Early Dynamics of Circulating Tumor DNA Following Curative Hypofractionated Radiotherapy Related to Disease Control in Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Radiotherapy
2.3. Blood Samples
2.4. ctDNA
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.E.; Yang, K.; Ahn, Y.C.; Park, W.; Huh, S.J. Recent Trends of Medical Expenses Associated with Radiation Therapy in Korea Based on HIRA Big Data. Cancer Res. Treat. 2023, 55, 758–765. [Google Scholar] [CrossRef] [PubMed]
- De Michino, S.; Aparnathi, M.; Rostami, A.; Lok, B.H.; Bratman, S.V. The Utility of Liquid Biopsies in Radiation Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 873–886. [Google Scholar] [CrossRef]
- Blomain, E.S.; Moding, E.J. Liquid Biopsies for Molecular Biology-Based Radiotherapy. Int. J. Mol. Sci. 2021, 22, 11267. [Google Scholar] [CrossRef]
- Cho, W.K.; Lee, J.; Youn, S.M.; Oh, D.; Lim, D.H.; Yoon, H.G.; Cho, E.H.; Noh, J.M. Liquid biopsy using cfDNA to predict radiation therapy response in solid tumors. Radiat. Oncol. J. 2023, 41, 32–39. [Google Scholar] [CrossRef]
- Rosenlund, L.; Guldbrandsen, K.; Ahlborn, L.B.; Bloch, M.; Skougaard, K.; Albrecht-Beste, E.; Nellemann, H.M.; Krakauer, M.; Gortz, P.M.; Fledelius, J.; et al. ctDNA can detect minimal residual disease in curative treated non-small cell lung cancer patients using a tumor agnostic approach. Lung Cancer 2025, 203, 108528. [Google Scholar] [CrossRef]
- Papatheodoridi, A.; Lekakis, V.; Chatzigeorgiou, A.; Papatheodoridis, G. The Current Role of Circulating Cell-Free DNA in the Management of Hepatocellular Carcinoma. Cancers 2025, 17, 1042. [Google Scholar] [CrossRef] [PubMed]
- Huttinger, Z.M.; Gogineni, E.; Baliga, S.; Blakaj, D.M.; Bhateja, P.; Bonomi, M.; Kang, S.Y.; Old, M.O.; Seim, N.B.; VanKoevering, K.K.; et al. Circulating tumor DNA determines induction chemotherapy response in HPV associated oropharyngeal squamous cell carcinoma: A pilot study. Oral Oncol. 2025, 161, 107179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, L.; Liu, Y.; Jia, W.; Liu, Q.; Gao, X.; Wu, A.; Wu, B.; Shen, Z.; Wang, Z.; et al. Circulating tumour DNA in predicting and monitoring survival of patients with locally advanced rectal cancer undergoing multimodal treatment: Long-term results from a prospective multicenter study. eBioMedicine 2025, 112, 105548. [Google Scholar] [CrossRef]
- Mogele, T.; Hock, M.; Sommer, F.; Friedrich, L.; Sommer, S.; Schmutz, M.; Altenburger, A.; Messmann, H.; Anthuber, M.; Kroncke, T.; et al. Circulating Tumor DNA for Prediction of Complete Pathological Response to Neoadjuvant Radiochemotherapy in Locally Advanced Rectal Cancer (NEORECT Trial). Cancers 2024, 16, 4173. [Google Scholar] [CrossRef]
- Lin, Z.; Zhai, M.; Wang, H.; Li, M.; Liu, L.; Zhang, P.; Yan, L.; Liu, H.; Tao, K.; Zhang, T. Longitudinal circulating tumor DNA monitoring in predicting response to short-course radiotherapy followed by neoadjuvant chemotherapy and camrelizumab in locally advanced rectal cancer: Data from a Phase III clinical trial (UNION). Cancer Lett. 2025, 611, 217442. [Google Scholar] [CrossRef]
