From Fragile Lives to Forensic Truth: Multimodal Forensic Approaches to Pediatric Homicide and Suspect Death
Abstract
:1. Introduction
2. Investigation of the Death Scene and Autopsy
3. Postmortem Imaging (PMI) Techniques
4. Histological Examination (HE)
5. Toxicological Examination
6. Microbiological Examination
7. Complementary Examinations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
APP | Amyloid Precursor Protein |
CE | Capillary Electrophoresis |
CDR | Child Death Review |
CNS | Central Nervous System |
CSF | Cerebrospinal Fluid |
ELISA | Enzyme-Linked Immunosorbent Assay |
FTMS | Fourier Transform Ion Cyclotron Resonance Mass Spectrometry |
GC/MS | Gas Chromatography/Mass Spectrometry |
GFAP | Glial Fibrillary Acidic Protein |
GMS | Grocott Methenamine Silver |
HE | Histological Examination |
H&E | Hematoxylin and Eosin |
LC-MS | Liquid Chromatography/Mass Spectrometry |
LC-MS/MS | Liquid Chromatography–Tandem Mass Spectrometry |
MSBP | Munchausen Syndrome by Proxy |
NAAT | Nucleic Acid Amplification Test |
NGS | Next-Generation Sequencing |
NSE | Neuron-Specific Enolase |
PAS | Periodic Acid–Schiff |
PASD | Periodic Acid–Schiff with Diastase |
PCR | Polymerase Chain Reaction |
PM | Postmortem |
PMB | Postmortem Biochemistry |
PMCT | Postmortem Computed Tomography |
PMCTA | Postmortem CT Angiography |
PMI | Postmortem Imaging |
PMMRI | Postmortem Magnetic Resonance Imaging |
PMM | Postmortem Microbiology |
SIDS | Sudden Infant Death Syndrome |
SUDI | Sudden Unexplained Death in Infancy |
SERS | Surface-Enhanced Raman Spectroscopy |
SDI | Sudden Death of Infancy |
VOUS | Variants of Uncertain Significance |
WES | Whole Exome Sequencing |
ZN | Ziehl–Neelsen |
References
- Sundwall, A.J.; Sturup, J.; Rosén, A.; Zilg, B. Swedish Child Homicide Investigations: A Population-Based Study 1998 to 2017. Child Abuse Negl. 2024, 149, 106679. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. The Convention on the Rights of the Child: The Children’s Version. Available online: https://www.unicef.org/child-rights-convention/convention-text-childrens-version (accessed on 9 February 2025).
- Mwinga, K.; Mwinga, N.; Nomaguchi, T. Global Infant Health. In Handbook of Global Health; Kickbusch, I., Ganten, D., Moeti, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime (UNODC). Global Study on Homicide 2019: Killing of Children and Young Adults; United Nations: Vienna, Austria, 2019; Available online: https://www.unodc.org/documents/data-and-analysis/gsh/Booklet_6new.pdf (accessed on 10 December 2024).
- U.S. Department of Health & Human Services, Administration for Children and Families, Children’s Bureau. Child Maltreatment 2022. 2024. Available online: https://www.acf.hhs.gov/sites/default/files/documents/cb/cm2022.pdf (accessed on 10 December 2024).
