; Babb, J.S.; Kim, S.; Sodickson, D.K.; Sigmund, E.E. Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magn. Reson. Med. 2015, 74, 1077–1085. [Google Scholar] [CrossRef]
- Kakite, S.; Dyvorne, H.; Besa, C.; Cooper, N.; Facciuto, M.; Donnerhack, C.; Taouli, B. Hepatocellular carcinoma: Short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 T. J. Magn. Reson. Imaging 2015, 41, 149–156. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.S.; Kim, N.; Kim, E.; Kim, Y.J.; Yun, S.-C.; Kühn, B.; Kim, I.S.; Park, S.H.; Kim, S.Y.; et al. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: Effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 2015, 274, 405–415. [Google Scholar] [CrossRef]
- While, P. Advanced methods for IVIM parameter estimation. In Intravoxel Incoherent Motion (IVIM) MRI: Principles and Applications; Le Bihan, D., Iima, M., Federau, C., Sigmund, E.E., Eds.; Pan Stanford Publishing: Singapore, 2019. [Google Scholar]
- Mürtz, P.; Sprinkart, A.M.; Block, W.; Luetkens, J.A.; Attenberger, U.; Pieper, C.C. Combined diffusion and perfusion index maps from simplified IVIM imaging enable visual assessment of breast lesions. Eur. Radiol. Exp. 2022, 6, 30. [Google Scholar]
- Mürtz, P.; Sprinkart, A.M.; Reick, M.; Pieper, C.C.; Schievelkamp, A.H.; König, R.; Schild, H.H.; Willinek, W.A.; Kukuk, G.M. Accurate IVIM model-based liver lesion characterization can be achieved with only three b-value DWI. Eur. Radiol. 2018, 28, 4418–4428. [Google Scholar] [CrossRef] [PubMed]
- Concia, M.; Sprinkart, A.M.; Penner, A.H.; Brossart, P.; Gieseke, J.; Schild, H.H.; Willinek, W.A.; Mürtz, P. Diffusion-weighted magnetic resonance imaging of the pancreas: Diagnostic benefit from an IVIM model-based 3 b-value analysis. Investig. Radiol. 2014, 49, 93–100. [Google Scholar] [CrossRef]
- Imaging Biometrics (nd) IBDiffusion [Software] Elm Grove WI: Imaging Biometrics, L.L.C. Available online: https://www.imagingbiometrics.com (accessed on 22 November 2024).
- Le Bihan, D.; Turner, R.; MacFall, J.R. Effects of intravoxel incoherent motions (IVIM) in steady-state free precession (SSFP) imaging: Application to molecular diffusion imaging. Magn. Reson. Med. 1989, 10, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.; Meyer, H.J.; Wienke, A. Can apparent diffusion coefficient (ADC) distinguish breast cancer from benign breast findings? A meta-analysis based on 13 847 lesions. BMC Cancer 2019, 19, 955. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, B.; Li, H. Identification of the benignity and malignancy of BI-RADS 4 breast lesions based on a combined quantitative model of dynamic contrast-enhanced MRI and Intravoxel Incoherent Motion. Tomography 2022, 8, 2676–2686. [Google Scholar] [CrossRef]
- Yu, T.; Li, L.; Shi, J.; Gong, X.; Cheng, Y.; Wang, W.; Cao, Y.; Cao, M.; Jiang, F.; Wang, L.; et al. Predicting histopathological types and molecular subtype of breast tumors: A comparative study using amide proton transfer-weighted imaging, intravoxel incoherent motion and diffusion kurtosis imaging. Magn. Reson. Imaging 2024, 105, 37–45. [Google Scholar] [CrossRef]
- Chen, F.; Chen, P.; Hamid Muhammed, H.; Zhang, J. Intravoxel incoherent motion diffusion for identification of breast malignant and benign tumors using chemometrics. BioMed Res. Int. 2017, 2017, 3845409. [Google Scholar] [CrossRef]
