Development of a Liquid Chromatography–Tandem Mass Spectrometry Method for Oxylipin Analysis and Its Application to Children’s Plasma
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Human Samples
2.3. Extraction of Oxylipins from Plasma Samples
2.4. LC-MS Analysis
2.5. Linearity and Range
2.6. Accuracy and Precision
2.7. Recovery and Matrix Effects
2.8. Blood Test Analysis
2.9. Data Visualization and Statistics
3. Results and Discussion
3.1. Optimization of Mass Spectrometry Parameters and Selection of Product Ions
3.2. Validation of LC-MS Method for Oxylipin Analysis
3.3. Analysis of Oxylipin and PUFA Levels in Children’s Plasma
3.4. Analysis of Oxylipin and PUFA Levels in Children’s Plasma Samples Across Age Groups
3.5. Analysis of Oxylipin and PUFA Levels in Children’s Plasma Samples Across Sexes
3.6. Analysis of Oxylipin and PUFA Levels in Children’s Plasma Samples Across BMI Categories
3.7. Analysis of Oxylipin and PUFA Levels in Children’s Plasma Samples in Relation to Blood Test Results
3.8. Comparison of Oxylipin Extraction Methods
3.9. Constraints and Limitations in This Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LC-MS | Liquid chromatography–mass spectrometry |
EIC | Extracted ion chromatogram |
PUFA | Polyunsaturated fatty acid |
LOD | Limit of detection |
LOQ | Limit of quantification |
DHA | Docosahexaenoic acid |
EPA | Eicosapentaenoic acid |
LA | Linoleic acid |
AA | Arachidonic acid |
EET | Epoxyeicosatrienoic acid |
GC-MS | Gas chromatography–mass spectrometry |
DiHOME | Dihydroxy-octadecenoic acid |
HODE | Hydroxy-octadecadienoic acid |
DiHDPA | Dihydroxy-docosapentaenoic acid |
BHT | Butylated hydroxytoluene |
RSD | Relative standard deviation |
BMI | Body mass index |
EpDPA | Epoxy-docosapentaenoic acid |
HEPE | Hydroxy-eicosapentaenoic acid |
EpETE | Epoxy-eicosatetraenoic acid |
DiHETE | Dihydroxy-eicosatetraenoic acid |
HDHA | Hydroxy-docosahexaenoic acid |
HOTrE | Hydroxy-octadecatrienoic acid |
HETE | Hydroxy-eicosatetraenoic acid |
OxoETE | Oxo-eicosatetraenoic acid |
MRM | Multiple reaction monitoring |
SPE | Solid-phase extraction |
References
- Buczynski, M.W.; Dumlao, D.S.; Dennis, E.A. An Integrated Omics Analysis of Eicosanoid Biology. J. Lipid Res. 2009, 50, 1015–1038. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Novel Lipid Mediators and Resolution Mechanisms in Acute Inflammation: To Resolve or Not? Am. J. Pathol. 2010, 177, 1576–1591. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Konkel, A.; Mehling, H.; Blossey, K.; Gapelyuk, A.; Wessel, N.; Von Schacky, C.; Dechend, R.; Muller, D.N.; Rothe, M.; et al. Dietary Omega-3 Fatty Acids Modulate the Eicosanoid Profi Le in Man Primarily via the CYP-Epoxygenase Pathway. J. Lipid Res. 2014, 55, 1150–1164. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef]
- Imig, J.D. Epoxides and Soluble Epoxide Hydrolase in Cardiovascular Physiology. Physiol. Rev. 2012, 92, 101–130. [Google Scholar] [CrossRef]
- Kanaoka, Y.; Boyce, J.A. Cysteinyl Leukotrienes and Their Receptors: Cellular Distribution and Function in Immune and Inflammatory Responses. J. Immunol. 2004, 173, 1503–1510. [Google Scholar] [CrossRef]
- Nayeem, M.A. Role of Oxylipins in Cardiovascular Diseases Review-Article. Acta Pharmacol. Sin. 2018, 39, 1142–1154. [Google Scholar] [CrossRef]
