Therapeutic and Prognostic Relevance of Cancer Stem Cell Populations in Endometrial Cancer: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Defining Cancer Stem Cells in Endometrial Cancer
4. Identification and Characterization of CSCs in EC
- Surface markers:
- CD133 (Prominin-1): Associated with high-grade tumors and a poor prognosis.
- ALDH1 (Aldehyde Dehydrogenase 1): Enzyme involved in detoxification; high activity correlates with stem-like phenotypes.
- CD44, CD117 (c-Kit): Involved in adhesion and signal transduction; implicated in EMT and metastasis.
- Oncogenes and transcription factors:
- SOX2, OCT4, and NANOG: Pluripotency-related genes often upregulated in CSCs.
- Functional assays, pathways.
- Sphere formation assays.
- NF-kB, Wingless-INT (Wnt)/β-catenin, Notch1, and the HedghogPI3K-Akt-mTOR pathway.
- Aldefluor assay for ALDH activity.
- Side population analysis using Hoechst dye exclusion.
4.1. Stemness-Related Surface Markers in Cancers
4.2. Stemness-Related Pathways
4.2.1. (Hh) Pathway
4.2.2. Notch Pathway
4.2.3. PI3K/Akt/mTOR Pathway
4.2.4. Wnt/β-Catenin Pathway
4.2.5. NF-κB in Endometrial Cancer Stem Cells
4.2.6. Epithelial–Mesenchymal Transition (EMT)
4.2.7. Hypoxia and Oxidative Stress
4.2.8. The Tumor Microenvironment (TME)
4.2.9. Autophagy
4.3. Stemness-Related Oncogenes
5. Prognostic Implications of CSCs in EC
- Advanced FIGO stage.
- Deep myometrial invasion.
- Lympho-vascular space invasion.
- Higher recurrence and metastasis rates.
- Poorer overall survival (OS) and disease-free survival (DFS).
Stemness-Related Genes as Prognostic Factors
6. Therapeutic Targeting of CSCs in Endometrial Cancer
- a.
- Signaling pathway inhibition:
- Wnt/β-catenin, Notch, and Hedgehog pathways are critical in maintaining CSC stemness.
- Inhibitors targeting these pathways (e.g., Notch inhibitors) show promise in preclinical models.
- PI3K/AKT/mTOR pathway modulation: Frequently dysregulated in EC; dual inhibition may suppress both CSC and non-CSC populations.
- b.
- Epigenetic therapies:
- Downregulate stemness-related gene expression.
- c.
- Immunotherapeutic strategies targeting stemness surface markers:
- Emerging interest in CAR-T cell therapy targeting CD133+ CSCs.
- Immune checkpoint inhibitors may modulate the tumor microenvironment to reduce CSC survival.
- d.
- Combination therapies:
- CSC-targeted agents combined with standard chemotherapy/radiotherapy show synergy in eliminating tumor bulk and CSCs.
6.1. Targeting of Stemness Pathways
6.2. Targeting of Stemness Genes
7. Limitations and Future Perspectives
- Despite the progress in understanding EC-CSCs, several challenges remain:
- A lack of universally accepted markers for CSC identification.
- Functional heterogeneity among CSC subpopulations.
- Insufficient clinical trials targeting CSCs specifically.
- Difficulty in tracking CSC dynamics in vivo.
- Future directions include the following options:
- The development of liquid biopsy techniques for CSC detection.
- The integration of single-cell RNA sequencing to map CSC subclones.
- Clinical validation of CSC-targeted therapies in combination with conventional modalities.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RT-PCR | Reverse transcription polymerase chain reaction. |
CSC | Cancer stem cell population. |
SOX2 | Sex-determining region Y-box 2. |
NANOG | Nanog homeobox. |
OCT4 | Octamer-binding protein 4. |
EC | Endometrial cancer. |
ECIS | European Cancer Information System. |
IARC | International Agency for Research on Cancer. |
MMMT | Malignant mixed Müllerian tumor. |
ESCs | Embryonic stem cells. |
TME | Tumor microenvironment. |
ALDH 1 | Aldehyde dehydrogenase. |
HA | Hyaluronic acid. |
ABC | ATP-binding cassette. |
PD-1 | Programmed-cell death. |
PROM1 | Prominin 1. |
BMP | Bone morphogenic protein. |
EMT | Epithelial–mesenchymal transition. |
SRARP | Steroid receptor-associated and regulated protein. |
FAK | Focal adhesion kinase. |
DNA | Deoxyribonucleic acid. |
LIFR | Leukemia inhibitory factor receptor. |
PI3K/Akt | Phosphatidylinositol-3-kinase (PI3K)/Akt. |
Hh | Hedgehog. |
mTOR | Mammalian target of rapamycin. |
PTEN | Phosphatase and tensin homolog. |
OS | Overall survival. |
TLRs | Toll-like receptors. |
TNF-α | Tumor necrosis factor alpha. |
TGF | Beta transforming growth factor. |
AMPK- | Activated protein kinase. |
ROS | Reactive oxygen species. |
RNA | Ribonucleic acid. |
ECM | Extracellular cell matrix. |
EMT | Epithelial–mesenchymal transition (EMT). |
SRY- | Box transcription factor 11 (SOX11). |
KCNJ14 | Potassium Inwardly Rectifying Channel Subfamily J Member 14. |
NFE2L2, or NRF2 | Nuclear factor erythroid 2 (NFE2)-related factor 2. |
GGH | γ-glutamyl hydrolase. |
mRNA | Messenger RNA. |
FIGO | International Federation of Gynecology and Obstetrics. |
CGA | The Cancer Genome Atlas. |
Wnt | Wingless. |
NF-κB | Nuclear factor kappa B. |
GLI | Glioma-associated oncogene homolog. |
SMO | Smoothened. |
SHh | Sonic Hedgehog. |
UBE2S | Ubiquitin-conjugating enzyme E2S. |
AMPK | Adenosine monophosphate-activated protein kinase. |
UPF1 | Up-frameshift mutant 1. |
RBP | RNA-binding protein. |
lncRNAs | Long noncoding RNA. |
COPZ1 | Coatomer protein complex Zeta 1. |
EPHB2 | Ephrin receptor B2. |
GSEA | Gene Set Enrichment Analysis. |
BTLA | B and T-lymphocyte attenuator. |
References
- Giannone, G.; Attademo, L.; Scotto, G.; Genta, S.; Ghisoni, E.; Tuninetti, V.; Valabrega, G. Endometrial cancer stem cells: Role, characterization and therapeutic implications. Cancers 2019, 11, 1820. [Google Scholar] [CrossRef]
- Xu, D.; Dong, P.; Xiong, Y.; Chen, R.; Konno, Y.; Ihira, K.; Watari, H. PD-L1 is a tumor suppressor in aggressive endometrial cancer cells and its expression is regulated by miR-216a and lncRNA MEG3. Front. Cell Dev. Biol. 2020, 8, 598205. [Google Scholar] [CrossRef]
- Bostan, I.S.; Mihaila, M.; Roman, V.; Radu, N.; Neagu, M.T.; Bostan, M.; Mehedintu, C. Landscape of Endometrial Cancer: Molecular Mechanisms, Biomarkers, and Target Therapy. Cancers 2024, 16, 2027. [Google Scholar] [CrossRef] [PubMed]
