Automatic Characterization of Prostate Suspect Lesions on T2-Weighted Image Acquisitions Using Texture Features and Machine-Learning Methods: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient and Clinical Data Selection
2.2. Preoperative MRI Acquisition Protocol
2.3. Axial T2-Weighted Image Segmentation
2.4. Surgical Approach
2.5. Pathology
2.6. Software Development
- Processor: 12th Gen Intel® Core™ i7-1260P (Intel Corporation, Santa Clara, CA, USA);
- Central Processing Unit (CPU): 2.10 GHz;
- Random-Access Memory (RAM): 16 GB;
- Graphics Processing Unit (GPU): Intel® Iris® Xe Graphics;
- System Type: 64-bit operating system on an x64-based processor.
- Mesh Surface—The surface area of the 2D region, approximated based on the triangulated mesh of the boundary;
- Pixel Surface—The total surface area of the region based on the pixel count within the ROI;
- Perimeter—The length of the boundary of the region of interest in the 2D plane;
- Perimeter-to-Surface ratio—A measure of the compactness of the shape, calculated as the ratio of the perimeter to the surface area of the region;
- Sphericity—A measure of how closely the shape of the region approximates a perfect circle;
- Spherical Disproportion—A measure of the deviation of the shape from a perfect sphere, emphasizing irregularities in the region’s geometry;
- Maximum 2D diameter—The longest straight-line distance between any two points on the boundary of the region in the 2D plane;
- Major Axis Length—The longest axis of an ellipse fitted to the shape of the region, representing its primary direction of elongation;
- Minor Axis Length—The shortest axis of an ellipse fitted to the shape of the region, perpendicular to the major axis;
- Elongation—A measure of the extent to which the shape is stretched along its major axis relative to the minor axis.
- Number of Trees: 100;
- Criterion: Gini index;
- Maximum Depth: None;
- Minimum Sample Split: 2;
- Minimum Sample Leaf: 1;
- Maximum Features: Auto;
- Bootstrap: True;
- Maximum samples: None;
- Class weight: Balanced.
2.7. Statistical Analysis
- Micro-averaging, which calculates the aggregate metrics globally across all classes by treating all instances (individual predictions) equally (N representing the number of classes). It was deemed useful in terms of evaluating the overall performance of the classifier across all instances, giving equal weight to each instance.
- Macro-averaging, where each class of metrics was computed independently and then the average was taken across all classes. Each class was treated equally, regardless of its size or the number of instances it comprised (N representing the number of classes). It was deemed useful for understanding how the classifier performs on each class individually, especially when aiming to ensure that the classifier performs well across all classes, regardless of their frequency.
3. Results
3.1. General Characteristics of the Study Group
3.2. Single Train–Train Split Versus Cross-Validation Model
3.3. Performance of the Proposed Algorithm
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, B.; He, M.; Wang, Y.; Wang, Z.; Du, L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries from 2000 to 2019. Front. Public Health 2022, 10, 811044. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Paudel, R.; Madan, R.; Qi, J.; Ferrante, S.; Cher, M.L.; Lane, B.R.; George, A.K.; Semerjian, A.; Ginsburg, K.B. The Use and Short-term Outcomes of Active Surveillance in Men With National Comprehensive Cancer Network Favorable Intermediate-risk Prostate Cancer: The Initial Michigan Urological Surgery Improvement Collaborative Experience. J. Urol. 2023, 209, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Catalona, W.J. Prostate Cancer Screening. Med. Clin. N. Am. 2018, 102, 199–214. [Google Scholar] [CrossRef]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef]