- Buckner, T.; Vanderlinden, L.A.; Johnson, R.K.; DeFelice, B.C.; Carry, P.M.; Seifert, J.; Waugh, K.; Dong, F.; Fiehn, O.; Clare-Salzler, M.; et al. Predictors of Oxylipins in a Healthy Pediatric Population. Pediatr. Res. 2021, 89, 1530–1540. [Google Scholar] [CrossRef]
- Jang, H.; Kim, E.G.; Kim, M.; Kim, S.Y.; Kim, Y.H.; Sohn, M.H.; Kim, K.W. Metabolomic Profiling Revealed Altered Lipid Metabolite Levels in Childhood Food Allergy. J. Allergy Clin. Immunol. 2022, 149, 1722–1731. [Google Scholar] [CrossRef]
- Schmöcker, C.; Zhang, I.W.; Kiesler, S.; Kassner, U.; Ostermann, A.I.; Steinhagen-Thiessen, E.; Schebb, N.H.; Weylandt, K.H. Effect of Omega-3 Fatty Acid Supplementation on Oxylipins in a Routine Clinical Setting. Int. J. Mol. Sci. 2018, 19, 180. [Google Scholar] [CrossRef]
- Schebb, N.H.; Ostermann, A.I.; Yang, J.; Hammock, B.D.; Hahn, A.; Schuchardt, J.P. Comparison of the Effects of Long-Chain Omega-3 Fatty Acid Supplementation on Plasma Levels of Free and Esterified Oxylipins. Prostaglandins Other Lipid Mediat. 2014, 113–115, 21–29. [Google Scholar] [CrossRef]
- Tsikas, D. Application of Gas Chromatography–Mass Spectrometry and Gas Chromatography–Tandem Mass Spectrometry to Assess in Vivo Synthesis of Prostaglandins, Thromboxane, Leukotrienes, Isoprostanes and Related Compounds in Humans. J. Chromatogr. B Biomed. Sci. Appl. 1998, 717, 201–245. [Google Scholar] [CrossRef]
- Tsikas, D.; Zoerner, A.A. Analysis of Eicosanoids by LC-MS/MS and GC-MS/MS: A Historical Retrospect and a Discussion. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 964, 79–88. [Google Scholar] [CrossRef]
- Schulze, B.; Lauchli, R.; Sonwa, M.M.; Schmidt, A.; Boland, W. Profiling of Structurally Labile Oxylipins in Plants by in Situ Derivatization with Pentafluorobenzyl Hydroxylamine. Anal. Biochem. 2006, 348, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, A.I.; Koch, E.; Rund, K.M.; Kutzner, L.; Mainka, M.; Schebb, N.H. Targeting Esterified Oxylipins by LC–MS—Effect of Sample Preparation on Oxylipin Pattern. Prostaglandins Other Lipid Mediat. 2020, 146, 106384. [Google Scholar] [CrossRef] [PubMed]
- Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Methods of the Analysis of Oxylipins in Biological Samples. Molecules 2020, 25, 349. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Xie, Q.; Li, F.; Yang, Z.; Li, K.; Luo, Q. Determination of Oxylipins and Their Precursors in Breast Milk by Solid Phase Extraction-Ultra High Performance Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry. J. Chromatogr. A 2023, 1709, 464400. [Google Scholar] [CrossRef]
- Wolfer, A.M.; Gaudin, M.; Taylor-Robinson, S.D.; Holmes, E.; Nicholson, J.K. Development and Validation of a High-Throughput Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry Approach for Screening of Oxylipins and Their Precursors. Anal. Chem. 2015, 87, 11721–11731. [Google Scholar] [CrossRef]
- Willenberg, I.; Ostermann, A.I.; Schebb, N.H. Targeted Metabolomics of the Arachidonic Acid Cascade: Current State and Challenges of LC-MS Analysis of Oxylipins. Anal. Bioanal. Chem. 2015, 407, 2675–2683. [Google Scholar] [CrossRef]
- Kishi, R.; Ikeda-Araki, A.; Miyashita, C.; Itoh, S.; Kobayashi, S.; Ait Bamai, Y.; Yamazaki, K.; Tamura, N.; Minatoya, M.; Ketema, R.M.; et al. Hokkaido Birth Cohort Study on Environment and Children’s Health: Cohort Profile 2021. Environ. Health Prev. Med. 2021, 26, 59. [Google Scholar] [CrossRef]