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Frias-Gomez, J.; Benavente, Y.; Ponce, J.; Brunet, J.; Ibáñez, R.; Peremiquel-Trillas, P.; Baixeras, N.; Zanca, A.; Piulats, J.M.; Aytés, Á.; et al. Sensitivity of cervico-vaginal cytology in endometrial carcinoma: A systematic review and meta-analysis. Cancer Cytopathol. 2020, 128, 792–802. [Google Scholar] [CrossRef]
- Epstein, E.; Fischerova, D.; Valentin, L.; Testa, A.C.; Franchi, D.; Sladkevicius, P.; Frühauf, F.; Lindqvist, P.G.; Mascilini, F.; Fruscio, R.; et al. Ultrasound characteristics of endometrial cancer as defined by International Endometrial Tumor Analysis (IETA) consensus nomenclature: Prospective multicenter study. Ultrasound Obstet. Gynecol. 2018, 51, 818–882. [Google Scholar] [CrossRef]
- Madár, I.; Szabó, A.; Vleskó, G.; Hegyi, P.; Ács, N.; Fehérvári, P.; Kói, T.; Kálovics, E.; Szabó, G. Diagnostic Accuracy of Transvaginal Ultrasound and Magnetic Resonance Imaging for the Detection of Myometrial Infiltration in Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 907. [Google Scholar] [CrossRef] [PubMed]
- Bokhman, J.V. Două tipuri patogenetice de carcinom endometrial. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Bruchim, I.; Capasso, I.; Polonsky, A.; Meisel, S.; Salutari, V.; Werner, H.; Fanfani, F. New therapeutic targets for endometrial cancer: A glimpse into the preclinical sphere. Expert Opin. Ther. Targets 2024, 28, 29–43. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, S.F.; Bao, W. Molecular subtypes of endometrial cancer: Implications for adjuvant treatment strategies. Int. J. Gynecol. Obstet. 2024, 164, 436–459. [Google Scholar] [CrossRef]
- Corr, B.; Cosgrove, C.; Spinosa, D.; Guntupalli, S. Endometrial cancer: Molecular classification and future treatments. BMJ Med. 2022, 1, e000152. [Google Scholar] [CrossRef]
- Muthuraman, N.; Thomas, A.; Ram, T.S.; Mohankumar, K.M.; Abraham, P. Is There Any Difference in Stem Cell Population between Type I and Type II Endometrial Cancer? A Pilot Study. J. Mother Child 2025, 29, 10. [Google Scholar] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst. Rev. 2021, 10, 1–19. [Google Scholar] [CrossRef]
- Keyvani, V.; Riahi, E.; Yousefi, M.; Esmaeili, S.A.; Shafabakhsh, R.; Moradi Hasan-Abad, A.; Mahjoubin-Tehran, M.; Hamblin, M.R.; Mollazadeh, S.; Mirzaei, H. Gynecologic cancer, cancer stem cells, and possible targeted therapies. Front. Pharmacol. 2022, 13, 823572. [Google Scholar] [CrossRef] [PubMed]
- Spandidos, D.A.; Dokianakis, D.N.; Kallergi, G.; Aggelakis, E. Molecular Basis of Gynecological Cancer. Ann. NY Acad. Sci. 2000, 900, 56–64. [Google Scholar] [CrossRef]
- Xue, A.G.; Chan, M.; Gujral, T.S. Pan-cancer analysis of the developmental pathways reveals non-canonical wnt signaling as a driver of mesenchymal-type tumors. Transl. Res. 2020, 224, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mitranovici, M.I.; Chiorean, D.M.; Moraru, L.; Moraru, R.; Caravia, L.; Tiron, A.T.; Cotoi, O.S. Shared Pathogenic and Therapeutic Characteristics of Endometriosis, Adenomyosis, and Endometrial Cancer: A Comprehensive Literature Review. Pharmaceuticals 2024, 17, 311. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Zhang, X. Stemness-related markers in cancer. Cancer Transl. Med. 2017, 3, 87. [Google Scholar] [CrossRef]
- Ciccone, V.; Morbidelli, L.; Ziche, M.; Donnini, S. How to conjugate the stemness marker ALDH1A1 with tumor angiogenesis, progression, and drug resistance. Cancer Drug Resist. 2020, 3, 26. [Google Scholar] [CrossRef]
- Dong, P.; Konno, Y.; Watari, H.; Hosaka, M.; Noguchi, M.; Sakuragi, N. The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J. Transl. Med. 2014, 12, 231. [Google Scholar] [CrossRef]
- Xu, H.; Zou, R.; Liu, J.; Zhu, L. A Risk Signature with Nine Stemness Index-Associated Genes for Predicting Survival of Patients with Uterine Corpus Endometrial Carcinoma. J. Oncol. 2021, 2021, 6653247. [Google Scholar] [CrossRef]
- Muñoz-Galván, S.; Felipe-Abrio, B.; García-Carrasco, M.; Domínguez-Piñol, J.; Suarez-Martinez, E.; Verdugo-Sivianes, E.M.; Carnero, A. New markers for human ovarian cancer that link platinum resistance to the cancer stem cell phenotype and define new therapeutic combinations and diagnostic tools. J. Exp. Clin. Cancer Res. 2019, 38, 1–14. [Google Scholar] [CrossRef]
- Zhao, T.; Sun, R.; Ma, X.; Wei, L.; Hou, Y.; Song, K.; Jiang, J. Overexpression of LPCAT1 enhances endometrial cancer stemness and metastasis by changing lipid components and activating TGF-β/Smad2/3 signaling pathway: Tumor-promoting effect of LPCAT1 in endometrial cancer. Acta Biochim. Biophys. Sin. 2022, 54, 904. [Google Scholar] [CrossRef]
- Mori, Y.; Yamawaki, K.; Ishiguro, T.; Yoshihara, K.; Ueda, H.; Sato, A.; Enomoto, T. ALDH-dependent glycolytic activation mediates stemness and paclitaxel resistance in patient-derived spheroid models of uterine endometrial cancer. Stem Cell Rep. 2019, 13, 730–746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, F.; Tong, Y.; Shi, D.; Zhang, J. CHD4 R975H mutant activates tumorigenic pathways and promotes stemness and M2-like macrophage polarization in endometrial cancer. Sci. Rep. 2024, 14, 18617. [Google Scholar] [CrossRef]
- Song, Y.; Pan, S.; Li, K.; Chen, X.; Wang, Z.P.; Zhu, X. Insight into the role of multiple signaling pathways in regulating cancer stem cells of gynecologic cancers. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2022; Volume 85, pp. 219–233. [Google Scholar]
- Banz-Jansen, C.; Helweg, L.P.; Kaltschmidt, B. Endometrial cancer stem cells: Where do we stand and where should we go? Int. J. Mol. Sci. 2022, 23, 3412. [Google Scholar] [CrossRef]
- Lu, X.; Ying, Y.; Zhang, W.; Li, R.; Wang, W. Identification of stemness subtypes and features to improve endometrial cancer treatment using machine learning. Artif. Cells Nanomed. Biotechnol. 2023, 51, 57–73. [Google Scholar] [CrossRef]
