Association of Serum Selenium with Clinical Features and Inflammatory and Oxidative Stress Markers in Iranian Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease—A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physical Activity, Anthropometric, and Body Composition Measurements
2.3. Biochemical Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.-Y.; Zheng, M.-H. Current Status and Future Trends of the Global Burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yu, R.; Tan, X.; Guo, M.; Xia, Y.; Zou, H.; Liu, X.; Qin, C. Comparison of NAFLD, MAFLD, and MASLD Prevalence and Clinical Characteristics in Asia Adults. J. Clin. Exp. Hepatol. 2025, 15, 102420. [Google Scholar] [CrossRef]
- Moghaddasifar, I.; Lankarani, K.B.; Moosazadeh, M.; Afshari, M.; Ghaemi, A.; Aliramezany, M.; Afsar Gharebagh, R.; Malary, M. Prevalence of Non-Alcoholic Fatty Liver Disease and Its Related Factors in Iran. Int. J. Organ Transplant. Med. 2016, 7, 149–160. [Google Scholar]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated Mechanisms of MASLD Pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Dong, B. Molecular Mechanisms in MASLD/MASH Related HCC. Hepatology 2024, 13. [Google Scholar] [CrossRef]
- Schwärzler, J.; Grabherr, F.; Grander, C.; Adolph, T.E.; Tilg, H. The Pathophysiology of MASLD: An Immunometabolic Perspective. Expert Rev. Clin. Immunol. 2024, 20, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Asghari, S.; Hamedi-Shahraki, S.; Amirkhizi, F. Systemic Redox Imbalance in Patients with Nonalcoholic Fatty Liver Disease. Eur. J. Clin. Investig. 2020, 50, e13211. [Google Scholar] [CrossRef] [PubMed]
- Klisic, A.; Kavaric, N.; Ninic, A.; Kotur-Stevuljevic, J. Oxidative stress and cardiometabolic biomarkers in patients with non-alcoholic fatty liver disease. Sci. Rep. 2021, 11, 18455. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef]
- Filippini, T.; Fairweather-Tait, S.; Vinceti, M. Selenium and Immune Function: A Systematic Review and Meta-Analysis of Experimental Human Studies. Am. J. Clin. Nutr. 2023, 117, 93–110. [Google Scholar] [CrossRef]
- Shahidin; Wang, Y.; Wu, Y.; Chen, T.; Wu, X.; Yuan, W.; Zhu, Q.; Wang, X.; Zi, C. Selenium and Selenoproteins: Mechanisms, Health Functions, and Emerging Applications. Molecules 2025, 30, 437. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H.; Hubalewska-Dydejczyk, A. Selenium and Inflammation: Potential Use and Future Perspectives. US Endocrinol. 2015, 11, 97–102. [Google Scholar] [CrossRef]
- Filippini, T.; Michalke, B.; Wise, L.A.; Malagoli, C.; Malavolti, M.; Vescovi, L.; Salvia, C.; Bargellini, A.; Sieri, S.; Krogh, V. Diet Composition and Serum Levels of Selenium Species: A Cross-Sectional Study. Food Chem. Toxicol. 2018, 115, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Saha, U.; Fayiga, A.; Sonon, L. Selenium in the Soil-Plant Environment: A Review. Int. J. Appl. Agric. Sci. 2017, 3, 1–18. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- Nazemi, L.; Nazmara, S.; Eshraghyan, M.R.; Nasseri, S.; Djafarian, K.; Yunesian, M.; Sereshti, H.; Moameni, A.; Shahtaheri, S.J. Selenium Status in Soil, Water and Essential Crops of Iran. Iranian J. Environ. Health Sci. Eng. 2012, 9, 11. [Google Scholar] [CrossRef]
- Valea, A.; Georgescu, C.E. Selenoproteins in Human Body: Focus on Thyroid Pathophysiology. Hormones 2018, 17, 183–196. [Google Scholar] [CrossRef]