- Omil-Lima, D.; Kim, A.; Weinstein, I.; Gupta, K.; Sheyn, D.; Ponsky, L. Serial prostate magnetic resonance imaging fails to predict pathological progression in patients on active surveillance. Can. Urol. Assoc. J. 2022, 16, E370–E374. [Google Scholar] [CrossRef] [PubMed]
- Yim, J.H.; Kim, C.K.; Kim, J.H. Clinically insignificant prostate cancer suitable for active surveillance according to Prostate Cancer Research International: Active surveillance criteria: Utility of PI-RADS v2. J. Magn. Reson. Imaging 2018, 47, 1072–1079. [Google Scholar] [CrossRef]
- Giannini, V.; Mazzetti, S.; Defeudis, A.; Stranieri, G.; Calandri, M.; Bollito, E.; Bosco, M.; Porpiglia, F.; Manfredi, M.; De Pascale, A.; et al. A Fully Automatic Artificial Intelligence System Able to Detect and Characterize Prostate Cancer Using Multiparametric MRI: Multicenter and Multi-Scanner Validation. Front. Oncol. 2021, 11, 718155. [Google Scholar] [CrossRef] [PubMed]
- Fekri-Ershad, S. Cell phenotype classification using multi threshold uniform local ternary patterns in fluorescence microscope images. Multimed. Tools Appl. 2021, 80, 12103–12116. [Google Scholar] [CrossRef]
- Fekri-Ershad, S.; Ramakrishnan, S. Cervical cancer diagnosis based on modified uniform local ternary patterns and feed forward multilayer network optimized by genetic algorithm. Comput. Biol. Med. 2022, 144, 105392. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Kelcz, F.; Jarrard, D.F. Prostate cancer: The applicability of textural analysis of MRI for grading. Nat. Rev. Urol. 2016, 13, 185–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, M.; Gu, Y.; Zhang, Y.; Yang, S.; Wei, C.; Wu, J.; Li, X.; Zhao, W.; Shen, J. Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2. J. Magn. Reson. Imaging 2019, 49, 875–884. [Google Scholar] [CrossRef]
- Gunashekar, D.D.; Bielak, L.; Hägele, L.; Oerther, B.; Benndorf, M.; Grosu, A.-L.; Brox, T.; Zamboglou, C.; Bock, M. Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology. Radiat. Oncol. 2022, 17, 65. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [PubMed]
- Iczkowski, K.A.; van Leenders, G.J.L.H.; van der Kwast, T.H. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2021, 45, 1007. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Lobo, A.; Cheng, L. The 2022 revision of the World Health Organization classification of tumors of the urinary system and male genital organs: Advances and challenges. Hum. Pathol. 2023, 136, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, W.R.; Siqueira FR de Pedrini, H. Evaluation of feature descriptors for texture classification. J. Electron. Imaging 2012, 21, 023016. [Google Scholar] [CrossRef]
- Thibault, G.; Fertil, B.; Navarro, C.; Pereira, S.; Cau, P.; Levy, N.; Mari, J.L. Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification. In Proceedings of the 10th International Conference on Pattern Recognition and Information Processing, Minsk, Republic of Belarus, 19–21 May 2009. [Google Scholar]
- Zwanenburg, A.; Leger, S.; Vallières, M.; Löck, S. Image biomarker standardisation initiative—Feature definitions 2016. arXiv 2016, arXiv:1612.07003. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Sipos-Lascu, R.; Dioşan, L.S. An Evaluation of Image Texture Descriptors and their Invariant Properties. In Proceedings of the 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Hagenberg/Linz, Austria, 12–15 September 2022; pp. 284–292. [Google Scholar] [CrossRef]