- Robinson, M.; Gilbert, S.F.; Waters, J.A.; Lujano-Olazaba, O.; Lara, J.; Alexander, L.J.; House, C.D. Characterization of SOX2, OCT4 and NANOG in ovarian cancer tumor-initiating cells. Cancers 2021, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Son, B.; Lee, W.; Kim, H.; Shin, H.; Park, H.H. Targeted therapy of cancer stem cells: Inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis. 2024, 15, 696. [Google Scholar] [CrossRef] [PubMed]
- Barzegar Behrooz, A.; Syahir, A.; Ahmad, S. CD133: Beyond a cancer stem cell biomarker. J Drug Target. 2019, 27, 257–269. [Google Scholar] [CrossRef]
- O’Flaherty, J.D.; Barr, M.; Fennell, D.; Richard, D.; Reynolds, J.; O’Leary, J.; O’Byrne, K. The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy. J. Thorac. Oncol. 2012, 7, 1880–1890. [Google Scholar] [CrossRef]
- Serambeque, B.; Mestre, C.; Correia-Barros, G.; Teixo, R.; Marto, C.M.; Gonçalves, A.C.; Laranjo, M. Influence of aldehyde dehydrogenase inhibition on stemness of endometrial cancer stem cells. Cancers 2024, 16, 2031. [Google Scholar] [CrossRef]
- Lavudi, K.; Nuguri, S.M.; Pandey, P.; Kokkanti, R.R.; Wang, Q.E. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci. 2024, 356, 123033. [Google Scholar] [CrossRef]
- Kim, M.; Turnquist, H.; Jackson, J.; Sgagias, M.; Yan, Y.; Gong, M.; Dean, M.; Sharp, J.G.; Cowan, K. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res. 2002, 8, 22–28. [Google Scholar] [PubMed]
- Doyle, L.; Ross, D.D. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003, 22, 7340–7358. [Google Scholar] [CrossRef]
- Tomita, H.; Tanaka, K.; Tanaka, T.; Hara, A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 2016, 7, 11018–11032. [Google Scholar] [CrossRef] [PubMed]
- Ginestier, C.; Hur, M.H.; Charafe-Jauffret, E.; Monville, F.; Dutcher, J.; Brown, M.; Jacquemier, J.; Viens, P.; Kleer, C.G.; Liu, S.; et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1, 555–567. [Google Scholar] [CrossRef]
- Rahadiani, N.; Ikeda, J.; Mamat, S.; Matsuzaki, S.; Ueda, Y.; Umehara, R.; Tian, T.; Wang, Y.; Enomoto, T.; Kimura, T.; et al. Expression of aldehyde dehydrogenase 1 (ALDH1) in endometrioid adenocarcinoma and its clinical implications. Cancer Sci. 2011, 102, 903–908. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, Y.; Qian, B.; Cao, X.; Xu, C.; Guo, K.; Lv, C. A systematic pan-cancer analysis identifies LDHA as a novel predictor for immunological, prognostic, and immunotherapy resistance. Aging 2024, 16, 8000. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Islam, S.R.; Kwak, K.S.; Rahman, M.S.; Cho, S.G. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: A multiomics analysis. Cancer Gene Ther. 2020, 27, 147–167. [Google Scholar] [CrossRef]
- Fukuda, T.; Fukuda, R.; Koinuma, D.; Moustakas, A.; Miyazono, K.; Heldin, C.H. BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells. Cell. Signal. 2021, 87, 110146. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.; Zhou, J.; Wang, J.; He, X.; Wang, J. Role of steroid receptor-associated and regulated protein in tumor progression and progesterone receptor signaling in endometrial cancer. Chin. Med. J. 2023, 136, 2576–2586. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Que, Y.; Hong, Y.; Zhang, L.; Zhang, X.; Zhang, Y. A pan-cancer analysis of IRAK1 expression and their association with immunotherapy response. Front. Mol. Biosci. 2022, 9, 904959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, J.; Jiao, S.; Han, G.; Zhu, J.; Liu, T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front. Cell Dev. Biol. 2022, 10, 1040311. [Google Scholar] [CrossRef]
- Li, K.; Wang, H.; Jiang, B.; Jin, X. TRIM28 in cancer and cancer therapy. Front. Genet. 2024, 15, 1431564. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Viswanadhapalli, S.; Pratap, U.P.; Rahul, G.; Yang, X.; Pitta Venkata, P.; Vadlamudi, R.K. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis. Oncol. 2024, 8, 118. [Google Scholar] [CrossRef]
- Cao, M.; Liu, Z.; You, D.; Pan, Y.; Zhang, Q. TMT-based quantitative proteomic analysis of spheroid cells of endometrial cancer possessing cancer stem cell properties. Stem Cell Res. Ther. 2023, 14, 119. [Google Scholar] [CrossRef]
- Mitranovici, M.I.; Costachescu, D.; Voidazan, S.; Munteanu, M.; Buicu, C.F.; Oală, I.E.; Micu, R. Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 12749. [Google Scholar] [CrossRef]
- Pandita, P.; Wang, X.; Jones, D.E.; Collins, K.; Hawkins, S.M. Unique molecular features in high-risk histology endometrial cancers. Cancers 2019, 11, 1665. [Google Scholar] [CrossRef]
- Chahal, K.K.; Parle, M.; Abagyan, R. Hedgehog pathway and smoothened inhibitors in cancer therapies. Anti-Cancer Drugs 2018, 29, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Sánchez, A.; Suárez-Martínez, E.; Sánchez-Díaz, L.; Carnero, A. Therapeutic targeting of signaling pathways related to cancer stemness. Front. Oncol. 2020, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Le, H.; Kleinerman, R.; Lerman, O.Z.; Brown, D.; Galiano, R.; Gurtner, G.C.; Warren, S.M.; Levine, J.P.; Saadeh, P.B. Hedgehog signaling is essential for normal wound healing. Wound Repair Regen. 2008, 16, 768–773. [Google Scholar] [CrossRef]
- Lowry, W.E.; Richter, L.; Yachechko, R.; Pyle, A.D.; Tchieu, J.; Sridharan, R.; Clark, A.T.; Plath, K. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 2008, 105, 2883–2888. [Google Scholar] [CrossRef] [PubMed]
- Sheng, T.; Li, C.; Zhang, X.; Chi, S.; He, N.; Chen, K.; McCormick, F.; Gatalica, Z.; Xie, J. Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer. 2004, 3, 29. [Google Scholar] [CrossRef]
- Blotta, S.; Jakubikova, J.; Calimeri, T.; Roccaro, A.M.; Amodio, N.; Azab, A.K.; Foresta, U.; Mitsiades, C.S.; Rossi, M.; Todoerti, K.; et al. Canonical and noncanonical Hedgehog pathway in the pathogenesis of multiple myeloma. Blood 2012, 120, 5002–5013. [Google Scholar] [CrossRef]
