Closing Editorial: Advancements in Artificial Intelligence for Dentomaxillofacial Radiology—Current Trends and Future Directions
- Multimodal fusion—combining radiographic, intraoral, and clinical data for holistic AI-based diagnostics [8].
- Real-time integration—deploying AI tools at the point of care, especially in underserved areas or during tele-dentistry sessions [9].
- Texture analysis as a valuable technique in dentomaxillofacial diagnosis, providing an advanced method for quantification and characterization of different image modalities [10].
- Ethical AI frameworks—ensuring bias mitigation, privacy preservation, and transparent model auditing across global dental populations [11].
Author Contributions
Funding
Conflicts of Interest
References
- George, A.; Hemanth, D.J. Dental Radiography Analysis and Diagnosis Using YOLOv8. ResearchGate. 2023. Available online: https://www.researchgate.net/publication/376283755_Dental_Radiography_Analysis_and_Diagnosis_using_YOLOv8 (accessed on 1 May 2025).
- Baydar, O.; Różyło-Kalinowska, I.; Futyma-Gąbka, K.; Sağlam, H. The U-Net Approaches to Evaluation of Dental Bite-Wing Radiographs: An Artificial Intelligence Study. Diagnostics 2023, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Champendal, M.; Müller, H.; Prior, J.O.; Dos Reis, C.S. A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging. Eur. J. Radiol. 2023, 169, 111159. [Google Scholar] [CrossRef] [PubMed]
- Altındağ, A.; Bahrilli, S.; Çelik, Ö.; Bayrakdar, İ.Ş.; Orhan, K. The Detection of Pulp Stones with Automatic Deep Learning in Panoramic Radiographies: An AI Pilot Study. Diagnostics 2024, 14, 890. [Google Scholar] [CrossRef] [PubMed]
- Bayati, M.; Savareh, B.A.; Ahmadinejad, H.; Mosavat, F. Advanced AI-driven detection of interproximal caries in bitewing radiographs using YOLOv8. Sci. Rep. 2025, 15, 4641. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.C.; Chen, T.L.; Vinayahalingam, S.; Wu, T.H.; Chang, C.W.; Chang, H.H.; Wei, H.J.; Chen, M.H.; Ko, C.C.; Moin, D.A.; et al. Artificial Intelligence to Assess Dental Findings from Panoramic Radiographs—A Multinational Study. arXiv 2025, arXiv:2502.10277. [Google Scholar] [CrossRef]
- Budagam, D.; Kumar, A.; Ghosh, S.; Shrivastav, A.; Imanbayev, A.Z.; Akhmetov, I.R.; Kaplun, D.; Antonov, S.; Rychenkov, A.; Cyganov, G.; et al. Instance Segmentation and Teeth Classification in Panoramic X-rays. arXiv 2024, arXiv:2406.03747. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Zhu, Z.; Zhao, L.; Wang, H.; Song, C.; Chen, Y.; Zhao, Q.; Yang, J.; Pei, Y. A Comprehensive Review on Synergy of Multi-Modal Data and AI Technologies in Medical Diagnosis. Bioengineering 2024, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Abdat, M.; Herwanda Jannah, M.; Soraya, C. Detection of caries and determination of treatment needs using DentMA teledentistry: A deep learning approach. Dent. J. 2024, 57, 62–67. [Google Scholar] [CrossRef]
- Barioni, E.D.; Lopes, S.L.P.C.; Silvestre, P.R.; Yasuda, C.L.; Costa, A.L.F. Texture Analysis in Volumetric Imaging for Dentomaxillofacial Radiology: Transforming Diagnostic Approaches and Future Directions. J. Imaging 2024, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orhan, K.; Costa, A.L.F.; de Castro Lopes, S.L.P. Closing Editorial: Advancements in Artificial Intelligence for Dentomaxillofacial Radiology—Current Trends and Future Directions. Diagnostics 2025, 15, 1222. https://doi.org/10.3390/diagnostics15101222
Orhan K, Costa ALF, de Castro Lopes SLP. Closing Editorial: Advancements in Artificial Intelligence for Dentomaxillofacial Radiology—Current Trends and Future Directions. Diagnostics. 2025; 15(10):1222. https://doi.org/10.3390/diagnostics15101222
Chicago/Turabian StyleOrhan, Kaan, Andre Luiz Ferreira Costa, and Sérgio Lúcio Pereira de Castro Lopes. 2025. "Closing Editorial: Advancements in Artificial Intelligence for Dentomaxillofacial Radiology—Current Trends and Future Directions" Diagnostics 15, no. 10: 1222. https://doi.org/10.3390/diagnostics15101222
APA StyleOrhan, K., Costa, A. L. F., & de Castro Lopes, S. L. P. (2025). Closing Editorial: Advancements in Artificial Intelligence for Dentomaxillofacial Radiology—Current Trends and Future Directions. Diagnostics, 15(10), 1222. https://doi.org/10.3390/diagnostics15101222