The Implementation and Application of a Saudi Voxel-Based Anthropomorphic Phantom in OpenMC for Radiological Imaging and Dosimetry
Abstract
1. Introduction
2. Materials and Methods
2.1. Assigning the Phantom’s Physical Characteristics
2.2. Geometry Definition
2.3. Lattice Definition and Cell Cards
2.4. Radiography Simulation
2.5. Effective Dose Calculations
3. Results and Discussion
3.1. Visualization
3.2. Radiography Projection Simulation
3.3. Effective Dose
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeWerd, L.A. The phantoms of medical and health physics. Med. Phys. 2014, 41, 050901. [Google Scholar]
- Denisova, N.; Ondar, M.; Kertesz, H.; Beyer, T. Development of anthropomorphic mathematical phantoms for simulations of clinical cases in diagnostic nuclear medicine. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2023, 11, 433–441. [Google Scholar] [CrossRef]
- Snyder, W.S.; Ford, M.R.; Warner, G.G.; Fisher, H.L., Jr. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J. Nucl. Med. 1969, 10, 5–52. [Google Scholar]
- Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P. Two dedicated software, voxel-based, anthropomorphic (torso and head) phantoms. Radiat. Prot. Dosim. 1995, 60, 433–436. [Google Scholar]
- McHale, S.R.; Walker, E.R. Dose conversion coefficients from monoenergetic neutrons computed with the MCNP6. 2 code in the VIP-man phantom. Radiat. Prot. Dosim. 2021, 193, 105–123. [Google Scholar] [CrossRef]
- Alghamdi, A.A. MCNPX Estimation of Photoneutron Dose to Eye Voxel Anthropomorphic Phantom From 18 MV Linear Accelerator. Dose-Response 2023, 21, 15593258231169807. [Google Scholar] [CrossRef]
- Zankl, M.; Drexler, G.; Petoussi-Henss, N.; Saito, K. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Radiat. Prot. Dosim. 1997, 70, 383–388. [Google Scholar]
- Ferrari, P.; Gualdrini, G. Fluence to organ dose conversion coefficients calculated with the voxel model NORMAN-05 and the MCNPX Monte Carlo code for external monoenergetic photons from 20 keV to 100 MeV. Radiat. Prot. Dosim. 2007, 123, 295–317. [Google Scholar] [CrossRef]
- Sato, K.; Noguchi, H.; Emoto, Y.; Koga, S.; Saito, K. Japanese adult male voxel phantom constructed on the basis of CT images. Radiat. Prot. Dosim. 2007, 123, 337–344. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, Z.; Li, J.; Qiu, R.; Zhang, B.; Ma, J.; Li, R.; Li, W.; Bi, L. Organ dose conversion coefficients on an ICRP-based Chinese adult male voxel model from idealized external photons exposures. Phys. Med. Biol. 2009, 54, 6645–6665. [Google Scholar] [CrossRef]
- Kramer, R.; Khoury, H.J.; Vieira, J.W.; Lima, V.; Loureiro, E.; Hoff, G.; Kawrakow, I. The FAX06 and the MAX06 Computational Voxel Phantoms. Radiat. Prot. Dosim. 2010, 140, 130–136. [Google Scholar]
- Zankl, M. Adult male and female reference computational phantoms (ICRP Publication 110). Jpn. J. Health Phys. 2010, 45, 357–369. [Google Scholar] [CrossRef]
- Ma, A.K.; Hussein, M.A.; Altaher, K.M.; Farid, K.Y.; Amer, M.; Aldhafery, B.F.; Alghamdi, A.A. Fluence-to-effective dose conversion coefficients from a Saudi population-based phantom for monoenergetic photon beams from 10 keV to 20 MeV. J. Radiol. Prot. 2014, 35, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yeom, Y.S.; Griffin, K.; Lee, C.; Lee, A.K.; Choi, H. Organ dose conversion coefficients calculated for Korean pediatric and adult voxel phantoms exposed to external photon fields. J. Radiat. Prot. Res. 2020, 45, 69–75. [Google Scholar] [CrossRef]