- Roehrborn, C.G.; Black, L.K. The economic burden of prostate cancer. BJU Int. 2011, 108, 806–813. [Google Scholar] [CrossRef]
- Wegelin, O.; Exterkate, L.; van der Leest, M.; Kelder, J.C.; Bosch, J.R.; Barentsz, J.O.; Somford, D.M.; van Melick, H.H. Complications and Adverse Events of Three Magnetic Resonance Imaging-based Target Biopsy Techniques in the Diagnosis of Prostate Cancer Among Men with Prior Negative Biopsies: Results from the FUTURE Trial, a Multicentre Randomised Controlled Trial. Eur. Urol. Oncol. 2019, 2, 617–624. [Google Scholar] [CrossRef]
- Vanoli, S.; Grobet-Jeandin, E.; Windisch, O.; Valerio, M.; Benamran, D. Evolution of anxiety management in prostate biopsy under local anesthesia: A narrative review. World J. Urol. 2024, 42, 43. [Google Scholar] [CrossRef] [PubMed]
- Nasseh, H.; Asgari, S.A.; Sarmadian, R.; Meshkat, Z.; Aghabozorgi, M.H.; Kazemnejad, E.; Asadollahzade, A. The effect of transrectal ultrasound-guided prostate biopsy on erectile function and lower urinary tract symptoms: A prospective study. Afr. J. Urol. 2023, 29, 14. [Google Scholar] [CrossRef]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.J.; Walsh, E.I.; Bryant, R.J.; et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Nketiah, G.; Elschot, M.; Kim, E.; Teruel, J.R.; Scheenen, T.W.; Bathen, T.F.; Selnæs, K.M. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: Preliminary results. Eur. Radiol. 2017, 27, 3050–3059. [Google Scholar] [CrossRef]
- Olabanjo, O.; Wusu, A.; Asokere, M.; Afisi, O.; Okugbesan, B.; Olabanjo, O.; Folorunso, O.; Mazzara, M. Application of Machine Learning and Deep Learning Models in Prostate Cancer Diagnosis Using Medical Images: A Systematic Review. Analytics 2023, 2, 708–744. [Google Scholar] [CrossRef]
- Cuocolo, R.; Cipullo, M.B.; Stanzione, A.; Ugga, L.; Romeo, V.; Radice, L.; Brunetti, A.; Imbriaco, M. Machine learning applications in prostate cancer magnetic resonance imaging. Eur. Radiol. Exp. 2019, 3, 35. [Google Scholar] [CrossRef]
- Cai, J.C.; Nakai, H.; Kuanar, S.; Froemming, A.T.; Bolan, C.W.; Kawashima, A.; Takahashi, H.; Mynderse, L.A.; Dora, C.D.; Humphreys, M.R.; et al. Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI. Radiology 2024, 312, e232635. [Google Scholar] [CrossRef]
- Udayakumar, N.; Porter, K.K. How Fast Can We Go: Abbreviated Prostate MR Protocols. Curr. Urol. Rep. 2020, 21, 59. [Google Scholar] [CrossRef] [PubMed]
- Hectors, S.J.; Chen, C.; Chen, J.; Wang, J.; Gordon, S.; Yu, M.; Awamlh, B.A.H.A.; Sabuncu, M.R.; Margolis, D.J.; Hu, J.C. Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions. J. Magn. Reson. Imaging 2021, 54, 1466–1473. [Google Scholar] [CrossRef]
- Han, C.; Ma, S.; Liu, X.; Liu, Y.; Li, C.; Zhang, Y.; Zhang, X.; Wang, X. Radiomics Models Based on Apparent Diffusion Coefficient Maps for the Prediction of High-Grade Prostate Cancer at Radical Prostatectomy: Comparison with Preoperative Biopsy. J. Magn. Reson. Imaging 2021, 54, 1892–1901. [Google Scholar] [CrossRef] [PubMed]
- Winkel, D.J.; Breit, H.C.; Block, T.K.; Boll, D.T.; Heye, T.J. High spatiotemporal resolution dynamic contrast-enhanced MRI improves the image-based discrimination of histopathology risk groups of peripheral zone prostate cancer: A supervised machine learning approach. Eur. Radiol. 2020, 30, 4828–4837. [Google Scholar] [CrossRef]
- Parra, N.A.; Lu, H.; Choi, J.; Gage, K.; Pow-Sang, J.; Gillies, R.J.; Balagurunathan, Y. Habitats in DCE-MRI to Predict Clinically Significant Prostate Cancers. Tomography 2019, 5, 68–76. [Google Scholar] [CrossRef]