- Kishi, R.; Araki, A.; Minatoya, M.; Hanaoka, T.; Miyashita, C.; Itoh, S.; Kobayashi, S.; Ait Bamai, Y.; Yamazaki, K.; Miura, R.; et al. The Hokkaido Birth Cohort Study on Environment and Children’s Health: Cohort Profile—Updated 2017. Environ. Health Prev. Med. 2017, 22, 46. [Google Scholar] [CrossRef]
- Kishi, R.; Kobayashi, S.; Ikeno, T.; Araki, A.; Miyashita, C.; Itoh, S.; Sasaki, S.; Okada, E.; Kobayashi, S.; Kashino, I.; et al. Ten Years of Progress in the Hokkaido Birth Cohort Study on Environment and Children’s Health: Cohort Profile—Updated 2013. Environ. Health Prev. Med. 2013, 18, 429–450. [Google Scholar] [CrossRef]
- Kishi, R.; Sasaki, S.; Yoshioka, E.; Yuasa, M.; Sata, F.; Saijo, Y.; Kurahashi, N.; Tamaki, J.; Endo, T.; Sengoku, K.; et al. Cohort Profile: The Hokkaido Study on Environment and Children’s Health in Japan. Int. J. Epidemiol. 2011, 40, 611–618. [Google Scholar] [CrossRef]
- Zeng, Y.; Goudarzi, H.; Ait Bamai, Y.; Ketema, R.M.; Roggeman, M.; den Ouden, F.; Gys, C.; Miyashita, C.; Ito, S.; Konno, S.; et al. Exposure to Organophosphate Flame Retardants and Plasticizers Is Positively Associated with Wheeze and FeNO and Eosinophil Levels among School-Aged Children: The Hokkaido Study. Environ. Int. 2023, 181, 108278. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, H.; Ikeda-Araki, A.; Bamai, Y.A.; Ito, S.; Inao, T.; Yokota, I.; Miyashita, C.; Kishi, R.; Konno, S. Potential Determinants of T Helper 2 Markers and Their Distribution in School-Aged Children. Allergol. Int. 2023, 72, 100–106. [Google Scholar] [CrossRef] [PubMed]
- French, D. Advances in Clinical Mass Spectrometry. Adv. Clin. Chem. 2017, 79, 153–198. [Google Scholar] [PubMed]
- Gladine, C.; Ostermann, A.I.; Newman, J.W.; Schebb, N.H. MS-Based Targeted Metabolomics of Eicosanoids and Other Oxylipins: Analytical and Inter-Individual Variabilities. Free Radic. Biol. Med. 2019, 144, 72–89. [Google Scholar] [CrossRef]
- Fu, X.; Yin, H.H.; Wu, M.J.; He, X.; Jiang, Q.; Zhang, L.T.; Liu, J.Y. High Sensitivity and Wide Linearity LC-MS/MS Method for Oxylipin Quantification in Multiple Biological Samples. J. Lipid Res. 2022, 63, 100302. [Google Scholar] [CrossRef]
- Bergmann, C.B.; McReynolds, C.B.; Wan, D.; Singh, N.; Goetzman, H.; Caldwell, C.C.; Supp, D.M.; Hammock, B.D. SEH-Derived Metabolites of Linoleic Acid Drive Pathologic Inflammation While Impairing Key Innate Immune Cell Function in Burn Injury. Proc. Natl. Acad. Sci. USA 2022, 119, e2120691119. [Google Scholar] [CrossRef]
- Macêdo, A.P.A.; Muñoz, V.R.; Cintra, D.E.; Pauli, J.R. 12,13-DiHOME as a New Therapeutic Target for Metabolic Diseases. Life Sci. 2022, 290, 120229. [Google Scholar] [CrossRef]
- Chocholoušková, M.; Jirásko, R.; Vrána, D.; Gatěk, J.; Melichar, B.; Holčapek, M. Reversed Phase UHPLC/ESI-MS Determination of Oxylipins in Human Plasma: A Case Study of Female Breast Cancer. Anal. Bioanal. Chem. 2019, 411, 1239–1251. [Google Scholar] [CrossRef]
- Nagy, L.; Tontonoz, P.; Alvarez, J.G.A.; Chen, H.; Evans, R.M. Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARγ. Cell 1998, 93, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Dong, W.; Wang, G.; Xiu, W.; Pu, G.; Xu, J.; Ye, C.; Zhang, X.; Zhu, Y.; Wang, C. Senescence-Associated 13-HODE Production Promotes Age-Related Liver Steatosis by Directly Inhibiting Catalase Activity. Nat. Commun. 2023, 14, 8151. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.L.; Skeaff, C.M.; Green, T.J.; Gray, A.R. Serum N-3 Long-Chain PUFA Differ by Sex and Age in a Population-Based Survey of New Zealand Adolescents and Adults. Br. J. Nutr. 2008, 99, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, E.; Blanchet, C.; Lemieux, S.; Sauvé, L.; Gingras, S.; Ayotte, P.; Holub, B.J. N−3 Fatty Acids and Cardiovascular Disease Risk Factors among the Inuit of Nunavik. Am. J. Clin. Nutr. 2001, 74, 464–473. [Google Scholar] [CrossRef]