- Xiu, M.; Wang, Y.; Li, B.; Wang, X.; Xiao, F.; Chen, S.; Hua, F. The role of Notch3 signaling in cancer stemness and chemoresistance: Molecular mechanisms and targeting strategies. Front. Mol. Biosci. 2021, 8, 694141. [Google Scholar] [CrossRef]
- Anusewicz, D.; Orzechowska, M.; Bednarek, A.K. Notch signaling pathway in cancer—Review with bioinformatic analysis. Cancers 2021, 13, 768. [Google Scholar] [CrossRef]
- Fatima, I.; Barman, S.; Rai, R.; Thiel, K.W.; Chandra, V. Targeting Wnt signaling in endometrial cancer. Cancers 2021, 13, 2351. [Google Scholar] [CrossRef]
- Manni, W.; Min, W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm 2022, 3, e176. [Google Scholar] [CrossRef]
- Wang, W.L.; Chen, S.M.; Lee, Y.C.; Chang, W.W. Stigmasterol inhibits cancer stem cell activity in endometrial cancer by repressing IGF1R/mTOR/AKT pathway. J. Funct. Foods 2022, 99, 105338. [Google Scholar] [CrossRef]
- Parsons, M.J.; Tammela, T.; Dow, L.E. WNT as a driver and dependency in cancer. Cancer Discov. 2021, 11, 2413–2429. [Google Scholar] [CrossRef] [PubMed]
- Young, I.C.; Brabletz, T.; Lindley, L.E.; Abreu, M.; Nagathihalli, N.; Zaika, A.; Briegel, K.J. Multi-cancer analysis reveals universal association of oncogenic LBH expression with DNA hypomethylation and WNT-Integrin signaling pathways. Cancer Gene Ther. 2023, 30, 1234–1248. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, X.; Zhu, Y. Analysis of the role of Frizzled 2 in different cancer types. FEBS Open Bio 2021, 11, 1195–1208. [Google Scholar] [CrossRef]
- Bugter, J.M.; Fenderico, N.; Maurice, M.M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat. Rev. Cancer 2021, 21, 5–21. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, X.; Lin, L.; Xu, B.; Zhu, X.; Lin, X. Sesamolin serves as an MYH14 inhibitor to sensitize endometrial cancer to chemotherapy and endocrine therapy via suppressing MYH9/GSK3β/β-catenin signaling. Cell. Mol. Biol. Lett. 2024, 29, 63. [Google Scholar] [CrossRef] [PubMed]
- Helweg, L.P.; Windmöller, B.A.; Burghardt, L.; Storm, J.; Förster, C.; Wethkamp, N.; Wilkens, L.; Kaltschmidt, B.; Banz-Jansen, C.; Kaltschmidt, C. The diminishment of novel endometrial carcinoma-derived stem-like cells by targeting mitochondrial bioenergetics and MYC. Int. J. Mol. Sci. 2022, 23, 2426. [Google Scholar] [CrossRef]
- Sorolla, M.A.; Parisi, E.; Sorolla, A. Determinants of sensitivity to radiotherapy in endometrial cancer. Cancers 2020, 12, 1906. [Google Scholar] [CrossRef]
- Dong, P.; Xiong, Y.; Yue, J.; Hanley, S.J.; Watari, H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: Beyond immune evasion. Front. Oncol. 2018, 8, 386. [Google Scholar] [CrossRef]
- Xue, C.; Chu, Q.; Shi, Q.; Zeng, Y.; Lu, J.; Li, L. Wnt signaling pathways in biology and disease: Mechanisms and therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 106. [Google Scholar] [CrossRef]
- Alvarado-Ortiz, E.; de la Cruz-López, K.G.; Becerril-Rico, J.; Sarabia-Sánchez, M.A.; Ortiz-Sánchez, E.; García-Carrancá, A. Mutant p53 gain-of-function: Role in cancer development, progression, and therapeutic approaches. Front. Cell Dev. Biol. 2021, 8, 607670. [Google Scholar] [CrossRef]
- Matsui, A.; Ikeda, T.; Enomoto, K.; Hosoda, K.; Nakashima, H.; Omae, K.; Watanabe, M.; Hibi, T.; Kitajima, M. Increased formation of oxidative DNA damage, 8- hydroxy-2’-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett. 2000, 151, 87–95. [Google Scholar] [CrossRef]
- Ghanbari Movahed, Z.; Rastegari-Pouyani, M.; Mohammadi, M.H.; Mansouri, K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed Pharmacother. 2019, 112, 108690. [Google Scholar] [CrossRef]
- Lee, K.; Esselman, W.J. Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radic. Biol. Med. 2002, 33, 1121–1132. [Google Scholar] [CrossRef]
- Vallee, A.; Lecarpentier, Y. Crosstalk between peroxisome proliferatoractivated receptor γ and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 2018, 9, 745. [Google Scholar] [CrossRef]
- Vaughn, A.E.; Deshmukh, M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol. 2008, 10, 1477–1483. [Google Scholar] [CrossRef]
- Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 2014, 39, 347–354. [Google Scholar] [CrossRef]
- Hong, Y.; Xia, Z.; Sun, Y.; Lan, Y.; Di, T.; Yang, J.; Yang, D. A comprehensive pan-cancer analysis of the regulation and prognostic effect of coat complex subunit Zeta 1. Genes 2023, 14, 889. [Google Scholar] [CrossRef]
- Chen, J.; Ding, Z.Y.; Li, S.; Liu, S.; Xiao, C.; Li, Z.; Yang, X. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021, 11, 1345. [Google Scholar] [CrossRef]
- Nuñez-Olvera, S.I.; Gallardo-Rincón, D.; Puente-Rivera, J.; Salinas-Vera, Y.M.; Marchat, L.A.; Morales-Villegas, R.; López-Camarillo, C. Autophagy machinery as a promising therapeutic target in endometrial cancer. Front. Oncol. 2019, 9, 1326. [Google Scholar] [CrossRef]
- Caravia, L.G.; Mitranovici, M.I.; Oala, I.E.; Tiron, A.T.; Simionescu, A.A.; Borcan, A.M.; Craina, M. The Importance of Cancer Stem Cells and Their Pathways in Endometrial Cancer: A Narrative Review. Cells 2025, 14, 594. [Google Scholar] [CrossRef]
- Mitranovici, M.I.; Caravia, L.G.; Moraru, L.; Pușcașiu, L. Targeting Cancer Stemness Using Nanotechnology in a Holistic Approach: A Narrative Review. Pharmaceutics 2025, 17, 277. [Google Scholar] [CrossRef]
- Sun, Q.; Du, J.; Dong, J.; Pan, S.; Jin, H.; Han, X.; Zhang, J. Systematic investigation of the multifaceted role of SOX11 in cancer. Cancers 2022, 14, 6103. [Google Scholar] [CrossRef]
- Wei, Y.; Li, H.; Qu, Q. miR-484 suppresses endocrine therapy-resistant cells by inhibiting KLF4-induced cancer stem cells in estrogen receptor-positive cancers. Breast Cancer 2021, 28, 175–186. [Google Scholar] [CrossRef]
- Mashayekhi, P.; Noruzinia, M.; Khodaverdi, S. Deregulation of stemness-related genes in endometriotic mesenchymal stem cells: Further evidence for self-renewal/differentiation imbalance. Iran. Biomed. J. 2020, 24, 333. [Google Scholar] [CrossRef]