- Segars, W.P.; Tsui, B.M.W. MCAT to XCAT: The evolution of 4D computerized phantoms for imaging research. Proc. IEEE 2009, 97, 1954–1968. [Google Scholar] [CrossRef]
- Maynard, M.R.; Geyer, J.W.; Aris, J.P.; Shifrin, R.Y.; Bolch, W. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry. Phys. Med. Biol. 2011, 56, 4839–4879. [Google Scholar] [CrossRef]
- Lee, H.; Yeom, Y.S.; Nguyen, T.T.; Choi, C.; Han, H.; Shin, B.; Zhang, X.; Kim, C.H.; Chung, B.S.; Zankl, M. Percentile-specific computational phantoms constructed from ICRP mesh-type reference computational phantoms (MRCPs). Phys. Med. Biol. 2019, 64, 045005. [Google Scholar] [CrossRef]
- Rehani, M.M.; Xu, X.G. Dose, dose, dose, but where is the patient dose? Radiat. Prot. Dosim. 2024, 200, 945–955. [Google Scholar] [CrossRef]
- Soares, A.D.; Paixão, L.; Facure, A. Determination of the dose rate constant through Monte Carlo simulations with voxel phantoms. Med. Phys. 2018, 45, 5283–5292. [Google Scholar] [CrossRef]
- Amato, E.; Auditore, L.; Italiano, A.; Pistone, D.; Arce, P.; Campennì, A.; Baldari, S. Full Monte Carlo internal dosimetry in nuclear medicine by means of GAMOS. J. Phys. Conf. Ser. 2020, 1561, 012002. [Google Scholar] [CrossRef]
- Cordeiro, L.P.; de Sá, L.V.; Kitamikado, R.A.; Sapienza, M.T.; Bonifacio, D.A. Optimized Monte Carlo simulations for voxel-based internal dosimetry. Phys. Med. Biol. 2023, 68, 115004. [Google Scholar] [CrossRef]
- Götz, T.I. Estimation of Dose Distribution for Lu-177 Therapies in Nuclear Medicine. Doctoral Dissertation, University of Regensburg, Regensburg, Germany, 2020. [Google Scholar]
- Zanotti-Fregonara, P.; Chastan, M.; Edet-Sanson, A.; Ekmekcioglu, O.; Erdogan, E.B.; Hapdey, S.; Hindie, E.; Stabin, M.G. New fetal dose estimates from 18F-FDG administered during pregnancy: Standardization of dose calculations and estimations with voxel-based anthropomorphic phantoms. J. Nucl. Med. 2016, 57, 1760–1763. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.K. Calculation by Monte Carlo of Effective Dose in Voxel Anthropomorphic Phantoms for Radiological Emergency Assessments; Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ): Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Fedon, C.; Caballo, M.; Sechopoulos, I. Internal breast dosimetry in mammography: Monte Carlo validation in homogeneous and anthropomorphic breast phantoms with a clinical mammography system. Med. Phys. 2018, 45, 3950–3961. [Google Scholar] [CrossRef] [PubMed]
- Borbinha, J.; Di Maria, S.; Madeira, P.; Belchior, A.; Baptista, M.; Vaz, P. Increasing organ dose accuracy through voxel phantom organ matching with individual patient anatomy. Radiat. Phys. Chem. 2019, 159, 35–46. [Google Scholar] [CrossRef]
- Waluk, K.; Pietrzak, J. Dosimetric verification of cancer patient’s treatment plan using an anthropomorphic, 3D-printed phantom. Appl. Radiat. Isot. 2023, 191, 110490. [Google Scholar] [CrossRef]
- Tran-Gia, J.; Schlögl, S.; Lassmann, M. Design and fabrication of kidney phantoms for internal radiation dosimetry using 3D printing technology. J. Nucl. Med. 2016, 57, 1998–2005. [Google Scholar] [CrossRef]
- da Silva, T.M.; Soares, A.B.; de Lucena, E.A.; Dantas, A.L.; Mendes, B.M.; Junior, P.S.; Bourguignon, F.L.; de Melo Dórea, M.; Romani, E.C.; Dantas, B.M. Use of voxelized thyroid models to develop a physical-anthropomorphic phantom for 3D printing. Braz. J. Radiat. Sci. 2021, 9 (Suppl. S2C), 1–14. [Google Scholar] [CrossRef]
- The OpenMC Monte Carlo Code; MIT: Cambridge, MA, USA, 2024. Available online: https://docs.openmc.org/ (accessed on 19 October 2024).