- Muhanna, N.; Eu, D.; Chan, H.H.L.; Douglas, C.; Townson, J.L.; Di Grappa, M.A.; Mohamadi, R.M.; Kelley, S.O.; Bratman, S.V.; Irish, J.C. Cell-free DNA and circulating tumor cell kinetics in a pre-clinical head and neck Cancer model undergoing radiation therapy. BMC Cancer 2021, 21, 1075. [Google Scholar] [CrossRef] [PubMed]
- Rostami, A.; Lambie, M.; Yu, C.W.; Stambolic, V.; Waldron, J.N.; Bratman, S.V. Senescence, Necrosis, and Apoptosis Govern Circulating Cell-free DNA Release Kinetics. Cell Rep. 2020, 31, 107830. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.M.; Kim, Y.J.; Lee, H.Y.; Choi, C.; Ahn, W.G.; Lee, T.; Pyo, H.; Park, J.H.; Park, D.; Park, W.Y. Targeted Liquid Biopsy Using Irradiation to Facilitate the Release of Cell-Free DNA from a Spatially Aimed Tumor Tissue. Cancer Res. Treat. 2022, 54, 40–53. [Google Scholar] [CrossRef]
- Cho, W.K.; Noh, J.M.; Ahn, Y.C.; Oh, D.; Pyo, H. Radiation Therapy Alone in cT1-3N0 Non-small Cell Lung Cancer Patients Who Are Unfit for Surgical Resection or Stereotactic Radiation Therapy: Comparison of Risk-Adaptive Dose Schedules. Cancer Res. Treat. 2016, 48, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Chabon, J.J.; Hamilton, E.G.; Kurtz, D.M.; Esfahani, M.S.; Moding, E.J.; Stehr, H.; Schroers-Martin, J.; Nabet, B.Y.; Chen, B.; Chaudhuri, A.A.; et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 2020, 580, 245–251. [Google Scholar] [CrossRef]
- Avanzini, S.; Kurtz, D.M.; Chabon, J.J.; Moding, E.J.; Hori, S.S.; Gambhir, S.S.; Alizadeh, A.A.; Diehn, M.; Reiter, J.G. A mathematical model of ctDNA shedding predicts tumor detection size. Sci. Adv. 2020, 6, eabc4308. [Google Scholar] [CrossRef]
- Ben-David, R.; Mehrazin, R.; Attalla, K.; Wiklund, P.; Sfakianos, J.P. Tumor-informed circulating tumor DNA in urothelial carcinoma: A promising novel biomarker. Curr. Opin. Urol. 2024, 34, 464–470. [Google Scholar] [CrossRef]
- Parikh, A.R.; Chee, B.H.; Tsai, J.; Rich, T.A.; Price, K.S.; Patel, S.A.; Zhang, L.; Ibrahim, F.; Esquivel, M.; Van Seventer, E.E.; et al. Minimal Residual Disease using a Plasma-Only Circulating Tumor DNA Assay to Predict Recurrence of Metastatic Colorectal Cancer Following Curative Intent Treatment. Clin. Cancer Res. 2024, 30, 2964–2973. [Google Scholar] [CrossRef]
- Grancher, A.; Beaussire, L.; Manfredi, S.; Le Malicot, K.; Dutherage, M.; Verdier, V.; Mulot, C.; Bouche, O.; Phelip, J.M.; Levache, C.B.; et al. Postoperative circulating tumor DNA detection is associated with the risk of recurrence in patients resected for a stage II colorectal cancer. Front. Oncol. 2022, 12, 973167. [Google Scholar] [CrossRef]
- Liu, B.; Hu, Z.; Ran, J.; Xie, N.; Tian, C.; Tang, Y.; Ouyang, Q. The circulating tumor DNA (ctDNA) alteration level predicts therapeutic response in metastatic breast cancer: Novel prognostic indexes based on ctDNA. Breast 2022, 65, 116–123. [Google Scholar] [CrossRef]