- Tsvetkova, S.; Doykova, K.; Vasilska, A.; Sapunarova, K.; Doykov, D.; Andonov, V.; Uchikov, P. Differentiation of benign and malignant breast lesions using ADC values and ADC ratio in breast MRI. Diagnostics 2022, 12, 332. [Google Scholar] [CrossRef]
- Song, S.E.; Cho, K.R.; Seo, B.K.; Woo, O.H.; Park, K.H.; Son, Y.H.; Grimm, R. Intravoxel incoherent motion diffusion-weighted MRI of invasive breast cancer: Correlation with prognostic factors and kinetic features acquired with computer-aided diagnosis. J. Magn. Reson. Imaging 2019, 49, 118–130. [Google Scholar] [CrossRef]
- Rashed, D.; Settein, M.E.M.; Batouty, N.M. Contribution of intravoxel incoherent motion MRI to diffusion-weighted MRI in differentiating benign from malignant breast masses. Egypt. J. Radiol. Nucl. Med. 2025, 56, 16. [Google Scholar] [CrossRef]
Imaging Sequence | Value |
---|---|
Axial T1-weighted (T1WI) | Standard axial anatomical imaging |
STIR | Short tau inversion recovery for fat suppression |
DCE-T1WI | Dynamic contrast-enhanced T1-weighted imaging |
Contrast Agent | Gadolinium- DOTA (Dotarem, Guerbet, Roissy CdGCEDEX, France) Dose: 0.1 mmol/kg body weight (intravenous injection) |
DWI (multi-b values) | b-values: 0, 20, 200, 500, 800 s/mm2 |
Thickness/Gap | 3 mm/0.5 mm |
Repetition time (TR)/Echo time (TE) | 9000/60 ms |
Acquisition Matrix | 140 × 140 |
Field of View | 340 × 340 mm |
Total Scan Time | 180 s |
Characteristic | Category | N (%) |
---|---|---|
Cancer type (n = 65) | Invasive ductal carcinoma (IDC) | 46 (70.8) |
Lobular ductal carcinoma (LDC) | 13 (20.0) | |
Ductal carcinoma in situ (DCIS) | 6 (9.2) | |
ER status (n = 61) | Positive | 50 (82) |
Negative | 11 (18) | |
PR status (n = 60) | Positive | 41 (68.3) |
Negative | 19 (31.7) | |
HER2 status (n = 59) | Positive | 17 (28.8) |
Negative | 42 (71.2) | |
Tumor grade (n = 57) | Grade 1 | 4 (7) |
Grade 2 | 28 (49.1) | |
Grade 3 | 25 (43.9) |
Parameter | Malignant (Mean ± SD) | Benign (Mean ± SD) | p-Value |
---|---|---|---|
ADC_map | 1130.4 ± 326.5 | 2130.0 ± 4711.4 | 0.004 |
D* | 1443.6 ± 707.8 | 1711.3 ± 686.8 | 0.016 |
D | 972.8 ± 387.0 | 1227.0 ± 698.1 | 0.009 |
F | 148.7 ± 104.8 | 117.8 ± 78.4 | 0.202 |
Parameter | AUC | Model Quality | Std. Error | p-Value | 95% CI | Cutoff | Units | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
ADC_map | 0.671 | 0.55 | 0.060 | 0.004 | 0.55–0.78 | 540.3 | 1 × 10−6 mm2/s | 100% | 11.4% | 71.3% |
D* | 0.644 | 0.54 | 0.059 | 0.015 | 0.52–0.75 | 536.8 | 1 × 10−6 mm2/s | 98.6% | 5.7% | 68.5% |
F | 0.576 | 0.31 | 0.058 | 0.186 | 0.46–0.68 | 38.7 | 1 × 10−3 | 90.4% | 20.0% | 68.5% |
D | 0.657 | 0.53 | 0.060 | 0.009 | 0.53–0.77 | 564.8 | 1 × 10−6 mm2/s | 91.8% | 14.3% | 66.7% |
Combined model (D, D*, f) | 0.725 | - | 0.049 | <0.001 | 0.628–0.822 | 0.691 | - | 67.1% | 74.3% | 70.4% |
Variable | B (SE) | Wald | p-Value | Exp(B) |
---|---|---|---|---|
D* | −0.001 (0.000) | 6.338 | 0.012 | 0.999 |
f | 0.009 (0.004) | 4.912 | 0.027 | 1.009 |
D | 0.000 (0.000) | 0.482 | 0.488 | 1.000 |
Constant | 1.721 (0.700) | 6.049 | 0.014 | 5.588 |
Variable | ADC_Map p-Value | ADC_Map r | D* p-Value | D* r | F p-Value | F r | D p-Value | D r |
---|---|---|---|---|---|---|---|---|
ER | 0.61 | 0.06 | 0.77 | 0.03 | 0.56 | −0.07 | 0.31 | 0.13 |
PR | 0.89 | 0.01 | 0.79 | −0.03 | 0.65 | −0.05 | 0.58 | 0.07 |