- Evans, P. Infanticide. Proc. R. Soc. Med. 1968, 61, 1296–1298. [Google Scholar] [PubMed]
- Weber, M.A.; Ashworth, M.T.; Risdon, R.A.; Hartley, J.C.; Malone, M.; Sebire, N.J. The Role of Post-Mortem Investigations in Determining the Cause of Sudden Unexpected Death in Infancy. Arch. Dis. Child. 2008, 93, 1048–1053. [Google Scholar] [CrossRef]
- Palusci, V.J.; Council on Child Abuse and Neglect; Kay, A.J.; Batra, E.; Section on Child Death Review and Prevention; Moon, R.Y.; Task Force on Sudden Infant Death Syndrome; National Association of Medical Examiners; Corey, T.S.; Andrew, T.; et al. Identifying Child Abuse Fatalities During Infancy. Pediatrics 2019, 144, e20192076. [Google Scholar] [CrossRef] [PubMed]
- Randall, B. Pediatric Death Investigation. In Forensic Pathology of Infancy and Childhood; Collins, K.A., Byard, R.W., Eds.; Springer: New York, NY, USA, 2014; pp. 27–58. [Google Scholar]
- Shipstone, R.; Thompson, J.M.D.; Young, J.; Byard, R.W. The Use of Post-Mortem Lividity to Determine Sleep Position in Sudden Unexpected Deaths in Infancy. Acta Paediatr. 2020, 109, 1162–1165. [Google Scholar] [CrossRef]
- Lambert Erck, A.B.; Parks, S.E.; Camperlengo, L.; Cottengim, C.; Anderson, R.L.; Covington, T.M.; Shapiro-Mendoza, C.K. Death Scene Investigation and Autopsy Practices in Sudden Unexpected Infant Deaths. J. Pediatr. 2016, 174, 84–90.e1. [Google Scholar] [CrossRef]
- Brown, T.T.; Batalis, N.I.; McClain, J.L.; Corey, T.; Collins, K.A.; Jentzen, J.M.; Prahlow, J.A. A Retrospective Study of the Investigation of Homicidal Childhood Asphyxial Deaths. J. Forensic Sci. 2018, 63, 1160–1167. [Google Scholar] [CrossRef]
- Tambuzzi, S.; Crudele, G.; Maggioni, L.; Collini, F.; Tunesi, S.; Decarli, A.; Russo, A.G.; Cattaneo, C. Are Autopsies on Minors a Taboo?: The Experience of Milan in a 19-Year Retrospective Study. Int. J. Leg. Med. 2024, 138, 639–649. [Google Scholar] [CrossRef]
- Leveque, L.; Colomb, S.; Peyron, P.A.; Martrille, L.; Baccino, E. Apport de la Pratique Systématique des Crevées dans la Mise en Évidence d’Ecchymoses ou Hématomes Profonds Non Visibles à l’Examen Visuel Externe. Rev. Med. Leg. 2022, 13, 148–155. [Google Scholar] [CrossRef]
- Pinneri, K.; Matshes, E.W. Recommendations for the Autopsy of an Infant who has Died Suddenly and Unexpectedly. Acad. Forensic Pathol. 2017, 7, 171–181. [Google Scholar] [CrossRef]
- James, R.; Leadbeatter, S. The Forensic Examination of the Infant and Young Child. Curr. Diagn. Pathol. 2002, 8, 384–394. [Google Scholar] [CrossRef]
- Emerson, M.V.; Jakobs, E.; Green, W.R. Ocular Autopsy and Histopathologic Features of Child Abuse. Ophthalmology 2007, 114, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Ducloyer, J.B.; Scherpereel, C.; Goronflot, T.; Le Meur, G.; Lebranchu, P.; Jossic, F.; Scolan, V.; Ducloyer, M. Assessing Retinal Hemorrhages with Non-Invasive Post-Mortem Fundus Photographs in Sudden Unexpected Death in Infancy. Int. J. Leg. Med. 2023, 137, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Spies, A.J.; Steyn, M.; Bussy, E.; Brits, D. Forensic imaging: The sensitivities of various imaging modalities in detecting skeletal trauma in simulated cases of child abuse using a pig model. J. Forensic Leg. Med. 2020, 76, 102034. [Google Scholar] [CrossRef]
