FIB-4, APRI, and ALRI as Predictors of COVID-19 Outcomes: Insights from a Large-Scale Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participant
2.2. Non-Invasive Assessment of Liver Function
2.3. Outcome
2.4. Another Covariate
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, L.-L.; Wang, Y.-M.; Wu, Z.-Q.; Xiang, Z.-C.; Guo, L.; Xu, T.; Jiang, Y.-Z.; Xiong, Y.; Li, Y.-J.; Li, X.-W.; et al. Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study. Chin. Med. J. 2020, 133, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. China Medical Treatment Expert Group for COVID-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943, Erratum in JAMA Intern. Med. 2020, 180, 1031. [Google Scholar] [CrossRef] [PubMed]
- Xiang, F.; Sun, J.; Chen, P.-H.; Han, P.; Zheng, H.; Cai, S.; Kirk, G.D. Early Elevation of Fibrosis-4 Liver Fibrosis Score Is Associated with Adverse Outcomes Among Patients with Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 73, e594–e601. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Mathioudakis, A.G.; Nikitara, K.; Stamatelopoulos, K.; Georgiopoulos, G.; Phalkey, R.; Leonardi-Bee, J.; Fernandez, E.; Carnicer-Pont, D.; Vestbo, J.; et al. Prognostic factors for mortality, intensive care unit and hospital admission due to SARS-CoV-2: A systematic review and meta-analysis of cohort studies in Europe. Eur. Respir. Rev. 2022, 31, 220098. [Google Scholar] [CrossRef]
- Kim, D.; Adeniji, N.; Latt, N.; Kumar, S.; Bloom, P.P.; Aby, E.S.; Perumalswami, P.; Roytman, M.; Li, M.; Vogel, A.S.; et al. Predictors of Outcomes of COVID-19 in Patients with Chronic Liver Disease: US Multi-center Study. Clin. Gastroenterol. Hepatol. 2020, 19, 1469–1479.e19. [Google Scholar] [CrossRef]
- Bucci, T.; Galardo, G.; Gandini, O.; Vicario, T.; Paganelli, C.; Cerretti, S.; Bucci, C.; Pugliese, F.; Pastori, D. Fibrosis-4 (FIB-4) Index and mortality in COVID-19 patients admitted to the emergency department. Intern. Emerg. Med. 2022, 17, 1777–1784. [Google Scholar] [CrossRef]
- Li, Y.; Regan, J.; Fajnzylber, J.; Coxen, K.; Corry, H.; Wong, C.; Rosenthal, A.; Atyeo, C.; Fischinger, S.; Gillespie, E.; et al. Liver Fibrosis Index FIB-4 Is Associated with Mortality in COVID-19. Hepatol. Commun. 2021, 5, 434–445. [Google Scholar] [CrossRef]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J.; Nash Clinical Research Network. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef]
- Ouzan, D.; Penaranda, G.; Jlaiel, M.; Joly, H.; Corneille, J. Using the FIB-4, automatically calculated, followed by the ELF test in second line to screen primary care patients for liver disease. Sci. Rep. 2024, 14, 12198. [Google Scholar] [CrossRef]
- Shaheen, A.A.; Riazi, K.; Medellin, A.; Bhayana, D.; Kaplan, G.G.; Jiang, J.; Park, R.; Schaufert, W.; Burak, K.W.; Sargious, M.; et al. Risk stratification of patients with nonalcoholic fatty liver disease using a case identification pathway in primary care: A cross-sectional study. CMAJ Open 2020, 8, E370–E376. [Google Scholar] [CrossRef] [PubMed]
- Sutandyo, N.; Kurniawati, S.A.; Jayusman, A.M.; Syafiyah, A.H.; Pranata, R.; Hanafi, A.R. Repurposing FIB-4 index as a predictor of mortality in patients with hematological malignancies and COVID-19. PLoS ONE 2021, 16, e0257775. [Google Scholar] [CrossRef] [PubMed]