- Zhang, Y.; Roh, Y.J.; Han, S.-J.; Park, I.; Lee, H.M.; Ok, Y.S.; Lee, B.C.; Lee, S.-R. Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants 2020, 9, 383. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Rothman, K.J. Selenium Exposure and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Eur. J. Epidemiol. 2018, 33, 789–810. [Google Scholar] [CrossRef]
- Christensen, K.; Werner, M.; Malecki, K. Serum Selenium and Lipid Levels: Associations Observed in the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Environ. Res. 2015, 140, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Berthold, H.K.; Michalke, B.; Krone, W.; Guallar, E.; Gouni-Berthold, I. Influence of Serum Selenium Concentrations on Hypertension: The Lipid Analytic Cologne Cross-Sectional Study. J. Hypertens. 2012, 30, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zeng, C.; Yang, Z.; Li, X.; Lei, G.; Xie, D.; Wang, Y.; Wei, J.; Yang, T. Association between Dietary Selenium Intake and the Prevalence of Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. J. Am. Coll. Nutr. 2020, 39, 103–111. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, C.; Liu, G.; Niu, Y.; Zhang, W.; Lu, S.; Li, X.; Zhang, H.; Ning, G.; Fan, J. Plasma Selenium Levels and Nonalcoholic Fatty Liver Disease in Chinese Adults: A Cross-Sectional Analysis. Sci. Rep. 2016, 6, 37288. [Google Scholar] [CrossRef]
- Reja, M.; Makar, M.; Visaria, A.; Marino, D.; Rustgi, V. Increased Serum Selenium Levels Are Associated with Reduced Risk of Advanced Liver Fibrosis and All-Cause Mortality in NAFLD Patients: National Health and Nutrition Examination Survey (NHANES) III. Ann. Hepatol. 2020, 19, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, B.; Rosenthal, W.S.; Jankowski, R.H.; Gordon, G.G.; Haldea, D. Low Blood Selenium Levels in Alcoholics with and without Advanced Liver Disease: Correlations with Clinical and Nutritional Status. Dig. Dis. Sci. 1985, 30, 838–844. [Google Scholar] [CrossRef]
- Burk, R.F.; Early, D.S.; Hill, K.E.; Palmer, I.S.; Boeglin, M.E. Plasma Selenium in Patients with Cirrhosis. Hepatology 1998, 27, 794–798. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Kojima, T.; Itoh, Y.; Harano, Y.; Fujii, K.; Nakajima, T.; Kato, T.; Takeda, N.; Okuda, J.; Ida, K. The Severity of Ultrasonographic Findings in Nonalcoholic Fatty Liver Disease Reflects the Metabolic Syndrome and Visceral Fat Accumulation. Off. J. Am. Coll. Gastroenterol. ACG 2007, 102, 2708–2715. [Google Scholar] [CrossRef]
- Ramírez-Mejía, M.M.; Jiménez-Gutiérrez, C.; Eslam, M.; George, J.; Méndez-Sánchez, N. Breaking New Ground: MASLD vs. MAFLD—Which Holds the Key for Risk Stratification? Hepatol. Int. 2024, 18, 168–178. [Google Scholar] [CrossRef]
- Moghaddam, M.H.B.; Aghdam, F.B.; Jafarabadi, M.A.; Allahverdipour, H.; Nikookheslat, S.D.; Safarpour, S. The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: Content and Construct Validity, Factor Structure, Internal Consistency and Stability. World Appl. Sci. 2012, 18, 1073–1080. [Google Scholar]
- Qu, H.-Q.; Li, Q.; Rentfro, A.R.; Fisher-Hoch, S.P.; McCormick, J.B. The Definition of Insulin Resistance Using HOMA-IR for Americans of Mexican Descent Using Machine Learning. PLoS ONE 2011, 6, e21041. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, M.; Mihara, M. Determination of Malonaldehyde Precursor in Tissues by Thiobarbituric Acid Test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Erel, O. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Utzschneider, K.M.; Kahn, S.E. The Role of Insulin Resistance in Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2006, 91, 4753–4761. [Google Scholar] [CrossRef]
- Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The Liver as an Endocrine Organ—Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019, 40, 1367–1393. [Google Scholar] [CrossRef] [PubMed]
- Kamali, A.; Amirani, E.; Asemi, Z. Effects of Selenium Supplementation on Metabolic Status in Patients Undergoing for Coronary Artery Bypass Grafting (CABG) Surgery: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Trace Elem. Res. 2019, 191, 331–337. [Google Scholar] [CrossRef]
- Raygan, F.; Behnejad, M.; Ostadmohammadi, V.; Bahmani, F.; Mansournia, M.A.; Karamali, F.; Asemi, Z. Selenium Supplementation Lowers Insulin Resistance and Markers of Cardio-Metabolic Risk in Patients with Congestive Heart Failure: A Randomised, Double-Blind, Placebo-Controlled Trial. Br. J. Nutr. 2018, 120, 33–40. [Google Scholar] [CrossRef]
- Tabrizi, R.; Akbari, M.; Moosazadeh, M.; Lankarani, K.B.; Heydari, S.T.; Kolahdooz, F.; Mohammadi, A.A.; Shabani, A.; Badehnoosh, B.; Jamilian, M. The Effects of Selenium Supplementation on Glucose Metabolism and Lipid Profiles among Patients with Metabolic Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Horm. Metab. Res. 2017, 49, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.T.; Lance, P.; Mandarino, L.J.; Ellis, N.A.; Chow, H.H.S.; Foote, J.; Martinez, J.A.; Hsu, C.-H.P.; Batai, K.; Saboda, K. Selenium Supplementation and Insulin Resistance in a Randomized, Clinical Trial. BMJ Open Diabetes Res. Care 2019, 7, e000613. [Google Scholar] [CrossRef]
- Gao, H.; Hägg, S.; Sjögren, P.; Lambert, P.C.; Ingelsson, E.; Van Dam, R.M. Serum Selenium in Relation to Measures of Glucose Metabolism and Incidence of Type 2 Diabetes in an Older Swedish Population. Diabet. Med. 2014, 31, 787–793. [Google Scholar] [CrossRef]
- Steinbrenner, H. Interference of Selenium and Selenoproteins with the Insulin-Regulated Carbohydrate and Lipid Metabolism. Free Radic. Biol. Med. 2013, 65, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Donma, M.M.; Donma, O. Promising Link between Selenium and Peroxisome Proliferator Activated Receptor Gamma in the Treatment Protocols of Obesity as Well as Depression. Med. Hypotheses 2016, 89, 79–83. [Google Scholar] [CrossRef]
- Waters, D.J.; Chiang, E.C. Five Threads: How U-Shaped Thinking Weaves Together Dogs, Men, Selenium, and Prostate Cancer Risk. Free Radic. Biol. Med. 2018, 127, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Cichoż-Lach, H.; Michalak, A. Oxidative Stress as a Crucial Factor in Liver Diseases. World J. Gastroenterol. WJG 2014, 20, 8082. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, D.J. What Is Oxidative Stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Salehi, M.; Sohrabi, Z.; Ekramzadeh, M.; Fallahzadeh, M.K.; Ayatollahi, M.; Geramizadeh, B.; Hassanzadeh, J.; Sagheb, M.M. Selenium Supplementation Improves the Nutritional Status of Hemodialysis Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Nephrol. Dial. Transplant. 2013, 28, 716–723. [Google Scholar] [CrossRef]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef]
- Amirkhizi, F.; Taghizadeh, M.; Khalese-Ranjbar, B.; Hamedi-Shahraki, S.; Asghari, S. Association of Serum Selenium and Selenoprotein P with Oxidative Stress Biomarkers in Patients with Polycystic Ovary Syndrome. Biol. Trace Elem. Res. 2024, 202, 947–954. [Google Scholar] [CrossRef]