- Ma, A.K.; Altaher, K.; Hussein, M.A.; Amer, M.; Farid, K.Y.; Alghamdi, A.A. Photon fluence-to-effective dose conversion coefficients calculated from a Saudi population-based phantom. Radiat. Phys. Chem. 2014, 95, 128–130. [Google Scholar] [CrossRef]
- Petoussi-Henss, N.; Bolch, W.E.; Eckerman, K.F.; Endo, A.; Hertel, N.; Hunt, J.; Menzel, H.G.; Pelliccioni, M.; Schlattl, H.; Zankl, M. ICRP Publication 116—The first ICRP/ICRU application of the male and female adult reference computational phantoms. Phys. Med. Biol. 2014, 59, 5209–5224. [Google Scholar] [CrossRef]
- ICRP. ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection; Elsevier: Oxford, UK, 2007. [Google Scholar]
- Shimwell, J.; Delaporte-Mathurin, R. A Python Package for Plotting OpenMC Regular Mesh Tally Results with Underlying Geometry from Neutronics Simulations. Version: 1.0.0 Date-Released: 2022-09-01. Available online: https://github.com/fusion-energy/openmc_regular_mesh_plotter (accessed on 15 December 2024).
- Alghamdi, A.A.; Aljassir, A.Z.; Almuaybid, R.O.; Alkhulaiwi, S.K.; Alnajim, F.A.; Alshehri, R.I.; Ma, A.; Bradley, D.A. Photon effective dose prediction using XGBoost: A machine learning approach for radiological protection. Radiat. Phys. Chem. 2025, 229, 112552. [Google Scholar] [CrossRef]
- Lund, A.L.; Romano, P.K. Implementation and Validation of Photon Transport in OpenMC; Argonne National Laboratory (ANL): Argonne, IL, USA, 2018. [Google Scholar]
- Romano, P.K.; Horelik, N.E.; Herman, B.R.; Nelson, A.G.; Forget, B.; Smith, K. OpenMC: A state-of-the-art Monte Carlo code for research and development. Ann. Nucl. Energy 2015, 82, 90–97. [Google Scholar] [CrossRef]
- Alghamdi, A.A. Machine learning for predicting Neutron effective dose. Appl. Sci. 2024, 14, 5740. [Google Scholar] [CrossRef]
- Darda, S.A.; Soliman, A.Y.; Aljohani, M.S.; Xoubi, N. Technical feasibility study of BAEC TRIGA reactor (BTRR) as a neutron source for BNCT using OpenMC Monte Carlo code. Prog. Nucl. Energy 2020, 126, 103418. [Google Scholar] [CrossRef]
- Zhong, W.B.; Chen, J.; Teng, Y.C.; Liu, Y.H. Introduction to the Monte Carlo dose engine COMPASS for BNCT. Sci. Rep. 2023, 13, 11965. [Google Scholar] [CrossRef]
- Saxena, S.; Sharma, H. Prediction and assessment of optimal concrete compositions for overall radiation protection and reduced global warming potential. Sci. Rep. 2025, 15, 5785. [Google Scholar] [CrossRef]
- Salmon, J.; McIntosh-Smith, S. Exploiting hardware-accelerated ray tracing for Monte Carlo particle transport with OpenMC. In Proceedings of the 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), Denver, CO, USA, 18 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Tramm, J.R.; Romano, P.K.; Doerfert, J.; Lund, A.; Shriwise, P.; Siegel, A.; Ridley, G.; Pastrello, A. Toward portable GPU acceleration of the OpenMC Monte Carlo particle transport code. In Proceedings of the International Conference on Physics of Reactors (PHYSOR 2022), Pittsburgh, PA, USA, 15–20 May 2022. [Google Scholar]
Energy (MeV) | ICRP-116 (pSv/cm2) | XGB-SA (pSv/cm2) | MCNPX (pSv/cm2) | OpenMC (pSv/cm2) | OpenMC Propagated Uncertainty | OpenMC vs. ICRP-116 (%) | OpenMC vs. XGB-SA (%) | OpenMC vs. MCNPX (%) | SA-Average vs. ICRP-116 (%) |