- Alasiri, G. Comprehensive analysis of KCNJ14 potassium channel as a biomarker for cancer progression and development. Int. J. Mol. Sci. 2023, 24, 2049. [Google Scholar] [CrossRef]
- Wang, X.; Wendel, J.R.; Emerson, R.E.; Broaddus, R.R.; Creighton, C.J.; Rusch, D.B.; Hawkins, S.M. Pten and Dicer1 loss in the mouse uterus causes poorly differentiated endometrial adenocarcinoma. Oncogene 2020, 39, 6286–6299. [Google Scholar] [CrossRef]
- Bazzichetto, C.; Conciatori, F.; Pallocca, M.; Falcone, I.; Fanciulli, M.; Cognetti, F.; Ciuffreda, L. PTEN as a prognostic/predictive biomarker in cancer: An unfulfilled promise? Cancers 2019, 11, 435. [Google Scholar] [CrossRef]
- Ponandai-Srinivasan, S.; Andersson, K.L.; Nister, M.; Saare, M.; Hassan, H.A.; Varghese, S.J.; Lalitkumar, P.G.L. Aberrant expression of genes associated with stemness and cancer in endometria and endometrioma in a subset of women with endometriosis. Hum. Reprod. 2018, 33, 1924–1938. [Google Scholar] [CrossRef]
- Smolková, K.; Mikó, E.; Kovács, T.; Leguina-Ruzzi, A.; Sipos, A.; Bai, P. Nuclear factor erythroid 2-related factor 2 in regulating cancer metabolism. Antioxid. Redox Signal. 2020, 33, 966–997. [Google Scholar] [CrossRef]
- Mondal, K.; Posa, M.K.; Shenoy, R.P.; Roychoudhury, S. KRAS Mutation Subtypes and Their Association with other driver mutations in oncogenic pathways. Cells 2024, 13, 1221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Du, Y.; Huai, Q.; Fang, N.; Xu, W.; Yang, J.; Dai, Y. The identification of gamma-glutamyl hydrolase in uterine corpus endometrial carcinoma: A predictive model and machine learning. Reprod. Sci. 2024, 31, 532–549. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Tian, C.; Zheng, Y.; Gong, C.; Wang, J.; Liu, Y. The prognostic value of co-expression of stemness markers CD44 and CD133 in endometrial cancer. Front. Oncol. 2024, 14, 1338908. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Ahmad, S.; Kanwal, S.; Hameed, Y.; Tang, Q. Key wound healing genes as diagnostic biomarkers and therapeutic targets in uterine corpus endometrial carcinoma: An integrated in silico and in vitro study. Hereditas 2025, 162, 5. [Google Scholar] [CrossRef]
- Yang, H.; Yao, F.; Davis, P.F.; Tan, S.T.; Hall, S.R. CD73, tumor plasticity and immune evasion in solid cancers. Cancers 2021, 13, 177. [Google Scholar] [CrossRef]
- Wen, K.C.; Sung, P.L.; Chou, Y.T.; Pan, C.M.; Wang, P.H.; Lee, O.K.S.; Wu, C.W. The role of EpCAM in tumor progression and the clinical prognosis of endometrial carcinoma. Gynecol. Oncol. 2018, 148, 383–392. [Google Scholar] [CrossRef]
- Bahrami, A.; Hasanzadeh, M.; ShahidSales, S.; Yousefi, Z.; Kadkhodayan, S.; Farazestanian, M.; Avan, A. Clinical significance and prognosis value of Wnt signaling pathway in cervical cancer. J. Cell. Biochem. 2017, 118, 3028–3033. [Google Scholar] [CrossRef]
- Bodnar, L.; Stanczak, A.; Cierniak, S.; Smoter, M.; Cichowicz, M.; Kozlowski, W.; Lamparska-Przybysz, M. Wnt/β-catenin pathway as a potential prognostic and predictive marker in patients with advanced ovarian cancer. J. Ovarian Res. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Klempner, S.J.; Bendell, J.C.; Villaflor, V.M.; Tenner, L.L.; Stein, S.; Naik, G.S.; Sirard, C.A.; Kagey, M.; Chaney, M.F.; Strickler, J.H. DKN-01 in combination with pembrolizumab in patients with advanced gastroesophageal adenocarcinoma (GEA): Tumoral DKK1 expression as a predictor of response and survival. J. Clin. Oncol. 2020, 38 (Suppl. S4), 357. [Google Scholar] [CrossRef]
- Gu, L.; Wang, Z.; Zuo, J.; Li, H.; Zha, L. Prognostic significance of NF-κB expression in non-small cell lung cancer: A meta-analysis. PLoS ONE 2018, 13, e0198223. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Shi, Y.; Tibbetts, R.S.; Miyamoto, S. Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science 2006, 311, 1141. [Google Scholar] [CrossRef]
- Brandi, G.; Pantaleo, M.A.; Biasco, G.; Paterini, P. Activated NF-kB in colorectal cancer: Predictive or prognostic factor? J. Clin. Oncol. 2008, 26, 1388–1389. [Google Scholar] [CrossRef]
- Previs, R.A.; Coleman, R.L.; Harris, A.L.; Sood, A.K. Molecular pathways: Translational and therapeutic implications of the Notch signaling pathway in cancer. Clin. Cancer Res. 2015, 21, 955–961. [Google Scholar] [CrossRef]
- Venkatesh, V.; Nataraj, R.; Thangaraj, G.S.; Karthikeyan, M.; Gnanasekaran, A.; Kaginelli, S.B.; Kuppanna, G.; Kallappa, C.G.; Basalingappa, K.M. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig. 2018, 5, 5. [Google Scholar] [CrossRef]
- Xu, J.; Song, F.; Jin, T.; Qin, J.; Wu, J.; Wang, M.; Liu, J. Prognostic values of Notch receptors in breast cancer. Tumor Biol. 2016, 37, 1871–1877. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, O. Hedgehog pathway aberrations and gastric cancer; evaluation of prognostic impact and exploration of therapeutic potentials. Tumor Biol. 2015, 36, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ding, Y.; Chen, Y.; Lu, J.; Chen, Y.; Wu, G.; Teng, L. Pan-cancer analyses reveal that increased Hedgehog activity correlates with tumor immunosuppression and resistance to immune checkpoint inhibitors. Cancer Med. 2022, 11, 847–863. [Google Scholar] [CrossRef]
- Wu, Z.X.; Huang, X.; Cai, M.J.; Huang, P.D.; Guan, Z. Development and validation of a prognostic index based on genes participating in autophagy in patients with lung adenocarcinoma. Front. Oncol. 2022, 11, 799759. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Yao, N. Correlation of the AKT/mTOR signaling pathway with the clinicopathological features and prognosis of nasopharyngeal carcinoma. Eur. J. Histochem. EJH 2021, 65, 3304. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Yin, Y.; Sun, Z.; Wang, Y.; Zhang, Z.; Chen, X. UBE2S promotes the development of ovarian cancer by promoting PI3K/AKT/mTOR signaling pathway to regulate cell cycle and apoptosis. Mol. Med. 2022, 28, 62. [Google Scholar] [CrossRef] [PubMed]