- du Plessis, M.; Date-Chong, M.; Liebenberg, L. Lodox®: The invaluable radiographic solution in the forensic setting. Int. J. Leg. Med. 2020, 134, 655–662. [Google Scholar] [CrossRef]
- Yurkovich, C.; Nazer, D.; Farooqi, A.; Kannikeswaran, N. Does Postmortem Imaging Provide Additional Findings After Unexpected Deaths in Infants and Children? Pediatr. Emerg. Care 2022, 38, e1118–e1122. [Google Scholar] [CrossRef]
- Edwards, H.; Shelmerdine, S.C.; Arthurs, O.J. Forensic Post-Mortem CT in Children. Clin. Radiol. 2023, 78, 839–847. [Google Scholar] [CrossRef]
- Arthurs, O.J.; Hutchinson, J.C.; Sebire, N.J. Current Issues in Postmortem Imaging of Perinatal and Forensic Childhood Deaths. Forensic Sci. Med. Pathol. 2017, 13, 58–66. [Google Scholar] [CrossRef]
- Blum, A.; Kolopp, M.; Teixeira, P.G.; Stroud, T.; Noirtin, P.; Coudane, H.; Martrille, L. Synergistic Role of Newer Techniques for Forensic and Postmortem CT Examinations. Am. J. Roentgenol. 2018, 211, 3–10. [Google Scholar] [CrossRef]
- Schievano, S.; Sebire, N.J.; Robertson, N.J.; Taylor, A.M.; Thayyil, S. Reconstruction of Fetal and Infant Anatomy Using Rapid Prototyping of Post-Mortem MR Images. Insights Imaging 2010, 1, 281–286. [Google Scholar] [CrossRef]
- Jakobsen, S.R.; Schellerup, L.; Boel, L.W.T.; Hansen, K. Lung densitometry in postmortem computed tomography—Comparison across different fatal asphyxia groups. Forensic Sci. Med. Pathol. 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ashby, C.; Razzak, A.N.; Kogler, A.; Amireh, A.; Dempsey, J.; Lin, K.K.; Waller, J.; Jha, P. The Practicality of Post-mortem Imaging in Prenatal, Perinatal, and Pediatric Cases. Cureus 2022, 14, e28859. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, C.; Boito, S.; Lombardi, C.M.; Lombardi, S. Postmortem Micro-CT of Human Fetal Heart—A Systematic Literature Review. J. Clin. Med. 2021, 10, 4726. [Google Scholar] [CrossRef] [PubMed]
- Baier, W.; Norman, D.G.; Williams, M.A. Micro-CT for the Examination of Paediatric Rib Injuries: A Case Series. Forensic Sci. Int. 2021, 325, 110789. [Google Scholar] [CrossRef] [PubMed]
- Shelmerdine, S.C.; Hutchinson, J.C.; Arthurs, O.J.; Sebire, N.J. Latest Developments in Post-Mortem Foetal Imaging. Prenat. Diagn. 2020, 40, 28–37. [Google Scholar] [CrossRef]
- Barber, J.L.; Sebire, N.J.; Chitty, L.S.; Taylor, A.M.; Arthurs, O.J. Lung Aeration on Post-mortem Magnetic Resonance Imaging Is a Useful Marker of Live Birth versus Stillbirth. Int. J. Leg. Med. 2015, 129, 531–536. [Google Scholar] [CrossRef]
- Ogawara, T.; Usui, A.; Homma, N.; Funayama, M. Diagnosing Drowning in Postmortem CT Images Using Artificial Intelligence. Tohoku J. Exp. Med. 2022, 259, 65–75. [Google Scholar] [CrossRef]
- Ketsekioulafis, I.; Filandrianos, G.; Katsos, K.; Thomas, K.; Spiliopoulou, C.; Stamou, G.; Sakelliadis, E.I. Artificial Intelligence in Forensic Sciences: A Systematic Review of Past and Current Applications and Future Perspectives. Cureus 2024, 16, e70363. [Google Scholar] [CrossRef]
- Lefèvre, T.; Tournois, L. Artificial Intelligence and Diagnostics in Medicine and Forensic Science. Diagnostics 2023, 13, 3554. [Google Scholar] [CrossRef]
- D’Arcy, C.; Hazrati, L.N.; Chiasson, D.A. Histopathologic Analysis in Sudden Infant and Child Deaths: A Practical Approach. Acad. Forensic Pathol. 2018, 8, 492–538. [Google Scholar] [CrossRef]