- Lebow, E.S.; Shaverdian, N.; Eichholz, J.E.; Kratochvil, L.B.; McCune, M.; Murciano-Goroff, Y.R.; Jee, J.; Eng, J.; Chaft, J.E.; Kris, M.G.; et al. ctDNA-based detection of molecular residual disease in stage I–III non-small cell lung cancer patients treated with definitive radiotherapy. Front. Oncol. 2023, 13, 1253629. [Google Scholar] [CrossRef]
- Ruckert, M.; Flohr, A.S.; Hecht, M.; Gaipl, U.S. Radiotherapy and the immune system: More than just immune suppression. Stem Cells 2021, 39, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Young, K.H.; Baird, J.R.; Savage, T.; Cottam, B.; Friedman, D.; Bambina, S.; Messenheimer, D.J.; Fox, B.; Newell, P.; Bahjat, K.S.; et al. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLoS ONE 2016, 11, e0157164. [Google Scholar] [CrossRef]
- Walls, G.M.; McConnell, L.; McAleese, J.; Murray, P.; Lynch, T.B.; Savage, K.; Hanna, G.G.; de Castro, D.G. Early circulating tumour DNA kinetics measured by ultra-deep next-generation sequencing during radical radiotherapy for non-small cell lung cancer: A feasibility study. Radiat. Oncol. 2020, 15, 132. [Google Scholar] [CrossRef] [PubMed]
- Nygard, L.; Ahlborn, L.B.; Persson, G.F.; Chandrananda, D.; Langer, J.W.; Fischer, B.M.; Langer, S.W.; Gabrielaite, M.; Kjaer, A.; Rosenfeld, N.; et al. Circulating cell free DNA during definitive chemo-radiotherapy in non-small cell lung cancer patients—Initial observations. PLoS ONE 2020, 15, e0231884. [Google Scholar] [CrossRef] [PubMed]
- Breadner, D.A.; Vincent, M.D.; Correa, R.; Black, M.; Warner, A.; Sanatani, M.; Bhat, V.; Morris, C.; Jones, G.; Allan, A.; et al. Exploitation of treatment induced tumor lysis to enhance the sensitivity of ctDNA analysis: A first-in-human pilot study. Lung Cancer 2022, 165, 145–151. [Google Scholar] [CrossRef] [PubMed]
- MacManus, M.; Kirby, L.; Blyth, B.; Banks, O.; Martin, O.A.; Yeung, M.M.; Plumridge, N.; Shaw, M.; Hegi-Johnson, F.; Siva, S.; et al. Early circulating tumor DNA dynamics at the commencement of curative-intent radiotherapy or chemoradiotherapy for NSCLC. Clin. Transl. Radiat. Oncol. 2023, 43, 100682. [Google Scholar] [CrossRef]
- Dziedzic, D.A.; Rudzinski, P.; Langfort, R.; Orlowski, T.; Group, P.L.C.S. Risk factors for local and distant recurrence after surgical treatment in patients with non–small-cell lung cancer. Clin. Lung Cancer 2016, 17, e157–e167. [Google Scholar] [CrossRef]
- Zhou, R.; Luo, G.; Guo, S.; Wu, Y.; Luo, Q.; Wang, D.; Chen, N.; Liu, F.; Guo, J.; Ye, W.; et al. Moderately hypo-fractionated radiotherapy combined with S-1 in inoperable locally advanced esophageal squamous cell carcinoma: A prospective, single-arm phase II study (GASTO-1045). Front. Oncol. 2023, 13, 1138304. [Google Scholar] [CrossRef]
- Moore, C.; Hsu, C.C.; Chen, W.M.; Chen, B.P.C.; Han, C.; Story, M.; Aguilera, T.; Pop, L.M.; Hannan, R.; Fu, Y.X.; et al. Personalized Ultrafractionated Stereotactic Adaptive Radiotherapy (PULSAR) in Preclinical Models Enhances Single-Agent Immune Checkpoint Blockade. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1306–1316. [Google Scholar] [CrossRef]