- De Groot, R.H.M.; Van Boxtel, M.P.J.; Schiepers, O.J.G.; Hornstra, G.; Jolles, J. Age Dependence of Plasma Phospholipid Fatty Acid Levels: Potential Role of Linoleic Acid in the Age-Associated Increase in Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations. Br. J. Nutr. 2009, 102, 1058–1064. [Google Scholar] [CrossRef]
- Harris, W.S.; Pottala, J.V.; Varvel, S.A.; Borowski, J.J.; Ward, J.N.; McConnell, J.P. Erythrocyte Omega-3 Fatty Acids Increase and Linoleic Acid Decreases with Age: Observations from 160,000 Patients. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 257–263. [Google Scholar] [CrossRef]
- Kawabata, T.; Hirota, S.; Hirayama, T.; Adachi, N.; Hagiwara, C.; Iwama, N.; Kamachi, K.; Araki, E.; Kawashima, H.; Kiso, Y. Age-Related Changes of Dietary Intake and Blood Eicosapentaenoic Acid, Docosahexaenoic Acid, and Arachidonic Acid Levels in Japanese Men and Women. Prostaglandins Leukot. Essent. Fat. Acids 2011, 84, 131–137. [Google Scholar] [CrossRef]
- Vasan, S.K.; Noordam, R.; Gowri, M.S.; Neville, M.J.; Karpe, F.; Christodoulides, C. The Proposed Systemic Thermogenic Metabolites Succinate and 12,13-DiHOME Are Inversely Associated with Adiposity and Related Metabolic Traits: Evidence from a Large Human Cross-Sectional Study. Diabetologia 2019, 62, 2079–2087. [Google Scholar] [CrossRef]
- Nieman, D.C.; Meaney, M.P.; John, C.S.; Knagge, K.J.; Chen, H. 9- and 13-Hydroxy-Octadecadienoic Acids (9 + 13 HODE) Are Inversely Related to Granulocyte Colony Stimulating Factor and IL-6 in Runners after 2 h Running. Brain Behav. Immun. 2016, 56, 246–252. [Google Scholar] [CrossRef]
- Tavendale, R.; Lee, A.J.; Smith, W.C.S.; Tunstall-Pedoe, H. Adipose Tissue Fatty Acids in Scottish Men and Women: Results from the Scottish Heart Health Study. Atherosclerosis 1992, 94, 161–169. [Google Scholar] [CrossRef]
- Lohner, S.; Fekete, K.; Marosvölgyi, T.; Decsi, T. Gender Differences in the Long-Chain Polyunsaturated Fatty Acid Status: Systematic Review of 51 Publications. Ann. Nutr. Metab. 2013, 62, 98–112. [Google Scholar] [CrossRef]
- Sands, S.A.; Reid, K.J.; Windsor, S.L.; Harris, W.S. The Impact of Age, Body Mass Index, and Fish Intake on the EPA and DHA Content of Human Erythrocytes. Lipids 2005, 40, 343–347. [Google Scholar] [CrossRef]
- Ostermann, A.I.; Willenberg, I.; Schebb, N.H. Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 1403–1414. [Google Scholar] [CrossRef]
- Zhang, Z.; Hennebelle, M.; Emami, S.; Taha, A.Y. Effects of Potato Processing and Frying on Oxylipin Concentrations. ACS Food Sci. Technol. 2021, 1, 1436–1443. [Google Scholar] [CrossRef]
Analytes | Precursor Ion [M−H]− (m/z) | Product Ion (m/z) | Collision Energy (eV) | Tube Lens (V) |
---|---|---|---|---|
Prostaglandin F3α | 351.218 | 193.1 | 20 | 65 |
Prostaglandin E3 | 349.202 | 269.2 | 15 | 60 |
8-iso Prostaglandin F2α | 353.234 | 193.0 | 27 | 81 |
(±)5-iPF2α-VI | 353.233 | 335.1 | 18 | 75 |