- Delteil, C.; Meyronet, D.; Maues de Paula, A.; Jouvet, A.; Piercecchi-Marti, M.D. Neuropathology of Sudden Infant Death Syndrome: Review of the Literature and Proposal of a Protocol for Neuropathological Examination. Ann. Pathol. 2018, 38, 103–109. [Google Scholar] [CrossRef]
- Phillips, B.; Ong, B.B. “Was the Infant Born Alive?” A Review of Postmortem Techniques Used to Determine Live Birth in Cases of Suspected Neonaticide. Acad. Forensic Pathol. 2018, 8, 874–893. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.C.; Scheimberg, I. Forensic Aspects of Perinatal Deaths. Acad. Forensic Pathol. 2018, 8, 452–491. [Google Scholar] [CrossRef]
- Snyder, V.S.; Hansen, L.A. A Conceptual Overview of Axonopathy in Infants and Children with Allegedly Inflicted Head Trauma. Acad. Forensic Pathol. 2016, 6, 608–621. [Google Scholar] [CrossRef]
- Kernbach-Wighton, G.; Albalooshi, Y.; Madea, B. The Evidential Value of Intra-Alveolar Haemosiderin-Macrophages in Cases of Sudden Infant Death Syndrome (SIDS). Forensic Sci. Int. 2012, 222, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, N.; Eren, B.; Fedakar, R.; Akgöz, S. The Significance of Hemosiderin Deposition in the Lungs and Organs of the Mononucleated Macrophage Resorption System in Infants and Children. J. Korean Med. Sci. 2008, 23, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Rambaud, C. Autopsy and Histological Findings. In Child Abuse; Rey-Salmon, C., Adamsbaum, C., Eds.; Springer: Cham, Switzerland, 2018; pp. 463–481. [Google Scholar] [CrossRef]
- Madea, B. Starvation, Malnutrition, Dehydration, and Fatal Neglect. In Forensic Pathology of Infancy and Childhood; Collins, K., Byard, R., Eds.; Springer: New York, NY, USA, 2014; pp. 373–393. [Google Scholar] [CrossRef]
- Madea, B.; Ortmann, J.; Doberentz, E. Forensic Aspects of Starvation. Forensic Sci. Med. Pathol. 2016, 12, 276–298. [Google Scholar] [CrossRef]
- Samala, N.; Chalasani, N. Drug-Induced Fatty Liver Disease. Curr. Hepatol. Rep. 2018, 17, 260–269. [Google Scholar] [CrossRef]
- Lillie, M.A.; Barnett, B.S.; Cummings, B.S. Nephrotoxicity and Renal Pathophysiology: A Contemporary Perspective. Toxicol. Sci. 2018, 164, 379–390. [Google Scholar] [CrossRef]
- Caforio, A.L.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current State of Knowledge on Aetiology, Diagnosis, Management, and Therapy of Myocarditis: A Position Statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef]
- Rognum, T.; Arnestad, M.; Bajanowski, T. Consensus on Diagnostic Criteria for the Exclusion of SIDS. Scand. J. Forensic Sci. 2003, 9, 62–73. [Google Scholar]
- Ratliffe, C.E.; Harrigan, R.C.; Haley, J.; Tse, A.; Olson, T. Stress in Families with Medically Fragile Children. Issues Compr. Pediatr. Nurs. 2002, 25, 167–188. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J.; Vieira, D.N.; Magalhães, T. Guidelines for Collection of Biological Samples for Clinical and Forensic Toxicological Analysis. Forensic Sci Res. 2017, 1, 42–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Campos, E.G.; Da Costa, B.R.B.; Dos Santos, F.S.; Monedeiro, F.; Alves, M.N.R.; Santos Junior, W.J.R.; De Martinis, B.S. Alternative matrices in forensic toxicology: A critical review. Forensic Toxicol. 2022, 40, 1–18. [Google Scholar] [CrossRef]
- Xue, C.; Zeng, J.; Li, W. Clinical Characteristics and Toxicological Spectrum Analysis of 493 Cases of Acute Poisoning in Children. BMC Emerg. Med. 2024, 24, 1091. [Google Scholar] [CrossRef]