- Copur, B.; Surme, S.; Tuncer, G.; Bayramlar, O.F. The Role of APRI, FIB-4, and SAD-60 Scores as Predictors of Mortality in COVID-19 Patients. Infect. Dis. Clin. Microbiol. 2023, 5, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Sezen, A.; Yaşar, K.K. Predictive role of NLR, SII, and PLR in COVID-19 patient mortality and disease severity. Arch. Curr. Med. Res. 2022, 3, 43–50. [Google Scholar] [CrossRef]
- Danila, A.I.; Cioca, F.; Gadde, S.T.; Daruvuri, S.P.; Timar, R.; Hogea, E. Prognostic Utility of dNLR, ALRI, APRI, and SII in COVID-19 Patients with Diabetes: A Cross-Sectional Study. Diagnostics 2024, 14, 1685. [Google Scholar] [CrossRef]
- Parajuli, P.; Sabo, R.; Alsaadawi, R.; Robinson, A.; French, E.; Sterling, R.K. Fibrosis-4 (FIB-4) Index as a Predictor for Mechanical Ventilation and 30-day Mortality Across COVID-19 Variants. J. Clin. Transl. Sci. 2023, 7, 1–25. [Google Scholar] [CrossRef]
- Ruggeri, P.; Esquinas, A. Fibrosis-4 (FIB-4) index and mortality in COVID-19 patients admitted to the emergency department: A new interesting predictive index for patients with COVID-19 disease? Intern. Emerg. Med. 2022, 17, 2451–2452. [Google Scholar] [CrossRef]
- Elfeki, M.A.; Robles, J.; Akhtar, Z.; Ullah, F.; Ganapathiraju, I.; Tran, C.; Inman, C.; Collin, S.M.; Rosa, R. Impact of Fibrosis-4 Index Prior to COVID-19 on Outcomes in Patients at Risk of Non-alcoholic Fatty Liver Disease. Dig. Dis. Sci. 2021, 67, 3333–3339. [Google Scholar] [CrossRef]
- Calapod, O.P.; Marin, A.M.; Onisai, M.; Tribus, L.C.; Pop, C.S.; Fierbinteanu-Braticevici, C. The Impact of Increased Fib-4 Score in Patients with Type II Diabetes Mellitus on COVID-19 Disease Prognosis. Medicina 2021, 57, 434. [Google Scholar] [CrossRef]
- Zahedi, M.; Yousefi, M.; Abounoori, M.; Malekan, M.; Tajik, F.; Heydari, K.; Mortazavi, P.; Ghahramani, S.; Ghazaeian, M.; Sheydaee, F.; et al. The Interrelationship between Liver Function Test and the Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2021, 46, 237–255. [Google Scholar] [CrossRef]
- Medetalibeyoglu, A.; Catma, Y.; Senkal, N.; Ormeci, A.; Cavus, B.; Kose, M.; Bayramlar, O.F.; Yildiz, G.; Akyuz, F.; Kaymakoglu, S.; et al. The effect of liver test abnormalities on the prognosis of COVID-19. Ann. Hepatol. 2020, 19, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, H.; Deng, G.; Zheng, X.; Huang, Y.; Chen, J.; Meng, Z.; Gao, Y.; Qian, Z.; Liu, F.; et al. Association of AST/ALT ratio with 90-day outcomes in patients with acute exacerbation of chronic liver disease: A prospective multicenter cohort study in China. Front. Med. 2024, 11, 1307901. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Hosri, J.; Bteich, Y.; Dib, A.; Rached, A.A. COVID-19 and Liver Dysfunction. Cureus 2022, 14, e21302. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.M.; Dumitrescu, F.; Mită, A.; Săbiescu, D.M.; Alexandru, D.O.; Gheorghe, C.E.; Filip, M.M.; Ionescu-Ciocâlteu, A.; Maria, D.T.; Kamal, D.; et al. Liver Function Tests and FIB-4 Score as Predictors of Severity in COVID-19 Patients from the South-West of Romania. Life 2022, 12, 934. [Google Scholar] [CrossRef]
- Madian, A.; Eliwa, A.; Abdalla, H.; Aly, H.A.A. Aspartate transferase-to-platelet ratio index-plus: A new simplified model for predicting the risk of mortality among patients with COVID-19. World J. Gastroenterol. 2022, 28, 1671–1680. [Google Scholar] [CrossRef]