Prostaglandin F2α | 353.232 | 193.1 | 22 | 89 |
(±)5(6)-DiHETE | 335.221 | 145.0 | 15 | 61 |
(±)19(20)-DiHDPA | 361.236 | 229.4 | 20 | 63 |
(±)13(14)-DiHDPA | 361.238 | 233.1 | 15 | 65 |
9(S)-HOTrE | 293.211 | 171.1 | 15 | 64 |
(±)16(17)-DiHDPA | 361.237 | 193.1 | 15 | 67 |
13(S)-HOTrE | 293.212 | 195.0 | 15 | 66 |
(±)18-HEPE | 317.212 | 215.2 | 15 | 65 |
(±)10(11)-DiHDPA | 361.239 | 153.2 | 15 | 63 |
13(S)-HODE | 295.228 | 195.0 | 15 | 66 |
9(S)-HODE | 295.227 | 171.0 | 15 | 65 |
13-OxoODE | 293.214 | 113.0 | 15 | 73 |
(±)17(18)-EpETE | 317.209 | 215.0 | 15 | 66 |
(±)20-HDHA | 343.226 | 285.0 | 15 | 70 |
9-OxoODE | 293.213 | 185.0 | 20 | 68 |
(±)15-HETE | 319.229 | 219.1 | 16 | 67 |
15-OxoETE | 317.213 | 139.0 | 17 | 75 |
(±)8-HDHA | 343.227 | 125.0 | 20 | 62 |
(±)14(15)-EpETE | 317.211 | 248.0 | 15 | 65 |
(±)16-HDHA | 343.230 | 261.0 | 15 | 65 |
17(S)-HDHA | 343.229 | 245.0 | 15 | 63 |
(±)11-HETE | 319.228 | 167.0 | 18 | 74 |
(±)13-HDHA | 343.228 | 221.0 | 15 | 69 |
(±)11(12)-EpETE | 317.210 | 195.0 | 15 | 62 |
(±)8(9)-EpETE | 317.214 | 155.0 | 15 | 69 |
(±)17(18)-DiHETE | 335.221 | 203.0 | 15 | 63 |
(±)11(12)-DiHETE | 335.222 | 167.0 | 15 | 67 |
(±)8(9)-DiHETE | 335.223 | 185.0 | 15 | 64 |
(±)14(15)-DiHETE | 335.224 | 111.0 | 20 | 68 |
(±)12(13)-DiHOME | 313.238 | 183.0 | 20 | 62 |
(±)9(10)DiHOME | 313.239 | 201.0 | 20 | 64 |
13(S)-HOTrE(γ) | 293.212 | 193.0 | 15 | 67 |
15(S)-HEPE | 317.214 | 219.1 | 20 | 67 |
(±)11-HEPE | 317.212 | 195.1 | 15 | 63 |
(±)7(8)-DiHDPA | 361.238 | 127.1 | 20 | 62 |
(±)8-HEPE | 317.210 | 155.1 | 15 | 62 |
12(S)-HEPE | 317.213 | 207.1 | 17 | 75 |
(±)9-HEPE | 317.211 | 123.1 | 15 | 66 |
5(S)-HEPE | 317.209 | 129.1 | 20 | 68 |
(±)10-HDHA | 343.226 | 181.0 | 15 | 66 |
14(S)-HDHA | 343.230 | 205.0 | 15 | 67 |
(±)8-HETE | 319.227 | 155.0 | 16 | 60 |
(±)12-HETE | 319.229 | 135.0 | 17 | 71 |
12-OxoETE | 317.216 | 153.0 | 17 | 72 |
(±)11-HDHA | 343.223 | 165.0 | 15 | 62 |
(±)7-HDHA | 343.224 | 141.0 | 15 | 64 |
(±)19(20)-EpDPA | 343.225 | 241.6 | 15 | 66 |
(±)5-HETE | 319.226 | 115.0 | 15 | 60 |
(±)12(13)-EpOME | 295.228 | 195.0 | 15 | 66 |
(±)9(10)-EpOME | 295.227 | 171.0 | 15 | 65 |
(±)14(15)-EET | 319.230 | 219.1 | 14 | 62 |
(±)4-HDHA | 343.231 | 101.0 | 15 | 61 |
(±)16(17)-EpDPA | 343.232 | 274.4 | 15 | 69 |
5-OxoETE | 317.215 | 203.2 | 20 | 79 |
(±)5(6)-EET | 319.225 | 191.3 | 15 | 74 |
(±)13(14)-EpDPA | 343.227 | 161.3 | 15 | 70 |
(±)11(12)-EET | 319.228 | 208.0 | 15 | 75 |
(±)10(11)-EpDPA | 343.228 | 153.2 | 15 | 61 |
(±)8(9)-EET | 319.231 | 155.0 | 16 | 79 |
(±)7(8)-EpDPA | 343.229 | 112.8 | 15 | 65 |
EPA | 301.217 | 257.2 | 16 | 90 |
DHA | 327.233 | 283.2 | 14 | 92 |
AA | 303.233 | 259.3 | 18 | 91 |
LA | 279.233 | 261.1 | 23 | 91 |
AA-d8 | 311.283 | 267.3 | 16 | 62 |
12(S)-HETE-d8 | 327.278 | 184.0 | 15 | 64 |
15(S)-HETE-d8 | 327.277 | 226.0 | 15 | 67 |
5(S)-HETE-d8 | 327.279 | 116.0 | 15 | 65 |
8-isoProstaglandin F2α-d4 | 357.259 | 197.0 | 27 | 76 |
Analytes | R.T. (min) | LOD (pg) | LOQ (pg) | R2 | Linear Range (pg) | Slope |
---|---|---|---|---|---|---|
Prostaglandin F3α | 12.36 | 5 | 10 | 0.9966 | 5–1000 | 0.01011 |
Prostaglandin E3 | 12.48 | 0.5 | 1 | 0.9993 | 1–1000 | 0.09813 |
8-iso Prostaglandin F2α | 12.52 | 1 | 2.5 | 0.9967 | 2.5–1000 | 0.05235 |
(±)5-iPF2α-VI | 12.68 | 2.5 | 5 | 0.9988 | 5–1000 | 0.05519 |
Prostaglandin F2α | 12.94 | 0.5 | 1 | 0.995 | 1–1000 | 0.04031 |