- Leipold, V.; Jaksic, B.; Avdicevic, A.; Kosmina, D.; Kaucic, H.; Aleric, I.; Schwarz, K.; Mlinaric, M.; Ursi, G.; Cehobasic, A.; et al. Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy for Non-Small Cell Lung Cancer Using Varian Ethos Therapy System. Curr. Oncol. 2024, 31, 7625–7630. [Google Scholar] [CrossRef] [PubMed]
- Home, A.; Crawford, H.; Dempsey, C.; Faivre-Finn, C. 205 An update on the VIGILANCE study: Developing Circulating and Imaging Biomarkers Towards Personalised Radiotherapy in Lung Cancer. Lung Cancer 2024, 190, 107766. [Google Scholar] [CrossRef]
Patient No. | Age (Years) | Sex | Clinical Stage (AJCC 8th) | Tumor Size (cm) | Microscopic Tumor Type | Mutation | RT Type | RT Dose, Total (cGy) | RT Dose, Daily (cGy) | DFI (Months) | Progression Site(s) |
---|---|---|---|---|---|---|---|---|---|---|---|
01 | 78 | Male | T2bN1M0, IIB | 4.8 | SQ | N/A | X-ray | 6000 | 300 | 9.7 | NED |
02 | 75 | Male | T2aN0M0, IB | 3.3 | SQ | N/A | Proton | 6000 | 400 | 34.3 | NED |
03 | 82 | Male | T1bN0M0, IA | 1.9 | N/A | N/A | X-ray | 6400 | 800 | 13.9 | Lung-to-lung |
04 | 78 | Female | T2aN0M0, IB | 3.7 | AD | EGFR(+) * | X-ray | 6000 | 400 | 13.2 | NED |
07 | 62 | Female | T4N0M0, IIIA | 4.6 | SQ | EGFR(−) ALK(−) | X-ray | 6000 | 400 | 27.4 | NED |
10 | 63 | Male | T1bN0M0, IA | 1.9 | N/A | N/A | Proton | 6400 | 800 | 16.6 | Lung-to-lung |
11 | 74 | Male | T2aN0M0, IB | 5.2 | SQ | EGFR(−) ALK(−) | Proton | 6000 | 400 | 5.2 | NED |
12 | 75 | Male | T3N0M0, IIB | 3.1 | SQ | EGFR(−) ALK(−) | Proton | 6400 | 800 | 21.5 | NED |
17 | 71 | Male | T1cN0M0, IA | 3.1 | SQ | N/A | X-ray | 6400 | 800 | 7.9 | Local PD |
18 | 57 | Male | T2aN0M0, IB | 4.4 | N/A | N/A | X-ray | 6000 | 1500 | 25.2 | NED |
20 | 70 | Male | T1bN0M0, IA | 1.6 | AD | EGFR(−) ALK(−) | X-ray | 6400 | 800 | 19.6 | NED |
22 | 72 | Male | T1bN0M0, IA | 1.8 | AD | N/A | X-ray | 6400 | 800 | 13.3 | NED |
25 | 68 | Male | T1cN0M0, IA | 2.8 | N/A | N/A | X-ray | 6000 | 400 | 13.6 | Locoregional PD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Noh, J.M.; Kim, Y.J.; Pyo, H. Early Dynamics of Circulating Tumor DNA Following Curative Hypofractionated Radiotherapy Related to Disease Control in Lung Cancer. Diagnostics 2025, 15, 1198. https://doi.org/10.3390/diagnostics15101198
Yang K, Noh JM, Kim YJ, Pyo H. Early Dynamics of Circulating Tumor DNA Following Curative Hypofractionated Radiotherapy Related to Disease Control in Lung Cancer. Diagnostics. 2025; 15(10):1198. https://doi.org/10.3390/diagnostics15101198
Chicago/Turabian StyleYang, Kyungmi, Jae Myoung Noh, Yeon Jeong Kim, and Hongryull Pyo. 2025. "Early Dynamics of Circulating Tumor DNA Following Curative Hypofractionated Radiotherapy Related to Disease Control in Lung Cancer" Diagnostics 15, no. 10: 1198. https://doi.org/10.3390/diagnostics15101198
APA StyleYang, K., Noh, J. M., Kim, Y. J., & Pyo, H. (2025). Early Dynamics of Circulating Tumor DNA Following Curative Hypofractionated Radiotherapy Related to Disease Control in Lung Cancer. Diagnostics, 15(10), 1198. https://doi.org/10.3390/diagnostics15101198