- Grigoras, M.L.; Citu, I.M.; Citu, C.; Chiriac, V.D.; Gorun, F.; Levai, M.C.; Manolescu, D.; Rosca, O.; Bratosin, F.; Gurumurthy, S.; et al. Evaluation of FIB-4, NFS, APRI and Liver Function Tests as Predictors for SARS-CoV-2 Infection in the Elderly Population: A Matched Case-Control Analysis. J. Clin. Med. 2022, 11, 5149. [Google Scholar] [CrossRef]
- Takaya, H.; Ueyama, S.; Osaki, Y.; Kaji, K.; Kawaratani, H.; Saito, K.; Aizawa, S.; Namisaki, T.; Morioka, C.; Yoshida, M.; et al. Aspartate aminotransferase to platelet ratio index has utility as a biomarker of COVID-19 severity in patients with nonalcoholic fatty liver disease. Hepatol. Res. 2023, 53, 1047–1058. [Google Scholar] [CrossRef]
- Reyes-Ruiz, J.M.; García-Hernández, O.; Martínez-Mier, G.; Osuna-Ramos, J.F.; De Jesús-González, L.A.; Farfan-Morales, C.N.; Palacios-Rápalo, S.N.; Cordero-Rivera, C.D.; Ordoñez-Rodríguez, T.; Ángel, R.M.D. The Role of Aspartate Aminotransferase-to-Lymphocyte Ratio Index (ALRI) in Predicting Mortality in SARS-CoV-2 Infection. Microorganisms 2023, 11, 2894. [Google Scholar] [CrossRef]
- Crisan, D.; Avram, L.; Grapa, C.; Dragan, A.; Radulescu, D.; Crisan, S.; Grosu, A.; Militaru, V.; Buzdugan, E.; Stoicescu, L.; et al. Liver Injury and Elevated FIB-4 Define a High-Risk Group in Patients with COVID-19. J. Clin. Med. 2021, 11, 153. [Google Scholar] [CrossRef]
- Liu, Y.; Du, X.; Chen, J.; Jin, Y.; Peng, L.; Wang, H.H.; Luo, M.; Chen, L.; Zhao, Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J. Infect. 2020, 81, e6–e12. [Google Scholar] [CrossRef]
- Fu, J.; Kong, J.; Wang, W.; Wu, M.; Yao, L.; Wang, Z.; Jin, J.; Wu, D.; Yu, X. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou China. Thromb. Res. 2020, 192, 3–8. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Zinellu, A. Systemic inflammation index, disease severity, and mortality in patients with COVID-19: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1212998. [Google Scholar] [CrossRef]
Variable | Total (n = 2232) | Survivor (n = 2018) | Deceased (n = 214) | p-Value | Non-Severe (n = 1639) | Severe (n = 593) | p-Value | |
---|---|---|---|---|---|---|---|---|
Age | 58.94 ± 16.75 | 57.65 ± 16.50 | 71.15 ± 14.05 | <0.001 | 56.19 ± 16.18 | 66.53 ± 15.97 | <0.001 | |
Sex, n (%) | Female | 1111 (49.8) | 1021 (50.6) | 90 (42.1) | 0.18 | 843 (51.4) | 268 (45.2) | 0.009 |
Male | 1121 (50.2) | 997 (49.4) | 124 (57.9) | 796 (48.6) | 325 (54.8) | |||
BMI, kg/m2 | 27.76 ± 4.60 | 27.85 ± 4.58 | 26.89 ± 4.79 | 0.006 | 27.78 ± 4.44 | 27.71 ± 5.05 | 0.780 | |
Comorbidity (%) | 1183 (53) | 1032 (51.1) | 151 (70.6) | <0.001 | 794 (48.4) | 389 (65.6) | <0.001 | |
Liver disease | 34 (1.5) | 32 (1.6) | 2 (0.9) | 0.460 | 25 (1.5) | 9 (1.5) | 0.990 |
Variable | Total (n = 2232) | Survivor (n = 2018) | Deceased (n = 214) | p-Value | Non-Severe (n = 1639) | Severe (n = 593) | p-Value | |
---|---|---|---|---|---|---|---|---|
WBCs (×109/L) | 3.69 ± 2.44 | 3.49 ± 2.11 | 5.61 ± 3.96 | <0.001 | 3.29 ± 1.74 | 4.80 ± 3.50 | <0.001 | |
RBCs (×106/µL) | 4.63 ± 0.69 | 4.66 ± 0.64 | 4.48 ± 0.7 | <0.001 | 4.7 ± 0.6 | 4.5 ± 0.74 | <0.001 | |
Hb (g/dL) | 13.16 ± 1.9 | 13.2 ± 1.87 | 12.80 ± 2.09 | 0.007 | 13.29 ± 1.81 | 12.75 ± 2.1 | <0.001 | |