- Beauchamp, G.A.; Carey, J.L.; Cook, M.D.; Cannon, R.D.; Katz, K.D.; Yoon, J.; Kincaid, H.; Ely, B.J.; Pollack, E.; Mazzaccaro, R.J.; et al. Sex Differences in Pediatric Poisonings by Age Group: A Toxicology Investigators’ Consortium (ToxIC) Analysis (2010–2016). J. Med. Toxicol. 2020, 16, 423–443. [Google Scholar] [CrossRef]
- Gaw, C.E.; Curry, A.E.; Osterhoudt, K.C.; Wood, J.N.; Corwin, D.J. Characteristics of Fatal Poisonings Among Infants and Young Children in the United States. Pediatrics 2023, 151, e2022059016. [Google Scholar] [CrossRef]
- Sasao, A.; Yonemitsu, K.; Ohtsu, Y.; Tsutsumi, H.; Furukawa, S.; Kimura-Mishima, S.; Nishitani, Y. High Blood Mirtazapine Concentration in a Newborn—A Case of Suspected Postpartum Infanticide. Leg. Med. 2021, 48, 101830. [Google Scholar] [CrossRef]
- Gomila, I.; López-Corominas, V.; Pellegrini, M.; Quesada, L.; Miravet, E.; Pichini, S.; Barceló, B. Alimemazine Poisoning as Evidence of Munchausen Syndrome by Proxy: A Pediatric Case Report. Forensic Sci. Int. 2016, 266, e18–e22. [Google Scholar] [CrossRef]
- Bonsignore, A.; Groppi, A.; Ventura, F.; Stefano, D.; Palmiere, C. Fatal Methadone Intoxication in an Infant Listed as a Homicide. Int. J. Leg. Med. 2015, 130, 1231–1235. [Google Scholar] [CrossRef]
- Barros, A.J.S.; Rosa, R.G.; de Telles, L.E.B.; Taborda, J.G.V. Attempted Serial Neonaticides: Case Report and a Brief Review of the Literature. J. Forensic Sci. 2015, 61, 280–283. [Google Scholar] [CrossRef]
- Vennemann, B.; Bajanowski, T.; Karger, B.; Pfeiffer, H.; Köhler, H.; Brinkmann, B. Suffocation and Poisoning—The Hard-Hitting Side of Munchausen Syndrome by Proxy. Int. J. Leg. Med. 2005, 119, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Paulis, M.G.; Faheem, A.L. Homicidal Snake Bite in Children. J. Forensic Sci. 2015, 61, 559–561. [Google Scholar] [CrossRef]
- Yadav, J.; Moirangthem, S.; Vijayakumar, S.; Chaurasia, J.K.; Poovaragavan, V.; Jahan, A. Unravelling the Enigma: Autopsy Challenges in Alleged Snakebite Deaths. Forensic Sci. Int. 2024, 364, 112228. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Z.; Ma, L.; Yu, Y.; Shi, Q.; Zhao, S.; Zhou, Y. Forensic Identification of a Fatal Snakebite from Bungarus multicinctus (Chinese Krait) by Pathological and Toxicological Findings: A Case Report. Forensic Sci. Med. Pathol. 2022, 18, 497–502. [Google Scholar] [CrossRef]
- Feola, A.; Marella, G.L.; Carfora, A.; Della Pietra, B.; Zangani, P.; Campobasso, C.P. Snakebite Envenoming a Challenging Diagnosis for the Forensic Pathologist: A Systematic Review. Toxins 2020, 12, 699. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults. Pharmaceutics 2011, 3, 53–72. [Google Scholar] [CrossRef]
- Bonkowsky, J.L.; Guenther, E.; Srivastava, R.; Filloux, F.M. Seizures in Children Following an Apparent Life-Threatening Event. J. Child Neurol. 2009, 24, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Khanna, S.; Gani Mir, T.U.; Dalal, J.; Sankhyan, D.; Khanna, K. Emerging Global Trends and Development in Forensic Toxicology: A Review. J. Forensic Leg. Med. 2024, 103, 102675. [Google Scholar] [CrossRef]