---|---|---|---|---|---|---|---|---|---|
0.01 | 0.0685 | 0.053404 | 0.0521 | 0.044117 | 3.38 × 10−9 | −35.59 | −17.3 | −15.32 | 0.0498 (−27.1) |
0.015 | 0.156 | 0.133008 | - | 0.133593 | 5.03 × 10−8 | −14.36 | 0.43 | - | 0.1333 (−14.5) |
0.02 | 0.225 | 0.238327 | 0.247 | 0.17249 | 7.57 × 10−8 | −23.33 | −27.62 | −30.16 | 0.2192 (−2.5) |
0.03 | 0.312 | 0.349581 | - | 0.275499 | 5.27 × 10−8 | −11.69 | −21.19 | - | 0.3125 (0.17) |
0.04 | 0.35 | 0.389384 | - | 0.30138 | 3.26 × 10−8 | −13.89 | −22.60 | - | 0.3453 (−1.31) |
0.05 | 0.369 | 0.403176 | 0.309 | 0.319378 | 2.79 × 10−8 | −13.44 | −20.78 | 3.35 | 0.3438 (−6.81) |
0.06 | 0.389 | 0.415689 | - | 0.344054 | 2.97 × 10−8 | −11.55 | −17.23 | - | 0.3798 (−2.34) |
0.07 | 0.411 | 0.441238 | - | 0.374955 | 3.11 × 10−8 | -8.76 | -15.02 | - | 0.4080 (-0.70) |
0.08 | 0.443 | 0.469633 | - | 0.397938 | 3.74 × 10−8 | −10.17 | −15.26 | - | 0.4337 (−2.08) |
0.1 | 0.518 | 0.544638 | 0.478 | 0.478776 | 4.32 × 10−8 | −7.57 | −12.09 | 0.16 | 0.5004 (−3.38) |
0.15 | 0.747 | 0.792887 | - | 0.711307 | 8.09 × 10−8 | −4.77 | −10.28 | - | 0.7520 (0.68) |
0.2 | 1 | 1.031243 | 0.98 | 0.934966 | 1.19 × 10−7 | −6.50 | −9.33 | −4.59 | 0.9820 (−1.79) |
0.3 | 1.51 | 1.553238 | - | 1.469746 | 1.98 × 10−7 | −2.66 | −5.37 | - | 1.5114 (0.09) |
0.4 | 2 | 2.036597 | - | 1.908442 | 1.96 × 10−6 | −4.57 | −6.29 | - | 1.9725 (−1.37) |
0.5 | 2.47 | 2.498128 | 2.44 | 2.345238 | 1.23 × 10−6 | −5.051 | −6.12 | −3.88 | 2.4277 (−1.70) |
0.511 | 2.52 | 2.542566 | - | 2.399972 | 1.19 × 10−6 | −4.76 | −5.60 | - | 2.471 (−1.93) |
0.6 | 2.91 | 2.920783 | - | 2.776333 | 1.86 × 10−6 | −4.59 | −4.94 | - | 2.848 (−2.11) |
0.662 | 3.17 | 3.200496 | - | 3.145769 | 2.29 × 10−6 | −0.76 | −1.71 | - | 3.173 (0.09) |
0.8 | 3.73 | 3.78699 | - | 3.519958 | 3.54 × 10−6 | −5.63 | −7.05 | - | 3.653 (−2.05) |
1 | 4.49 | 4.541924 | 4.46 | 3.878794 | 5.15 × 10−6 | −13.61 | −14.60 | −13.03 | 4.293 (−4.37) |
Code and Models | RMSE |
---|---|
ICRP-116 vs. SA_Average | 0.052687 |
ICRP-116 vs. XGB-SA | 0.033684 |
ICRP-116 vs. MCNPX | 0.034128 |
ICRP-116 vs. OpenMC | 0.157880 |
SA_Average vs. XGB-SA | 0.076893 |
SA_Average vs. MCNPX | 0.065840 |
SA_Average vs. OpenMC | 0.106707 |
XGB-SA vs. MCNPX | 0.061065 |
XGB-SA vs. OpenMC | 0.181881 |
MCNPX vs. OpenMC | 0.225050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.A.A. The Implementation and Application of a Saudi Voxel-Based Anthropomorphic Phantom in OpenMC for Radiological Imaging and Dosimetry. Diagnostics 2025, 15, 1764. https://doi.org/10.3390/diagnostics15141764
Alghamdi AAA. The Implementation and Application of a Saudi Voxel-Based Anthropomorphic Phantom in OpenMC for Radiological Imaging and Dosimetry. Diagnostics. 2025; 15(14):1764. https://doi.org/10.3390/diagnostics15141764
Chicago/Turabian StyleAlghamdi, Ali A. A. 2025. "The Implementation and Application of a Saudi Voxel-Based Anthropomorphic Phantom in OpenMC for Radiological Imaging and Dosimetry" Diagnostics 15, no. 14: 1764. https://doi.org/10.3390/diagnostics15141764
APA StyleAlghamdi, A. A. A. (2025). The Implementation and Application of a Saudi Voxel-Based Anthropomorphic Phantom in OpenMC for Radiological Imaging and Dosimetry. Diagnostics, 15(14), 1764. https://doi.org/10.3390/diagnostics15141764