- Hsin, I.L.; Shen, H.P.; Chang, H.Y.; Ko, J.L.; Wang, P.H. Suppression of PI3K/Akt/mTOR/c-Myc/mtp53 positive feedback loop induces cell cycle arrest by dual PI3K/mTOR inhibitor PQR309 in endometrial cancer cell lines. Cells 2021, 10, 2916. [Google Scholar] [CrossRef]
- Lee, H.P.; Lin, C.Y.; Shih, J.S.; Fong, Y.C.; Wang, S.W.; Li, T.M.; Tang, C.H. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway. Oncotarget 2015, 6, 36746. [Google Scholar] [CrossRef]
- Jiang, N.; Li, Q.L.; Pan, W.; Li, J.; Zhang, M.F.; Cao, T.; Shen, H. PRMT6 promotes endometrial cancer via AKT/mTOR signaling and indicates poor prognosis. Int. J. Biochem. Cell Biol. 2020, 120, 105681. [Google Scholar] [CrossRef]
- Iżycka, N.; Zaborowski, M.P.; Ciecierski, Ł.; Jaz, K.; Szubert, S.; Miedziarek, C.; Nowak-Markwitz, E. Cancer Stem Cell Markers—Clinical Relevance and Prognostic Value in High-Grade Serous Ovarian Cancer (HGSOC) Based on The Cancer Genome Atlas Analysis. Int. J. Mol. Sci. 2023, 24, 12746. [Google Scholar] [CrossRef]
- Wu, Y.F.; Wang, C.Y.; Tang, W.C.; Lee, Y.C.; Ta, H.D.K.; Lin, L.C.; Lee, K.H. Expression profile and prognostic value of Wnt signaling pathway molecules in colorectal cancer. Biomedicines 2021, 9, 1331. [Google Scholar] [CrossRef]
- Javaeed, A.; Ghauri, S.K. Metastatic potential and prognostic significance of SOX2: A meta-analysis. World J. Clin. Oncol. 2019, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Liu, J.; Liu, B.; Meng, C.; Liao, J. SOX2 contributes to invasion and poor prognosis of gastric cancer: A meta-analysis. Medicine 2022, 101, e30559. [Google Scholar] [CrossRef]
- Han, S.; Huang, T.; Wu, X.; Wang, X.; Liu, S.; Yang, W.; Hou, F. Prognostic value of CD133 and SOX2 in advanced cancer. J. Oncol. 2019, 2019, 3905817. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Wen, F.; Li, Y.; Li, Q. The tale of SOX2: Focusing on lncRNA regulation in cancer progression and therapy. Life Sciences 2024, 344, 122576. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Wang, Q.S.; Li, K.; Chen, S.S.; Li, X.; Xiao, G.D.; Sun, X. Stem signatures associating SOX2 antibody helps to define diagnosis and prognosis prediction with esophageal cancer. Ann. Med. 2022, 54, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Villodre, E.S.; Kipper, F.C.; Pereira, M.B.; Lenz, G. Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat. Rev. 2016, 51, 1–9. [Google Scholar] [CrossRef]
- Kim, K.; Ro, J.Y.; Kim, S.; Cho, Y.M. Expression of stem-cell markers OCT-4 and CD133: Important prognostic factors in papillary renal cell carcinoma. Hum. Pathol. 2012, 43, 2109–2116. [Google Scholar] [CrossRef]
- Cai, W.; Wang, Z.; Wei, C.; Wu, M.; Zheng, W.; Zhang, H.; Liu, L. Prognostic evaluation of NANOG and OCT4 expression for posttransplantation hepatocellular carcinoma recurrence. J. Cell. Biochem. 2019, 120, 8419–8429. [Google Scholar] [CrossRef]
- Rodini, C.O.; Suzuki, D.E.; Saba-Silva, N.; Cappellano, A.; de Souza, J.E.S.; Cavalheiro, S.; Okamoto, O.K. Expression analysis of stem cell-related genes reveal OCT4 as a predictor of poor clinical outcome in medulloblastoma. J. Neuro-Oncol. 2012, 106, 71–79. [Google Scholar] [CrossRef]
- Zhao, H.; Li, N.; Pang, Y.; Zhao, J.; Wu, X. Gli affects the stemness and prognosis of epithelial ovarian cancer via homeobox protein NANOG. Mol. Med. Rep. 2021, 23, 128. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; Wang, T.; Xiong, Y.; Li, K.; Qiu, X.; Feng, Y.; Jia, C. TFCP2L1 drives stemness and enhances their resistance to Sorafenib treatment by modulating the NANOG/STAT3 pathway in hepatocellular carcinoma. Oncogenesis 2024, 13, 33. [Google Scholar] [CrossRef]
- Cui, Z.; Zou, F.; Wang, R.; Wang, L.; Cheng, F.; Wang, L.; Wang, W. Integrative bioinformatics analysis of WDHD1: A potential biomarker for pan-cancer prognosis, diagnosis, and immunotherapy. World J. Surg. Oncol. 2023, 21, 309. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zheng, Y.; Ye, M.; Shen, T.; Zhang, D.; Li, Z.; Lu, Z. Comprehensive pan-cancer analysis reveals EPHB2 is a novel predictive biomarker for prognosis and immunotherapy response. BMC Cancer 2024, 24, 1064. [Google Scholar] [CrossRef]
- Li, Y.; Tian, R.; Liu, J.; Ou, C.; Wu, Q.; Fu, X. A 13-gene signature based on estrogen response pathway for predicting survival and immune responses of patients with UCEC. Front. Mol. Biosci. 2022, 9, 833910. [Google Scholar] [CrossRef]
- Jiang, X.; He, J.I.N.; Wang, Y.; Liu, J.; Li, X.; He, X.; Cai, H. A pan-cancer analysis of the biological function and clinical value of BTLA in tumors. Biocell 2023, 47, 351. [Google Scholar] [CrossRef]
- Kao, W.H.; Chiu, K.Y.; Tsai, S.C.S.; Teng, C.L.J.; Oner, M.; Lai, C.H.; Lin, H. PI3K/Akt inhibition promotes AR activity and prostate cancer cell proliferation through p35-CDK5 modulation. Biochim. Biophys. Acta-Mol. Basis Dis. 2025, 1871, 167568. [Google Scholar] [CrossRef]
- Kitson, S.J.; Rosser, M.; Fischer, D.P.; Marshall, K.M.; Clarke, R.B.; Crosbie, E.J. Targeting endometrial cancer stem cell activity with metformin is inhibited by patient-derived adipocyte-secreted factors. Cancers 2019, 11, 653. [Google Scholar] [CrossRef]
- Iżycka-Świeszewska, E.; Gulczyński, J.; Sejda, A.; Kitlińska, J.; Galli, S.; Rogowski, W.; Sigorski, D. Remarks on Selected Morphological Aspects of Cancer Neuroscience: A Microscopic Photo Review. Biomedicines 2024, 12, 2335. [Google Scholar] [CrossRef]
- Wang, Y.; Hanifi-Moghaddam, P.; Hanekamp, E.E.; Kloosterboer, H.J.; Franken, P.; Veldscholte, J.; van Doorn, H.C.; Ewing, P.C.; Kim, J.J.; Grootegoed, J.A.; et al. Progesterone Inhibition of Wnt/β-Catenin Signaling in Normal Endometrium and Endometrial Cancer. Clin. Cancer Res. 2009, 15, 5784–5793. [Google Scholar] [CrossRef]