- Florou, D.; Di Rago, M.; Orfanidis, A.; Gerostamoulos, D.; Boumba, V.A. A broad-spectrum LC-MS/MS method for screening and quantification of 100 analytes in clinical and autopsy blood samples. J. Chromatogr. B 2024, 1247, 124323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, J.; Wu, C.; Qi, X.; Jiang, S.; Zhou, T.; Xiao, H.; Li, W.; Lu, D.; Feng, C.; et al. Early-life carbamate exposure and intelligence quotient of seven-year-old children. Environ. Int. 2020, 145, 106105. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sharma, A.; Kumar, D.; Sharma, L. Use of Spectroscopic Methods and Their Clinical Applications in Drug Abuse: A Review. Crit. Rev. Anal. Chem. 2023, 53, 360–373. [Google Scholar] [CrossRef]
- Stolz, A.; Jooß, K.; Höcker, O.; Römer, J.; Schlecht, J.; Neusüß, C. Recent Advances in Capillary Electrophoresis-Mass Spectrometry: Instrumentation, Methodology, and Applications. Electrophoresis 2019, 40, 79–112. [Google Scholar] [CrossRef]
- Szeremeta, M.; Pietrowska, K.; Niemcunowicz-Janica, A.; Kretowski, A.; Ciborowski, M. Applications of Metabolomics in Forensic Toxicology and Forensic Medicine. Int. J. Mol. Sci. 2021, 22, 3010. [Google Scholar] [CrossRef]
- Saegeman, V.; Cohen, M.C.; Burton, J.L.; Martinez, M.J.; Rakislova, N.; Offiah, A.C.; Fernandez-Rodriguez, A. Microbiology in Minimally Invasive Autopsy: Best Techniques to Detect Infection. Forensic Sci. Med. Pathol. 2021, 17, 87–100. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, A.; Burton, J.L.; Andreoletti, L.; Alberola, J.; Fornes, P.; Merino, I.; Martínez, M.J.; Castillo, P.; Sampaio-Maia, B.; Caldas, I.M.; et al. Post-Mortem Microbiology in Sudden Death: Sampling Protocols Proposed in Different Clinical Settings. Clin. Microbiol. Infect. 2019, 25, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Saegeman, V.; Cohen, M.C.; Alberola, J.; Ziyade, N.; Farina, C.; ESCMID Study Group for Forensic and Postmortem Microbiology; Cornaglia, G.; Fernández-Rodríguez, A. How Is Post-Mortem Microbiology Appraised by Pathologists? Results from a Practice Survey Conducted by ESGFOR. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1381–1385. [Google Scholar] [CrossRef]
- Oliveira, M.; Marszałek, K.; Kowalski, M.; Frolova, A.; Łabaj, P.P.; Branicki, W.; Madureira-Carvalho, Á.; da Silva, D.D.; Dinis-Oliveira, R.J. Sequencing Technologies in Forensic Microbiology: Current Trends and Advancements. Forensic Sci. 2024, 4, 523–545. [Google Scholar] [CrossRef]
- Ahannach, S.; Spacova, I.; Decorte, R.; Jehaes, E.; Lebeer, S. At the Interface of Life and Death: Post-mortem and Other Applications of Vaginal, Skin, and Salivary Microbiome Analysis in Forensics. Front. Microbiol. 2021, 12, 694447. [Google Scholar] [CrossRef]
- Cohen, M.C.; Scheimberg, I. The Pediatric and Perinatal Autopsy Manual with DVD-ROM; Springer: London, UK, 2011. [Google Scholar]
- Weber, M.A.; Sebire, N.J. Molecular Diagnostic Techniques in the Post-Mortem Investigation of Sudden Unexpected Infant Deaths: Current and Future Applications. Open Pathol. J. 2010, 4, 110–119. [Google Scholar]
- Gualtieri, S.; Sacco, M.A.; Tarzia, P.; Tarallo, A.P.; La Russa, R.; Aquila, I. The Study of the Microbiome in Forensic Investigations on Pediatric Deaths. Clin. Ter. 2024, 175, S162–S166. [Google Scholar] [CrossRef]
- Weber, M.A.; Hartley, J.C.; Brooke, I.; Lock, P.E.; Klein, N.J.; Malone, M.; Sebire, N.J. Post-Mortem Interval and Bacteriological Culture Yield in Sudden Unexpected Death in Infancy (SUDI). Forensic Sci. Int. 2010, 198, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, F.P.; Cainé, L. Viral Infection and Sudden Non-Cardiac Death: A Systematic Review. J. Forensic Leg. Med. 2024, 106, 102727. [Google Scholar] [CrossRef]