(±)17(18)-DiHETE | 16.15 | 5 | 10 | 0.995 | 10–1000 | 0.0052 |
(±)11(12)-DiHETE | 16.85 | 0.5 | 1 | 0.9979 | 1–1000 | 0.03615 |
(±)8(9)-DiHETE | 17.21 | 1 | 2.5 | 0.9995 | 2.5–1000 | 0.0175 |
(±)14(15)-DiHETE | 17.22 | 1 | 2.5 | 0.9925 | 2.5–1000 | 0.0067 |
(±)12(13)-DiHOME | 17.3 | 0.5 | 1 | 0.9973 | 1–1000 | 0.08608 |
(±)9(10)DiHOME | 17.79 | 0.5 | 1 | 0.9987 | 1–1000 | 0.13526 |
(±)5(6)-DiHETE | 18.16 | 2.5 | 5 | 0.995 | 5–1000 | 0.05946 |
(±)19(20)-DiHDPA | 18.57 | 2.5 | 5 | 0.9921 | 5–1000 | 0.00771 |
(±)13(14)-DiHDPA | 19.17 | 2.5 | 5 | 0.9988 | 5–1000 | 0.01391 |
9(S)-HOTrE | 19.3 | 1 | 2.5 | 0.9945 | 2.5–1000 | 0.02924 |
(±)16(17)-DiHDPA | 19.52 | 0.5 | 1 | 0.9987 | 1–1000 | 0.02587 |
13(S)-HOTrE | 19.66 | 2.5 | 5 | 0.9955 | 2.5–1000 | 0.01063 |
(±)18-HEPE | 19.81 | 1 | 2.5 | 0.9995 | 2.5–1000 | 0.02875 |
(±)10(11)-DiHDPA | 19.89 | 1 | 2.5 | 0.9979 | 2.5–1000 | 0.02351 |
13(S)-HOTrE(γ) | 20.14 | 1 | 2.5 | 0.9993 | 2.5–1000 | 0.04092 |
15(S)-HEPE | 20.64 | 2.5 | 5 | 0.996 | 5–1000 | 0.00493 |
(±)11-HEPE | 20.75 | 1 | 2.5 | 0.9989 | 2.5–1000 | 0.02179 |
(±)7(8)-DiHDPA | 20.84 | 5 | 10 | 0.9953 | 10–1000 | 0.02686 |
(±)8-HEPE | 20.98 | 2.5 | 5 | 0.9959 | 5–1000 | 0.1022 |
12(S)-HEPE | 21.23 | 25 | 50 | 0.9926 | 50–1000 | 0.00735 |
(±)9-HEPE | 21.46 | 5 | 10 | 0.9947 | 10–1000 | 0.00917 |
5(S)-HEPE | 21.93 | 1 | 2.5 | 0.9958 | 2.5–1000 | 0.06759 |
13(S)-HODE | 22.43 | 0.5 | 1 | 0.9977 | 1–1000 | 0.05315 |
9(S)-HODE | 22.55 | 0.25 | 0.5 | 0.9991 | 0.5–1000 | 0.07289 |
13-OxoODE | 22.67 | 2.5 | 5 | 0.9954 | 5–1000 | 0.00611 |
(±)17(18)-EpETE | 22.71 | 2.5 | 5 | 0.9978 | 5–1000 | 0.027 |
(±)20-HDHA | 22.97 | 10 | 25 | 0.9967 | 25–1000 | 0.00982 |
9-OxoODE | 23.28 | 2.5 | 5 | 0.9974 | 5–1000 | 0.06133 |
(±)15-HETE | 23.28 | 2.5 | 5 | 0.9988 | 5–1000 | 0.0156 |
15-OxoETE | 23.45 | 10 | 25 | 0.9983 | 25–1000 | 0.00851 |
(±)8-HDHA | 23.54 | 25 | 50 | 0.9818 | 50–1000 | 0.00401 |
(±)14(15)-EpETE | 23.56 | 2.5 | 5 | 0.994 | 5–1000 | 0.01266 |
(±)16-HDHA | 23.56 | 25 | 50 | 0.9965 | 50–1000 | 0.00359 |
17(S)-HDHA | 23.68 | 5 | 10 | 0.9988 | 10–1000 | 0.00847 |
(±)11-HETE | 23.75 | 0.5 | 1 | 0.9993 | 1–1000 | 0.06515 |
(±)13-HDHA | 23.79 | 1 | 2.5 | 0.9904 | 2.5–1000 | 0.01295 |
(±)11(12)-EpETE | 23.8 | 5 | 10 | 0.9924 | 10–1000 | 0.00641 |
(±)8(9)-EpETE | 23.92 | 2.5 | 5 | 0.9983 | 5–1000 | 0.03193 |
(±)10-HDHA | 24.02 | 2.5 | 5 | 0.9995 | 5–1000 | 0.01167 |
14(S)-HDHA | 24.03 | 1 | 2.5 | 0.9997 | 2.5–1000 | 0.01364 |
(±)8-HETE | 24.1 | 1 | 2.5 | 0.9989 | 2.5–1000 | 0.07756 |
(±)12-HETE | 24.11 | 5 | 10 | 0.996 | 10–1000 | 0.00474 |
12-OxoETE | 24.18 | 2.5 | 5 | 0.9981 | 5–1000 | 0.01544 |
(±)11-HDHA | 24.26 | 2.5 | 5 | 0.9929 | 2.5–1000 | 0.00515 |
(±)7-HDHA | 24.37 | 2.5 | 5 | 0.9981 | 5–1000 | 0.03476 |
(±)5-HETE | 24.57 | 0.625 | 1.5625 | 0.9972 | 1.5625–1000 | 0.05294 |
(±)12(13)-EpOME | 24.76 | 0.1 | 0.25 | 0.9974 | 0.25–1000 | 0.15922 |
(±)19(20)-EpDPA | 24.83 | 5 | 10 | 0.9923 | 10–1000 | 0.00335 |
(±)9(10)-EpOME | 24.88 | 1 | 2.5 | 0.9997 | 2.5–1000 | 0.09169 |
(±)14(15)-EET | 24.94 | 2.5 | 5 | 0.9986 | 2.5–1000 | 0.01247 |
(±)4-HDHA | 25.08 | 2.5 | 5 | 0.9986 | 5–1000 | 0.06812 |
(±)16(17)-EpDPA | 25.2 | 2.5 | 5 | 0.9987 | 5–1000 | 0.00355 |
5-OxoETE | 25.28 | 5 | 10 | 0.9959 | 10–1000 | 0.05103 |
(±)13(14)-EpDPA | 25.33 | 5 | 10 | 0.9936 | 10–1000 | 0.00624 |
(±)11(12)-EET | 25.42 | 10 | 25 | 0.9949 | 25–1000 | 0.00654 |