- Wang, Y.; van der Zee, M.; Fodde, R.; Blok, L.J. Wnt/Β-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget 2010, 1, 674. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, Y.; Luo, J.; Xu, K.; Tian, P.; Lu, C.; Song, J. Blocking the WNT/β-catenin pathway in cancer treatment: Pharmacological targets and drug therapeutic potential. Heliyon 2024, 10, e35989. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.W.; Ngo, M.H.; Kuo, Y.C.; Teng, M.H.; Guo, C.L.; Lai, H.C.; Chang, T.S.; Huang, Y.H. Niclosamide revitalizes sorafenib through insulin-like growth factor 1 receptor (IGF-1R)/stemness and metabolic changes in hepatocellular carcinoma. Cancers 2023, 15, 931. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell 2009, 138, 645–659. [Google Scholar] [CrossRef]
- Gorelik, L.; Flavell, R.A. Transforming growth factor-beta in T-cell biology. Nat. Rev. Immunol. 2002, 2, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Tauriello, D.V.F.; Palomo-Ponce, S.; Stork, D.; Berenguer-Llergo, A.; Badia-Ramentol, J.; Iglesias, M.; Sevillano, M.; Ibiza, S.; Cañellas, A.; Hernando-Momblona, X.; et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018, 554, 538–543. [Google Scholar] [CrossRef]
- Lu, D.; Liu, J.X.; Endo, T.; Zhou, H.; Yao, S.; Willert, K.; Carson, D.A. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/β-catenin pathway. PLoS ONE 2009, 4, e8294. [Google Scholar] [CrossRef]
- Gaptulbarova, K.A.; Tsyganov, M.M.; Pevzner, A.M.; Ibragimova, M.K.; Litviakov, N.V. NF-kB as a potential prognostic marker and a candidate for targeted therapy of cancer. Exp. Oncol. 2020, 42, 263–269. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, W.; Wu, X.; Poustovoitov, M.; Strasner, A.; Li, W.; Karin, M. A NIK-IKKα module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1. Cancer Cell 2013, 23, 647–659. [Google Scholar] [CrossRef]
- Krönke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Ebert, B.L. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 2014, 343, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.K. How thalidomide works against cancer. Science 2014, 343, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Teng, L.; Wang, M. Distinct prognostic values of four-Notch-receptor mRNA expression in ovarian cancer. Tumor Biol. 2016, 37, 6979–6985. [Google Scholar] [CrossRef]
- Cochrane, C.R.; Szczepny, A.; Watkins, D.N.; Cain, J.E. Hedgehog signaling in the maintenance of cancer stem cells. Cancers 2015, 7, 1554–1585. [Google Scholar] [CrossRef]
- Carpenter, R.L.; Ray, H. Efficacy and safety of sonic hedgehog pathway inhibitors in cancer. Drug Saf. 2019, 42, 263. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Shin, H.S.; Lee, Y.S.; Lee, D.; Kim, S.; Lee, Y.C. Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncol. Rep. 2014, 31, 673–678. [Google Scholar] [CrossRef]
- Fan, Y.; Cheng, H.; Liu, Y.; Liu, S.; Lowe, S.; Li, Y.; Zhang, H. Metformin anticancer: Reverses tumor hypoxia induced by bevacizumab and reduces the expression of cancer stem cell markers CD44/CD117 in human ovarian cancer SKOV3 cells. Front. Pharmacol. 2022, 13, 955984. [Google Scholar] [CrossRef]
- Andersen, B.L.; Hacker, N.F. Treatment for gynecologic cancer: A review of the effects on female sexuality. Health Psychol. 1983, 2, 203–211. [Google Scholar] [CrossRef]
- Rattan, R.; Ali Fehmi, R.; Munkarah, A. Metformin: An emerging new therapeutic option for targeting cancer stem cells and metastasis. J. Oncol. 2012, 2012, 928127. [Google Scholar] [CrossRef]
- Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell 2017, 32, 807–823.e12. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Han, Q.; Xiong, J.; Song, Z. LDLRAD2 promotes pancreatic cancer progression through Akt/mTOR signaling pathway. Med. Oncol. 2021, 38, 2. [Google Scholar] [CrossRef]
- Lu, Y.; Mao, J.; Xu, Y.; Pan, H.; Wang, Y.; Li, W. Ropivacaine represses the ovarian cancer cell stemness and facilitates cell ferroptosis through inactivating the PI3K/AKT signaling pathway. Hum. Exp. Toxicol. 2022, 41, 09603271221120652. [Google Scholar] [CrossRef]
- Westin, S.N.; Labrie, M.; Litton, J.K.; Blucher, A.; Fang, Y.; Vellano, C.P.; Marszalek, J.R.; Feng, N.; Ma, X.; Creason, A.; et al. Phase Ib dose expansion and translational analyses of olaparib in combination with capivasertib in recurrent endometrial, triple-negative breast, and ovarian cancer. Clin. Cancer Res. 2021, 27, 6354–6365. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, M.; Zhang, Q.; Chen, J.; Li, J.; Han, Q.; Zhang, L.; Li, J.; Liu, S.; Ma, Y.; et al. Metformin antagonizes ovarian cancer cells malignancy through MSLN mediated IL-6/STAT3 signaling. Cell Transplant. 2021, 30, 09636897211027819. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ma, J.; Kong, F.; Song, N.; Wang, C.; Ma, X. UPF1 contributes to the maintenance of endometrial cancer stem cell phenotype by stabilizing LINC00963. Cell Death Dis. 2022, 13, 257. [Google Scholar] [CrossRef]
- Libner, C.D.; Salapa, H.E.; Levin, M.C. The potential contribution of dysfunctional RNA-binding proteins to the pathogenesis of neurodegeneration in multiple sclerosis and relevant models. Int. J. Mol. Sci. 2020, 21, 4571. [Google Scholar] [CrossRef]
- Dong, W.; Dai, Z.H.; Liu, F.C.; Guo, X.G.; Ge, C.M.; Ding, J.; Liu, H.; Yang, F. The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine 2019, 45, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Sung, P.L.; Kuo, M.H.; Tsai, M.H.; Wang, C.K.; Pan, S.T.; Chen, Y.J.; Wang, P.H.; Wen, K.C.; Chou, Y.T. Crosstalk between SOX2 and cytokine signaling in endometrial carcinoma. Sci. Rep. 2018, 8, 17550. [Google Scholar] [CrossRef]
- Tang, W.; Ramasamy, K.; Pillai, S.M.; Santhamma, B.; Konda, S.; Pitta Venkata, P.; Blankenship, L.; Liu, J.; Liu, Z.; Altwegg, K.A.; et al. LIF/LIFR oncogenic signaling is a novel therapeutic target in endometrial cancer. Cell Death Discov. 2021, 7, 216. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, X.; Tang, J.; Zhang, Z.; Du, R.; Luo, D.; Li, J. CCL16 maintains stem cell-like properties in breast cancer by activating CCR2/GSK3β/β-catenin/OCT4 axis. Theranostics 2021, 11, 2297. [Google Scholar] [CrossRef] [PubMed]