- Mahtab, S.; Blau, D.M.; Madewell, Z.J.; Ogbuanu, I.; Ojulong, J.; Lako, S.; Legesse, H.; Bangura, J.S.; Bassat, Q.; Mandomando, I.; et al. Post-Mortem Investigation of Deaths Due to Pneumonia in Children Aged 1–59 Months in Sub-Saharan Africa and South Asia from 2016 to 2022: An Observational Study. Lancet Child. Adolesc. Health 2024, 8, 201–213. [Google Scholar] [CrossRef]
- Ventura Spagnolo, E.; Stassi, C.; Mondello, C.; Zerbo, S.; Milone, L.; Argo, A. Forensic Microbiology Applications: A Systematic Review. Leg. Med. 2019, 36, 73–80. [Google Scholar] [CrossRef]
- Rizzo, S.; De Gaspari, M.; Carturan, E.; Paradiso, B.; Favretto, D.; Thiene, G.; Basso, C. A Standardized Postmortem Protocol to Assess the Real Burden of Sudden Infant Death Syndrome. Virchows Arch. 2020, 477, 177–183. [Google Scholar] [CrossRef]
- Lutz, H.; Vangelatos, A.; Gottel, N.; Osculati, A.; Visona, S.; Finley, S.J.; Gilbert, J.A.; Javan, G.T. Effects of Extended Postmortem Interval on Microbial Communities in Organs of the Human Cadaver. Front. Microbiol. 2020, 11, 569630. [Google Scholar] [CrossRef] [PubMed]
- Pries, A.M.; Ruskamp, J.M.; Edelenbos, E.; Fuijkschot, J.; Semmekrot, B.; Verbruggen, K.T.; van de Putte, E.; Puiman, P.J. A Systematic Approach to Evaluate Sudden Unexplained Death in Children. J. Pediatr. 2024, 264, 113780. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, H.; Zhao, J.; Huang, H.; Yu, B. A Redeemed Strategy for Molecular Autopsy in Unexplained Infant Deaths. J. Transl. Med. 2024, 22, 325. [Google Scholar] [CrossRef]
- Campuzano, O.; Beltramo, P.; Fernandez, A.; Iglesias, A.; García, L.; Allegue, C.; Sarquella-Brugada, G.; Coll, M.; Perez-Serra, A.; Mademont-Soler, I.; et al. Molecular Autopsy in a Cohort of Infants Died Suddenly at Rest. Forensic Sci. Int. Genet. 2018, 37, 54–63. [Google Scholar] [CrossRef]
- Mazzarotto, F.; Olivotto, I.; Walsh, R. Advantages and Perils of Clinical Whole-Exome and Whole-Genome Sequencing in Cardiomyopathy. Cardiovasc. Drugs Ther. 2020, 34, 241–253. [Google Scholar] [CrossRef]
Stain Type | Application Area | Purpose/Goal |
---|---|---|
Hematoxylin and Eosin (H&E) | All tissues | Routine examination of tissue samples (hypoxic-ischemic lesions, edema, hemorrhages, etc.) |
Luxol Fast Blue/H&E | Brain and spinal cord | Detection of lesions in the central nervous system (CNS)—evaluates myelination in white matter and identifies demyelination, a common finding in chronic hypoxia |
Iron Stain | Lung | Detection of hemosiderin and hemorrhages |
Periodic Acid-Schiff (PAS) | Myocardium, kidney, and liver | Detection of glycogen, mucins, and basement membrane abnormalities. |
Elastic Trichrome | Myocardium, kidney, and liver | Evaluation of connective tissue and elastic fibers. |
Grocott Methenamine Silver (GMS) | Tissues with suspected infection | Identification of fungal infections. |
PAS with Diastase (PASD) | Tissues with suspected infection | Differentiation of glycogen from other periodic acid-reactive substances. |
Gram Stain | Tissues with suspected infection | Identification of bacterial infections. |
Ziehl-Neelson (ZN) Stain | Tissues with suspected infection | Detection of acid-fast bacilli (e.g., tuberculosis). |