(±)10(11)-EpDPA | 25.45 | 2.5 | 5 | 0.9966 | 5–1000 | 0.02115 |
(±)8(9)-EET | 25.54 | 10 | 25 | 0.9962 | 25–1000 | 0.02073 |
(±)7(8)-EpDPA | 25.58 | 10 | 25 | 0.9979 | 25–1000 | 0.00974 |
(±)5(6)-EET | 25.66 | 5 | 10 | 0.9943 | 10–1000 | 0.01971 |
EPA | 26.78 | 10 | 20 | 0.9992 | 20–200,000 | 0.00549 |
DHA | 27.51 | 5 | 10 | 0.9998 | 10–200,000 | 0.01596 |
AA | 27.71 | 10 | 20 | 0.9997 | 20–200,000 | 0.00134 |
LA | 27.81 | 10 | 20 | 0.9976 | 20–200,000 | 0.00043 |
50 ng/mL | 75 ng/mL | 100 ng/mL | ||||
---|---|---|---|---|---|---|
Analytes | Recovery | Matrix Effect (%) | Recovery | Matrix Effect (%) | Recovery | Matrix Effect (%) |
(%) | (%) | (%) | ||||
AA * | 92.5 | 95.5 | 96 | 98.5 | 106.1 | 94.9 |
(±)15-HETE | 121.9 | 97.3 | 98.8 | 103.2 | 94.6 | 93.3 |
5-OxoETE | 99 | 110.7 | 100.6 | 101.9 | 100.3 | 116.8 |
PGF2α | 99.4 | 100.9 | 101 | 104.5 | 105.4 | 105.7 |
(±)11(12)-EET | 92.4 | 95.9 | 108 | 88.8 | 121.3 | 115.8 |
LA * | 92.2 | 89.7 | 114.1 | 108.3 | 114.5 | 100.3 |
13(S)-HODE | 102.9 | 103.8 | 97.2 | 110.3 | 102 | 96.7 |
13-OxoODE | 84.2 | 110.5 | 95.8 | 109.1 | 99.5 | 102.9 |
(±)9(10)-DiHOME | 84.4 | 103 | 93.7 | 104.4 | 92.8 | 109.3 |
(±)9(10)-EpOME | 93.8 | 87.4 | 83.7 | 87.5 | 85.8 | 85.8 |
DHA * | 89.5 | 93.6 | 103.6 | 106.1 | 116.3 | 105.8 |
(±)4-HDHA | 104.5 | 98.1 | 122.1 | 94.5 | 106.4 | 107.3 |
(±)13(14)-EpDPA | 87.2 | 96.1 | 82.6 | 91.4 | 82.5 | 84.3 |
(±)7(8)-DiHDPA | 90.3 | 101.6 | 98.3 | 98.7 | 97.1 | 113.4 |
EPA * | 92.7 | 94.2 | 98.6 | 99.3 | 108.7 | 95.4 |
(±)11-HEPE | 95 | 102.8 | 96.3 | 104.5 | 94.6 | 107.7 |
(±)17(18)-EpETE | 92.7 | 99.7 | 107 | 111.7 | 102.8 | 112.2 |
(±)17(18)-DiHETE | 98.2 | 102.5 | 99.2 | 106.2 | 99.9 | 108 |
13(S)-HOTrE | 89.5 | 99.4 | 100.8 | 113.8 | 98.9 | 106.9 |
Mean ± SD (total) | 90 ± 13 | 97 ± 11 | 95 ± 12 | 98 ± 14 | 95 ± 13 | 90 ± 18 |
50 ng/mL | 75 ng/mL | 100 ng/mL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (%) | Inter-Day (%) | Intra-Day (%) | Inter-Day (%) | Intra-Day (%) | Inter-Day (%) | |||||||
Analytes | Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | Accuracy | Precision |
AA * | 73.9 | 3.7 | 85.0 | 1.8 | 75.7 | 4.0 | 82.9 | 3.5 | 90.6 | 4.2 | 77.6 | 2.0 |
15HETE | 103.7 | 9.4 | 75.2 | 8.5 | 91.0 | 7.3 | 81.4 | 8.2 | 84.8 | 4.5 | 78.5 | 4.4 |
5-OxoETE | 93.6 | 8.1 | 93.5 | 5.6 | 90.3 | 7.6 | 89.3 | 6.8 | 89.9 | 2.6 | 85.8 | 6.0 |
PGF2α | 86.4 | 3.5 | 87.0 | 2.1 | 90.7 | 1.5 | 86.0 | 1.2 | 98.3 | 1.9 | 92.5 | 0.8 |
(±)11(12)-EET | 98.4 | 6.5 | 99.7 | 9.4 | 81.9 | 14.4 | 87.7 | 12.5 | 88.2 | 10.8 | 76.7 | 6.9 |
LA * | 75.7 | 6.4 | 83.4 | 5.0 | 79.6 | 4.2 | 82.3 | 6.4 | 93.6 | 3.3 | 76.9 | 2.1 |
13(S)-HODE | 94.2 | 5.3 | 78.0 | 2.1 | 89.0 | 1.4 | 80.4 | 4.5 | 89.9 | 1.9 | 85.3 | 5.5 |
13-OxoODE | 68.5 | 5.2 | 79.0 | 2.8 | 81.5 | 5.3 | 81.1 | 3.6 | 83.3 | 5.4 | 82.5 | 7.3 |
(±)9(10)DiHOME | 72.5 | 4.4 | 76.4 | 4.2 | 76.8 | 2.8 | 75.4 | 2.9 | 75.0 | 0.6 | 75.1 | 4.9 |
(±)9(10)-EpOME | 89.0 | 10.2 | 91.7 | 8.0 | 81.9 | 14.0 | 80.6 | 4.9 | 79.6 | 11.6 | 79.5 | 5.5 |
DHA * | 76.9 | 3.8 | 88.9 | 3.0 | 87.4 | 2.0 | 99.5 | 2.6 | 110.7 | 5.3 | 92.9 | 3.9 |
(±)4-HDHA | 104.5 | 12.4 | 87.0 | 0.9 | 111.0 | 8.1 | 86.4 | 4.7 | 92.0 | 11.4 | 76.5 | 6.6 |
(±)13(14)-EpDPA | 79.0 | 12.9 | 78.6 | 12.8 | 77.8 | 7.1 | 76.7 | 6.2 | 83.4 | 7.6 | 74.5 | 6.6 |
(±)7(8)-DiHDPA | 80.9 | 4.6 | 93.5 | 11.4 | 89.9 | 9.7 | 85.6 | 5.5 | 86.6 | 2.5 | 88.1 | 4.4 |