- Narusaka, T.; Ohara, T.; Noma, K.; Nishiwaki, N.; Katsura, Y.; Kato, T.; Fujiwara, T. Nanog is a promising chemoresistant stemness marker and therapeutic target by iron chelators for esophageal cancer. Int. J. Cancer 2021, 149, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Le, P.N.; McDermott, J.D.; Jimeno, A. Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 2015, 146, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Blagodatski, A.; Poteryaev, D.; Katanaev, V.L. Targeting the Wnt pathways for therapies. Mol Cell Ther. 2014, 2, 28. [Google Scholar] [CrossRef]
- Zakaria, N.; Mohd Yusoff, N.; Zakaria, Z.; Widera, D.; Yahaya, B.H. Inhibition of NF-κB signaling reduces the stemness characteristics of lung cancer stem cells. Front Oncol. 2018, 8, 166. [Google Scholar] [CrossRef]
- Cook, N.; Basu, B.; Smith, D.M.; Gopinathan, A.; Evans, J.; Steward, W.P.; Palmer, D.; Propper, D.; Venugopal, B.; Hategan, M.; et al. A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br. J. Cancer 2018, 118, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Y.; Sun, F.; Han, P.; Fan, R.; Ren, F. Comparison of clinical characteristics and prognosis between type I and type II endometrial cancer: A single-center retrospective study. Discov. Oncol. 2023, 14, 211. [Google Scholar] [CrossRef]
Articles | Markers | Prognosis |
---|---|---|
[68,94,132] | CD44, CD133 | Adverse prognosis of early-stage EC |
[131] | Cell surface ectoenzyme ecto-5′-nucleotidase | Worse clinical outcomes through cellular plasticity |
[70,133] | ALDH1A1 | Poor survival |
[70] | PD-L1 | Metastasis, immune evasion |
[79] | COPZ1 | Poor survival |
[97] | Downregulation of EpCAM | Poor survival |
[31,68] | Notch, PIK3CA, PIK3R1, KRAS, PTEN | Prognostic factors, poor survival |
[53,60,100] | WNT pathway | Prognostic factor valuable in risk stratification |
[53,60,100] | A monoclonal antibody against dickkopf WNT signaling pathway inhibitor 1 (DKK1) and DKN-01 | Predictive biomarker in EC treatment |
[102,103] | NF-κB | Predicting efficacy of some therapies |
[53,104,105,106] | Notch | Worsen overall survival (OS) |
[53,109] | Hh | Prognostic value in evaluating autophagy |
[31,110,111,112,113,133,134] | PI3K/mTOR | Poor prognosis |
[115] | LGR5 mRNA in relationship with ALDH1A1 | Indicates higher sensitivity to platinum-based therapy |
[53,116] | CTNNB1 in interaction with Wnt | Prognostic value |
[118,119,120] | SOX 2 | Advanced histological grade and poor prognosis |
[121] | Stem signatures associated with antibodies of TP53 and SOX2 | Prognostic value |
[122,123] | OCT4 | Poor disease-free survival |
[124,125] | NANOG and OCT4 | Predictor for cancer recurrence |
[126,127] | NANOG as downstream effector of Gli | Poor prognosis |
[128] | WDHD1 mRNA | Shorter overall survival (OS) |
[87] | KCNJ14 | Prognostic value |
[129] | EPHB2 | Prognostic value |
[130] | Estrogen-response-related genes | Therapeutic responses |
[131] | BTLA B and T-lymphocyte attenuator (BTLA) | Prognosis |
Articles | Markers Targeted | Therapy |
---|---|---|
[53,60] | Wnt signaling pathway | A monoclonal antibody against dickkopf WNT signaling pathway inhibitor 1 |
[60,135,136] | Wnt signaling pathway | Progesterone |
[18,60,137,138] | Wnt signaling pathway | Niclosamide |
[49,60,137] | Wnt signaling pathway | Salinomycin |
[80,140,141] | Wnt signaling pathway | Ivermectin |
[137] | Wnt signaling pathway | Mebendazole and Albendazole |
[137,142] | Wnt signaling pathway | Tolfenamic Acid |
[137] | Wnt signaling pathway | Quercetin and Resveratrol |
[53,143,145,146] | NF-κB signaling pathway | NF-κB inhibitors |
[53,145,146] | NF-κB signaling pathway | Thalidomide |
[53] | NF-κB signaling pathway | Bortezomib |
[53,58,104,105,147] | Notch signaling pathway | Enoticumab, Demcizumab, or other Notch inhibitors |
[52,53,148,149,150] | Sonic Hedgehog signaling pathway | Vismodegib, Sonidegib, Genistein |
[151] | CD44+/CD117+ CSCs | Metformin |
[53] | Hypoxia | ROS scavengers |
[31,112,113,152] | PI3K/AKT signaling pathway | Bimiralisib |
[31,153] | PI3K/AKT signaling pathway | Metformin |
[154,155] | PI3K/AKT signaling pathway | Everolimus |
[156] | PI3K/AKT signaling pathway | Ropivacaina |
[151] | Autophagy | Dietary compounds |
[157] | PI3K/AKT signaling pathway | Olaparib combined with capivasertib |
[80,158] | TGFβ | TGFβ inhibitors |
[28] | PD-L1 | Inhibitors |
[45] | PD-L1 | Pacritinib |
[163] | LIFR | EC359 |
[159,160,161] | Up-frameshift mutant 1 (UPF1) | UPF1inhibitor |
[163] | SOX2, OCT4, NANOG, acting on LIF | EC359 |
[164] | OCT4 | CCL16 protein |
[165] | Nanog | Iron chelators |
[126] | Nanog | Gli inhibitors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotar, I.C.; Bernad, E.; Moraru, L.; Ivan, V.; Apostol, A.; Bernad, S.I.; Muresan, D.; Mitranovici, M.-I. Therapeutic and Prognostic Relevance of Cancer Stem Cell Populations in Endometrial Cancer: A Narrative Review. Diagnostics 2025, 15, 1872. https://doi.org/10.3390/diagnostics15151872
Rotar IC, Bernad E, Moraru L, Ivan V, Apostol A, Bernad SI, Muresan D, Mitranovici M-I. Therapeutic and Prognostic Relevance of Cancer Stem Cell Populations in Endometrial Cancer: A Narrative Review. Diagnostics. 2025; 15(15):1872. https://doi.org/10.3390/diagnostics15151872
Chicago/Turabian StyleRotar, Ioana Cristina, Elena Bernad, Liviu Moraru, Viviana Ivan, Adrian Apostol, Sandor Ianos Bernad, Daniel Muresan, and Melinda-Ildiko Mitranovici. 2025. "Therapeutic and Prognostic Relevance of Cancer Stem Cell Populations in Endometrial Cancer: A Narrative Review" Diagnostics 15, no. 15: 1872. https://doi.org/10.3390/diagnostics15151872
APA StyleRotar, I. C., Bernad, E., Moraru, L., Ivan, V., Apostol, A., Bernad, S. I., Muresan, D., & Mitranovici, M.-I. (2025). Therapeutic and Prognostic Relevance of Cancer Stem Cell Populations in Endometrial Cancer: A Narrative Review. Diagnostics, 15(15), 1872. https://doi.org/10.3390/diagnostics15151872