Glial Fibrillary Acidic Protein (GFAP) | Brain and spinal cord | Detection of gliosis in neuropathological examination/indicator of metabolic, toxic, or degenerative disorders |
NeuN | Brain | Identification of focal cortical dysplasia. |
CD68 | Brain and spinal cord | Detection of microglial activation (e.g., microglial nodules, particularly useful in evaluating inflammation.). |
Beta-Amyloid Precursor Protein (βAPP) | Brain | Detection of axonal swellings caused by oxygen deprivation or trauma (ischemic or traumatic axonal injury) |
Elastic, Trichrome, and Iron Stains | Brain (intracranial hemorrhage) | Accurate dating of intracranial hemorrhages. |
Tyrosine Hydroxylase and GABA Receptor Staining | Brain (locus coeruleus/brain stem) | Evaluation of neurotransmitter abnormalities, such as serotonin deficits or dysfunction in GABAergic systems associated with immature respiratory and autonomic function in SIDS |
Sample Type | Techniques Used | Potential Findings |
---|---|---|
Blood | Microbial culture Gram staining PCR 16S rRNA sequencing | Escherichia coli (sepsis) - Streptococcus pneumoniae (septicemia) |
Cerebrospinal Fluid (CSF) | Microbial culture Gram staining PCR 16S rRNA sequencing | Streptococcus pneumoniae, Neisseria meningitidis (bacterial meningitis) |
Pulmonary Fluid | Microbial culture PCR | Staphylococcus aureus, Klebsiella pneumonia (pneumonia) |
Pleural Fluid | Microbial culture Gram staining PCR | Pseudomonas aeruginosa, Streptococcus pneumoniae |
Peritoneal Fluid | Microbial culture PCR | Escherichia coli, Bacteroides fragilis (abdominal infections) |
Urine | Microbial culture PCR | Escherichia coli, Klebsiella spp. (urinary tract infections) |
Feces | Microbial culture PCR | Clostridium difficile, Salmonella spp. (gastrointestinal infections) |
Tissue Biopsies | Microbial culture PCR | Evidence of localized infections or inflammation (Staphylococcus aureus, viral myocarditis) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragkou, K.; Ketsekioulafis, I.; Tousia, A.; Piagkou, M.; Bacopoulou, F.; Ferentinos, P.; Peyron, P.-A.; Baccino, E.; Martrille, L.; Papadodima, S. From Fragile Lives to Forensic Truth: Multimodal Forensic Approaches to Pediatric Homicide and Suspect Death. Diagnostics 2025, 15, 1383. https://doi.org/10.3390/diagnostics15111383
Fragkou K, Ketsekioulafis I, Tousia A, Piagkou M, Bacopoulou F, Ferentinos P, Peyron P-A, Baccino E, Martrille L, Papadodima S. From Fragile Lives to Forensic Truth: Multimodal Forensic Approaches to Pediatric Homicide and Suspect Death. Diagnostics. 2025; 15(11):1383. https://doi.org/10.3390/diagnostics15111383
Chicago/Turabian StyleFragkou, Kallirroi, Ioannis Ketsekioulafis, Athina Tousia, Maria Piagkou, Flora Bacopoulou, Panagiotis Ferentinos, Pierre-Antoine Peyron, Eric Baccino, Laurent Martrille, and Stavroula Papadodima. 2025. "From Fragile Lives to Forensic Truth: Multimodal Forensic Approaches to Pediatric Homicide and Suspect Death" Diagnostics 15, no. 11: 1383. https://doi.org/10.3390/diagnostics15111383
APA StyleFragkou, K., Ketsekioulafis, I., Tousia, A., Piagkou, M., Bacopoulou, F., Ferentinos, P., Peyron, P.-A., Baccino, E., Martrille, L., & Papadodima, S. (2025). From Fragile Lives to Forensic Truth: Multimodal Forensic Approaches to Pediatric Homicide and Suspect Death. Diagnostics, 15(11), 1383. https://doi.org/10.3390/diagnostics15111383