- Luo, Y.; He, X.; Hu, L.; Zhao, J.; Su, K.; Lei, Y.; Li, Y. The Relationship between Plasma Selenium, Antioxidant Status, Inflammatory Responses and Ischemic Cardiomyopathy: A Case-Control Study Based on Matched Propensity Scores. J. Inflamm. Res. 2022, 15, 5757–5765. [Google Scholar] [CrossRef]
- Ezhilarasan, D.; Langeswaran, K. Hepatocellular Interactions of Potential Nutraceuticals in the Management of Inflammatory NAFLD. Cell Biochem. Funct. 2024, 42, e4112. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Khalili, A.; Roodi, P.B.; Saeedy, S.A.G.; Najafi, S.; Mohammadian, M.K.; Djafarian, K. Selenium Supplementation Decreases CRP and IL-6 and Increases TNF-Alpha: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Trace Elem. Med. Biol. 2023, 79, 127199. [Google Scholar] [CrossRef] [PubMed]
- Bondia-Pons, I.; Ryan, L.; Martinez, J.A. Oxidative Stress and Inflammation Interactions in Human Obesity. J. Physiol. Biochem. 2012, 68, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Shidfar, F.; Faghihi, A.; Amiri, H.L.; Mousavi, S.N. Regression of Nonalcoholic Fatty Liver Disease with Zinc and Selenium Co-Supplementation after Disease Progression in Rats. Iran. J. Med. Sci. 2018, 43, 26. [Google Scholar]
- Maehira, F.; Miyagi, I.; Eguchi, Y. Selenium Regulates Transcription Factor NF-ΚB Activation during the Acute Phase Reaction. Clin. Chim. Acta 2003, 334, 163–171. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 150) | Quartiles of Serum Selenium | p b | ||||
---|---|---|---|---|---|---|---|
Q1 (n = 37) | Q2 (n = 38) | Q3 (n = 38) | Q4 (n = 37) | ||||
Male, n (%) | 77 (51.3) | 14 (37.8) | 18 (47.4) | 25 (65.8) | 20 (54.1) | 0.101 | |
Age (years) | 39.2 ± 6.6 | 38.3 ± 6.2 | 40.1 ± 6.5 | 40.0 ± 6.3 | 38.1 ± 7.3 | 0.393 | |
Weight (kg) | 87.0 ± 11.9 | 85.1 ± 9.7 | 85.7 ± 12.1 | 91.2 ± 13.8 | 86.0 ± 11.2 | 0.093 | |
BMI (kg/m2) | 31.3 ± 3.5 | 31.3 ± 3.4 | 30.9 ± 3.3 | 31.4 ± 3.0 | 31.5 ± 4.2 | 0.864 | |
Waist circumference (cm) | 101.8 ± 9.1 | 99.9 ± 8.5 | 100.3 ± 8.7 | 103.8 ± 7.8 | 103.2 ± 10.7 | 0.137 | |
Education level, n (%) | |||||||
<Diploma | 85 (56.7) | 25 (67.6) | 22 (57.9) | 21 (55.3) | 17 (45.9) | 0.311 | |
Diploma and university | 65 (43.3) | 12 (32.4) | 16 (42.1) | 17 (44.7) | 20 (54.1) | ||
Physical activity level, n (%) | |||||||
Low | 107 (71.3) | 28 (75.7) | 26 (68.4) | 25 (65.8) | 28 (75.7) | ||
Moderate | 32 (21.3) | 8 (21.6) | 9 (23.7) | 8 (21.1) | 7 (18.9) | 0.724 | |
Vigorous | 11 (7.3) | 1 (2.7) | 3 (7.9) | 5 (13.2) | 2 (5.4) | ||
Serum Se (µg/L) | 55.4 ± 12.1 | 38.5 ± 6.7 | 52.9 ± 2.8 | 60.6 ± 1.8 | 69.4 ± 4.5 | <0.001 |
Variables | Quartiles of Serum Selenium | p-Trend | |||
---|---|---|---|---|---|
Q1 (n = 37) | Q2 (n = 38) | Q3 (n = 38) | Q4 (n = 37) | ||
FSG (mg/dL) | 106.0 ± 13.6 | 102.7 ± 10.3 | 104.5 ± 16.1 | 99.9 ± 10.0 | 0.078 a |
Insulin (µU/mL) | 18.0 ± 9.6 | 14.5 ± 8.5 | 15.2 ± 9.2 | 11.5 ± 8.2 | 0.005 a |
HOMA-IR | 4.9 ± 3.2 | 3.7 ± 2.2 | 4.0 ± 2.5 | 2.9 ± 2.0 | 0.002 a |
TC (mg/dL) | 199.3 ± 31.5 | 199.7 ± 25.3 | 195.5 ± 41.2 | 209.7 ± 33.5 | 0.272 a |
LDL-C (mg/dL) | 127.0 ± 19.4 | 125.8 ± 25.8 | 127.5 ± 32.2 | 124.4 ± 39.7 | 0.790 a |
HDL-C (mg/dL) | 47.0 ± 8.5 | 46.0 ± 10.8 | 42.0 ± 10.3 | 44.2 ± 13.1 | 0.120 a |
TG (mg/dL) | 213.8 ± 76.1 | 201.2 ± 75.5 | 161.7 ± 57.1 | 185.6 ± 60.3 | 0.014 a |