EPA * | 79.4 | 4.1 | 88.9 | 1.5 | 82.2 | 3.2 | 90.0 | 3.7 | 104.5 | 3.0 | 85.7 | 2.1 |
(±)11-HEPE | 80.6 | 10.3 | 83.8 | 4.1 | 80.1 | 1.6 | 77.5 | 4.1 | 77.5 | 2.7 | 78.6 | 4.2 |
(±)17(18)-EpETE | 97.3 | 14.8 | 104.6 | 8.3 | 105.4 | 4.1 | 101.9 | 7.5 | 102.4 | 6.6 | 100.8 | 4.4 |
(±)17(18)-DiHETE | 91.7 | 2.1 | 91.4 | 5.2 | 88.2 | 9.1 | 86.0 | 3.8 | 90.1 | 1.4 | 92.2 | 4.9 |
13(S)-HOTrE | 81.2 | 10.8 | 82.2 | 2.5 | 88.9 | 5.4 | 89.0 | 2.4 | 86.3 | 4.3 | 89.5 | 3.6 |
Boys (ng/mL) | Girls (ng/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Analytes | 9 y | 10 y | 11 y | 12 y | 9 y | 10 y | 11 y | 12 y |
(Detection Frequency) | ||||||||
(±)12(13)-DiHOME | 0.4 | 0.5 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 |
(83.30%) | (0.2–0.7) | (0.2–0.8) | (0.2–0.7) | (0.1–0.7) | (0.2–0.8) | (0.2–0.6) | (0.2–0.5) | (0.2–0.9) |
(±)9(10)-DiHOME | 0.3 | 0.6 | 0.4 | 0.4 | 0.4 | 0.3 | 0.2 | 0.6 |
(89.20%) | (0.1–0.8) | (0.2–0.9) | (0.3–0.6) | (0.2–0.9) | (0.2–0.9) | (0.2–0.8) | (0.1–0.7) | (0.3–1.0) |
13(S)-HODE | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 |
(58.20%) | (0.0–0.3) | (0.0–0.3) | (0.0–0.2) | (0.0–0.3) | (0.0–0.4) | (0.0–0.2) | (0.0–0.6) | (0.0–0.3) |
9(S)-HODE | 0.2 | 0.3 | 0.1 | 0.3 | 0.4 | 0.2 | 0.3 | 0.2 |
(85.40%) | (0.1–0.6) | (0.1–0.5) | (0.1–0.6) | (0.1–0.5) | (0.2–0.6) | (0.1–0.7) | (0.1–0.6) | (0.1–0.7) |
EPA | 165 | 178 | 165 | 162 | 145 | 142 | 163 | 158 |
(100%) | (100–279) | (108–241) | (108–264) | (124–228) | (101–196) | (106–222) | (108–181) | (90–200) |
DPA | 908 | 926 | 968 | 1111 | 905 | 915 | 868 | 1004 |
(100%) | (738–1320) | (744–1333) | (765–1325) | (727–1304) | (715–1191) | (697–1295) | (729–1105) | (737–1387) |
AA | 2315 | 2185 | 2176 | 2525 | 2050 | 2064 | 1913 | 2117 |
(100%) | (1745–2756) | (1680–2628) | (1658–2708) | (1398–3034) | (1663–2407) | (1756–2562) | (1453–2111) | (1887–2406) |
LA | 5779 | 5465 | 5675 | 5905 | 5993 | 6544 | 5761 | 5866 |
(100%) | (4415–7944) | (4841–7751) | (4862–7932) | (3780–8238) | (4398–8514) | (5210–8584) | (4444–6546) | (4716–8438) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gowda, S.G.B.; Gowda, D.; Ikeda, A.; Bamai, Y.A.; Ketema, R.M.; Kishi, R.; Chiba, H.; Hui, S.-P. Development of a Liquid Chromatography–Tandem Mass Spectrometry Method for Oxylipin Analysis and Its Application to Children’s Plasma. Diagnostics 2025, 15, 1870. https://doi.org/10.3390/diagnostics15151870
Li Y, Gowda SGB, Gowda D, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chiba H, Hui S-P. Development of a Liquid Chromatography–Tandem Mass Spectrometry Method for Oxylipin Analysis and Its Application to Children’s Plasma. Diagnostics. 2025; 15(15):1870. https://doi.org/10.3390/diagnostics15151870
Chicago/Turabian StyleLi, Yonghan, Siddabasave Gowda B. Gowda, Divyavani Gowda, Atsuko Ikeda, Yu Ait Bamai, Rahel Mesfin Ketema, Reiko Kishi, Hitoshi Chiba, and Shu-Ping Hui. 2025. "Development of a Liquid Chromatography–Tandem Mass Spectrometry Method for Oxylipin Analysis and Its Application to Children’s Plasma" Diagnostics 15, no. 15: 1870. https://doi.org/10.3390/diagnostics15151870
APA StyleLi, Y., Gowda, S. G. B., Gowda, D., Ikeda, A., Bamai, Y. A., Ketema, R. M., Kishi, R., Chiba, H., & Hui, S.-P. (2025). Development of a Liquid Chromatography–Tandem Mass Spectrometry Method for Oxylipin Analysis and Its Application to Children’s Plasma. Diagnostics, 15(15), 1870. https://doi.org/10.3390/diagnostics15151870