HER2/Neu | 0.22 | −0.16 | 0.20 | −0.16 | 0.68 | 0.05 | 0.13 | −0.19 |
Ki-67 | 0.40 | −0.12 | 0.21 | −0.17 | 0.30 | −0.14 | 0.41 | 0.11 |
Cancer type | 0.94 | 0.10 | 0.37 | 0.03 | 0.82 | −0.09 | 0.71 | 0.12 |
Luminal subtype | 0.76 | 0.10 | 0.74 | 0.03 | 0.595 | −0.09 | 0.77 | 0.12 |
Histologic grade | 0.04 * | 0.21 | 0.04 * | 0.19 | 0.19 | 0.03 | 0.17 | 0.22 |
Parameter | Category | ADC_Map | D* | D (Mean ± SD) | F (Mean ± SD) |
---|---|---|---|---|---|
ER status | Positive | 1141.43 ± 345.33 | 1407.57 ± 488.75 | 981.14 ± 400.38 | 144.22 ± 82.76 |
ER status | Negative | 1119.44 ± 240.02 | 1372.22 ± 319.56 | 1016.19 ± 218.44 | 115.53 ± 51.62 |
PR status | Positive | 1171.19 ± 363.35 | 1406.81 ± 399.41 | 1026.89 ± 420.07 | 139.24 ± 78.82 |
PR status | Negative | 1074.68 ± 232.69 | 1387.72 ± 555.40 | 919.82 ± 242.25 | 135.98 ± 77.77 |
Cancer type | IDC | 1110.19 ± 238.67 | 1329.42 ± 336.52 | 973.82 ± 279.96 | 133.10 ± 70.38 |
Cancer type | ILC | 1233.99 ± 541.90 | 1658.78 ± 714.04 | 1043.02 ± 610.14 | 156.28 ± 102.46 |
HER2 status | Positive | 1160.53 ± 233.21 | 1431.79 ± 298.16 | 1016.43 ± 204.58 | 137.03 ± 70.17 |
HER2 status | Negative | 1123.49 ± 367.20 | 1382.33 ± 526.29 | 973.21 ± 434.83 | 138.65 ± 82.59 |
Ki-67 level | Low | 1180.63 ± 422.65 | 1499.17 ± 613.73 | 1014.34 ± 506.62 | 150.99 ± 96.30 |
Ki-67 level | High | 1103.79 ± 226.79 | 1325.62 ± 276.37 | 969.38 ± 222.23 | 128.38 ± 60.22 |
Luminal | Luminal A | 1162.90 ± 389.15 | 1384.95 ± 414.09 | 1022.43 ± 458.24 | 139.37 ± 83.42 |
subtype | Luminal B | 1098.51 ± 246.07 | 1452.80 ± 633.19 | 898.55 ± 246.48 | 153.91 ± 84.56 |
HER2-enriched | 1144.39 ± 243.81 | 1438.25 ± 268.08 | 1032.58 ± 227.53 | 124.35 ± 47.38 | |
Tumor grade | Grade 1 | 811.50 ± 106.21 | 921.15 ± 58.19 | 651.30 ± 274.50 | 105.26 ± 81.24 |
Tumor grade | Grade 2 | 1183.00 ± 385.39 | 1457.80 ± 558.98 | 1038.94 ± 462.44 | 136.89 ± 82.30 |
Tumor grade | Grade 3 | 1119.80 ± 239.99 | 1386.52 ± 305.96 | 968.57 ± 221.02 | 142.83 ± 75.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abujamea, A.H.; Salem, S.A.; Ibrahim, H.S.; ElRefaei, M.A.; Aloufi, A.S.; Alotabibi, A.; Albeshan, S.M.; Eliraqi, F. Evaluating Simplified IVIM Diffusion Imaging for Breast Cancer Diagnosis and Pathological Correlation. Diagnostics 2025, 15, 2033. https://doi.org/10.3390/diagnostics15162033
Abujamea AH, Salem SA, Ibrahim HS, ElRefaei MA, Aloufi AS, Alotabibi A, Albeshan SM, Eliraqi F. Evaluating Simplified IVIM Diffusion Imaging for Breast Cancer Diagnosis and Pathological Correlation. Diagnostics. 2025; 15(16):2033. https://doi.org/10.3390/diagnostics15162033
Chicago/Turabian StyleAbujamea, Abdullah Hussain, Salma Abdulrahman Salem, Hend Samir Ibrahim, Manal Ahmed ElRefaei, Areej Saud Aloufi, Abdulmajeed Alotabibi, Salman Mohammed Albeshan, and Fatma Eliraqi. 2025. "Evaluating Simplified IVIM Diffusion Imaging for Breast Cancer Diagnosis and Pathological Correlation" Diagnostics 15, no. 16: 2033. https://doi.org/10.3390/diagnostics15162033
APA StyleAbujamea, A. H., Salem, S. A., Ibrahim, H. S., ElRefaei, M. A., Aloufi, A. S., Alotabibi, A., Albeshan, S. M., & Eliraqi, F. (2025). Evaluating Simplified IVIM Diffusion Imaging for Breast Cancer Diagnosis and Pathological Correlation. Diagnostics, 15(16), 2033. https://doi.org/10.3390/diagnostics15162033