TNF-α (pg/mL) | 28.3 (24.4, 37.6) | 26.8 (22.7, 29.6) | 27.0 (22.9, 28.9) | 24.1 (19.8, 27.5) | <0.001 b |
IL-6 (pg/mL) | 5.70 (4.56, 7.55) | 5.20 (4.37, 6.85) | 4.87 (4.36, 5.70) | 4.95 (4.40, 6.26) | 0.113 b |
TGF-β (ng/mL) | 641.5 (364.5, 744.6) | 702.9 (422.0, 878.8) | 651.0 (476.8, 793.0) | 688.4 (503.6, 812.4) | 0.318 b |
TBARS (nmol/mL) | 1.97 (1.68, 2.41) | 1.90 (1.69, 2.24) | 1.85 (1.63, 2.04) | 1.82 (1.58, 2.03) | 0.025 b |
TAC (mmol/L) | 1.42 (1.23, 1.62) | 1.53 (1.26, 1.78) | 1.58 (1.28, 2.08) | 1.65 (1.37, 2.24) | 0.009 b |
SOD (U/gHb) | 1139 (1070, 1225) | 1172 (1080, 1297) | 1160 (1060, 1286) | 1171 (1077, 1298) | 0.566 b |
GPx (U/gHb) | 38.2 (30.5, 47.0) | 41.3 (32.7, 51.1) | 43.0 (34.0, 51.1) | 44.8 (36.0, 54.4) | 0.017 b |
Variables | Crude Model | Adjusted Model a | ||||
---|---|---|---|---|---|---|
β | S.E.β | p-Value b | β | S.E.β | p b | |
FSG (mg/dL) | −0.11 | 0.08 | 0.149 | −0.12 | 0.08 | 0.142 |
Insulin (µU/mL) | −0.29 | 0.11 | 0.008 | −0.30 | 0.11 | 0.006 |
HOMA-IR | −1.05 | 0.37 | 0.005 | −1.10 | 0.37 | 0.004 |
TC (mg/dL) | 0.01 | 0.03 | 0.657 | 0.02 | 0.03 | 0.581 |
LDL-C (mg/dL) | −0.02 | 0.03 | 0.555 | −0.02 | 0.03 | 0.572 |
HDL-C (mg/dL) | −0.15 | 0.09 | 0.110 | −0.12 | 0.09 | 0.198 |
TG (mg/dL) | −0.04 | 0.01 | 0.012 | −0.03 | 0.01 | 0.020 |
ALT (IU/L) | −0.14 | 0.04 | 0.002 | −0.15 | 0.04 | 0.001 |
AST (IU/L) | −0.08 | 0.07 | 0.249 | −0.09 | 0.07 | 0.205 |
GGT (IU/L) | −0.08 | 0.05 | 0.174 | −0.09 | 0.06 | 0.122 |
TNF-α (pg/mL) | −0.18 | 0.08 | 0.023 | −0.16 | 0.08 | 0.037 |
IL-6 (pg/mL) | −0.40 | 0.26 | 0.136 | −0.38 | 0.26 | 0.155 |
TGF-β (ng/mL) | −0.002 | 0.002 | 0.122 | 0.003 | 0.002 | 0.102 |
TBARS (nmol/mL) | −4.74 | 1.89 | 0.014 | −4.59 | 1.90 | 0.017 |
TAC (mmol/L) | 5.41 | 1.77 | 0.003 | 5.48 | 1.77 | 0.002 |
SOD (U/gHb) | 0.004 | 0.006 | 0.539 | 0.004 | 0.006 | 0.477 |
GPx (U/gHb) | 0.23 | 0.08 | 0.003 | 0.22 | 0.08 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pishdadian, A.; Sharifi, R.; Shafaghi, A.; Hamedi-Shahraki, S.; Amirkhizi, F.; Klisic, A. Association of Serum Selenium with Clinical Features and Inflammatory and Oxidative Stress Markers in Iranian Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease—A Cross-Sectional Study. Diagnostics 2025, 15, 1559. https://doi.org/10.3390/diagnostics15121559
Pishdadian A, Sharifi R, Shafaghi A, Hamedi-Shahraki S, Amirkhizi F, Klisic A. Association of Serum Selenium with Clinical Features and Inflammatory and Oxidative Stress Markers in Iranian Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease—A Cross-Sectional Study. Diagnostics. 2025; 15(12):1559. https://doi.org/10.3390/diagnostics15121559
Chicago/Turabian StylePishdadian, Abbas, Reza Sharifi, Adele Shafaghi, Soudabeh Hamedi-Shahraki, Farshad Amirkhizi, and Aleksandra Klisic. 2025. "Association of Serum Selenium with Clinical Features and Inflammatory and Oxidative Stress Markers in Iranian Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease—A Cross-Sectional Study" Diagnostics 15, no. 12: 1559. https://doi.org/10.3390/diagnostics15121559
APA StylePishdadian, A., Sharifi, R., Shafaghi, A., Hamedi-Shahraki, S., Amirkhizi, F., & Klisic, A. (2025). Association of Serum Selenium with Clinical Features and Inflammatory and Oxidative Stress Markers in Iranian Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease—A Cross-Sectional Study. Diagnostics, 15(12), 1559. https://doi.org/10.3390/diagnostics15121559