HCT (%) | 39.80 ± 4.83 | 39.86 ± 4.75 | 39.32 ± 5.52 | 0.123 | 40.03 ± 4.51 | 39.19 ± 5.58 | <0.001 | |
ALT (IU/L) | 36.05 ± 46.39 | 34.69 ± 37.32 | 48.86 ± 95.72 | <0.001 | 34.67 ± 30.84 | 39.87 ± 73.87 | 0.873 | |
AST (IU/L) | 39.61 ± 44.12 | 37.35 ± 37.1 | 60.94 ± 82.76 | <0.001 | 35.72 ± 25.1 | 50.35 ± 73.72 | <0.001 | |
ALP (IU/L) | 183.34 ± 100.49 | 180.22 ± 97.44 | 212.51 ± 121.94 | <0.001 | 178.58 ± 99.21 | 196.68 ± 102.90 | <0.001 | |
CRP (%) | Positive | 1920 (86) | 1735 (90.1) | 185 (89.4) | 0.746 | 1406 (89.6) | 514 (91.3) | 0.237 |
Negative | 213 (9.5) | 191 (9.9) | 22 (10.6) | 164 (10.4) | 49 (8.7) | |||
FIB-4 | 2.38 ± 2.33 | 2.2 ± 1.91 | 4.08 ± 4.36 | <0.001 | 2.02 ± 1.48 | 3.36 ± 3.61 | <0.001 | |
APRI | 0.58 ± 1.08 | 0.54 ± 0.77 | 1.01 ± 2.51 | <0.001 | 0.50 ± 0.44 | 0.81 ± 1.94 | <0.001 | |
NLR | 4.39 ± 4.63 | 4.09 ± 4.25 | 7.19 ± 6.71 | <0.001 | 3.81 ± 3.39 | 5.97 ± 6.75 | <0.001 | |
ALRI | 69.94 ± 89 | 66.31 ± 81.95 | 104.08 ± 134.29 | <0.001 | 64.78 ± 81.18 | 84.14 ± 106.42 | <0.001 | |
SII | 939.27 ± 1239.76 | 870.7 ± 1095.79 | 1585.97 ± 2065.06 | <0.001 | 811.40 ± 913.90 | 1291.33 ± 1817.90 | <0.001 |
Mortality | Severity | |||||
---|---|---|---|---|---|---|
OR (CI) | p-Value | AUC | OR (CI) | p-Value | AUC | |
FIB-4 | 1.14 (1.07–1.21) | <0.001 | 0.763 | 1.22 (1.15–1.30) | <0.001 | 0.712 |
APRI | 1.28 (1.12–1.46) | <0.001 | 0.761 | 1.78 (1.44–2.21) | <0.001 | 0.708 |
NLR | 1.07 (1.04–1.1) | <0.001 | 0.770 | 1.09 (1.06–1.11) | <0.001 | 0.709 |
ALRI (low-ALRI group as reference) * | 2.44 (1.76–3.38) | <0.001 | 0.768 | 1.73 (1.41–2.14) | <0.001 | 0.702 |
SII (low-SII group as reference) ** | 1.57 (1.13–2.17) | <0.001 | 0.756 | 1.27 (1.04–1.57) | <0.001 | 0.696 |
Mortality | Severity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cut-Off | Sensitivity | Specificity | p-Value | AUC | Cut-Off | Sensitivity | Specificity | p-Value | AUC | |
FIB-4 | 2.19 | 70 | 64 | <0.001 | 0.737 | 1.96 | 65 | 60 | <0.001 | 0.684 |
APRI | 0.47 | 65 | 62 | <0.001 | 0.665 | 0.41 | 60 | 53 | <0.001 | 0.597 |
NLR | 3.65 | 65 | 61 | <0.001 | 0.684 | 3.14 | 61 | 57 | <0.001 | 0.623 |
ALRI | 50.97 | 61 | 57 | <0.001 | 0.619 | 43.54 | 60 | 49 | <0.001 | 0.561 |
SII | 617.61 | 63 | 55 | <0.001 | 0.643 | 547.52 | 60 | 50 | <0.001 | 0.588 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aminzadeh, A.; Azmi-Naei, N.; Teimouri, M.; Rohani-Rasaf, M. FIB-4, APRI, and ALRI as Predictors of COVID-19 Outcomes: Insights from a Large-Scale Study. Diagnostics 2025, 15, 1984. https://doi.org/10.3390/diagnostics15161984
Aminzadeh A, Azmi-Naei N, Teimouri M, Rohani-Rasaf M. FIB-4, APRI, and ALRI as Predictors of COVID-19 Outcomes: Insights from a Large-Scale Study. Diagnostics. 2025; 15(16):1984. https://doi.org/10.3390/diagnostics15161984
Chicago/Turabian StyleAminzadeh, Anita, Nazanin Azmi-Naei, Maryam Teimouri, and Marzieh Rohani-Rasaf. 2025. "FIB-4, APRI, and ALRI as Predictors of COVID-19 Outcomes: Insights from a Large-Scale Study" Diagnostics 15, no. 16: 1984. https://doi.org/10.3390/diagnostics15161984
APA StyleAminzadeh, A., Azmi-Naei, N., Teimouri, M., & Rohani-Rasaf, M. (2025). FIB-4, APRI, and ALRI as Predictors of COVID-19 Outcomes: Insights from a Large-Scale Study. Diagnostics, 15(16), 1984. https://doi.org/10.3390/diagnostics15161984