- Khosravi, P.; Lysandrou, M.; Eljalby, M.; Li, Q.; Kazemi, E.; Zisimopoulos, P.; Sigaras, A.; Brendel, M.; Barnes, J.; Ricketts, C.; et al. A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion. J. Magn. Reson. Imaging 2021, 54, 462–471. [Google Scholar] [CrossRef]
Feature | ISUP 1 Mean ± Standard Deviation | ISUP 2–5 Mean ± Standard Deviation | T-Test p-Value |
---|---|---|---|
Firstorder_RobustMeanAbsoluteDeviation | 8.439 ± 3.114 | 11.041 ± 2.945 | <0.001 |
GLDM_SmallDependenceHighGrayLevelEmphasis | 62.393 ± 64.922 | 96.686 ± 62.104 | 0.012 |
Shape_Sphericity | 0.833 ± 0.063 | 0.768 ± 0.087 | <0.001 |
Firstorder_InterquartileRange | 20.434 ± 7.597 | 26.485 ± 7.237 | <0.001 |
Firstorder_MeanAbsoluteDeviation | 12.893 ± 4.582 | 16.508 ± 4.360 | <0.001 |
GLSZM_SizeZoneNonUniformity | 42.036 ± 25.514 | 191.570 ± 243.407 | 0.003 |
GLCM_Idn | 0.913 ± 0.023 | 0.929 ± 0.026 | 0.005 |
GLRLM_GrayLevelNonUniformityNormalized | 0.102 ± 0.035 | 0.076 ± 0.018 | <0.001 |
GLCM_ClusterTendency | 38.125 ± 26.672 | 62.779 ± 37.859 | 0.002 |
Firstorder_Entropy | 3.554 ± 0.501 | 3.966 ± 0.363 | <0.001 |
Firstorder_Kurtosis | 4.441 ± 1.971 | 4.303 ± 1.860 | 0.733 |
GLCM_Imc2 | 0.896 ± 0.055 | 0.913 ± 0.042 | 0.073 |
GLCM_SumEntropy | 4.235 ± 0.519 | 4.731 ± 0.409 | <0.001 |
GLSZM_HighGrayLevelZoneEmphasis | 127.200 ± 101.213 | 223.129 ± 135.519 | <0.001 |
GLSZM_SmallAreaHighGrayLevelEmphasis | 93.581 ± 83.650 | 158.826 ± 98.714 | 0.002 |
GLCM_JointEntropy | 6.078 ± 0.806 | 6.834 ± 0.673 | <0.001 |
GLCM_JointEnergy | 0.023 ± 0.014 | 0.013 ± 0.006 | <0.001 |
GLCM_JointAverage | 9.497 ± 3.976 | 12.937 ± 4.194 | <0.001 |
Shape_Elongation | 0.611 ± 0.153 | 0.615 ± 0.152 | 0.902 |
GLCM_MaximumProbability | 0.060 ± 0.036 | 0.037 ± 0.017 | <0.001 |
GLSZM_LowGrayLevelZoneEmphasis | 0.046 ± 0.033 | 0.022 ± 0.018 | <0.001 |
GLSZM_SmallAreaEmphasis | 0.647 ± 0.094 | 0.672 ± 0.066 | 0.111 |
GLDM_SmallDependenceLowGrayLevelEmphasis | 0.017 ± 0.011 | 0.009 ± 0.008 | <0.001 |
GLDM_DependenceNonUniformityNormalized | 0.276 ± 0.066 | 0.268 ± 0.062 | 0.582 |
GLRLM_LongRunHighGrayLevelEmphasis | 188.402 ± 128.379 | 356.019 ± 245.142 | 0.001 |
GLCM_ClusterShade | 113.160 ± 191.459 | 280.918 ± 729.566 | 0.264 |
Firstorder_90Percentile | 0.969 ± 37.46 | 7.327 ± 28.060 | 0.318 |
GLDM_LowGrayLevelEmphasis | 0.039 ± 0.028 | 0.019 ± 0.018 | <0.001 |
GLDM_LargeDependenceLowGrayLevelEmphasis | 0.233 ± 0.188 | 0.119 ± 0.158 | 0.001 |
GLRLM_RunLengthNonUniformity | 128.450 ± 70.358 | 591.600 ± 795.223 | 0.004 |
Variable | Value |
---|---|
Age (years) | 65 [61–68] |
PSA value (ng/mL) | 11.14 [3.5–70.0] |
Prostatic nodules | 76 |
PI-RADS Score | |
3 | 11 |
4 | 40 |
5 | 25 |
Radical prostatectomy approach | |
LRP | 69 |
RALP | 7 |
pT staging per patient | |
pT2 | 44 |
pT3 | 11 |
ISUP Grade per nodule | |
Grade 1 | 14 |
Grade 2 | 49 |
Grade 3 | 10 |
Grade 4 | 0 |
Grade 5 | 3 |
PRECISION | RECALL | F1 | ACCURACY | |
---|---|---|---|---|
ISUP 1 | 0.5 | 0.25 | 0.333 | 0.777 |
ISUP 2–5 | 0.812 | 0.928 | 0.866 | |
MICRO-AVERAGING | 0.777 | 0.777 | 0.777 | |
MACRO-AVERAGING | 0.656 | 0.589 | 0.6 |
PRECISION | RECALL | F1 | ACCURACY | |
---|---|---|---|---|
ISUP 1 | 0.6 | 0.2 | 0.293 | 0.822 |
ISUP 2–5 | 0.815 | 1 | 0.897 | |
MICRO-AVERAGING | 0.822 | 0.822 | 0.822 | |
MACRO-AVERAGING | 0.707 | 0.6 | 0.595 |
PRECISION | RECALL | F1 | ACCURACY | |
---|---|---|---|---|
ISUP 1 | 0.666 | 0.466 | 0.526 | 0.872 |
ISUP 2–5 | 0.888 | 0.963 | 0.923 | |
MICRO-AVERAGING | 0.872 | 0.872 | 0.872 | |
MACRO-AVERAGING | 0.777 | 0.715 | 0.725 |
PRECISION | RECALL | F1 | ACCURACY | |
---|---|---|---|---|
ISUP 1 | 0.314 | 0.533 | 0.388 | 0.674 |
ISUP 2–5 | 0.868 | 0.698 | 0.768 | |
MICRO-AVERAGING | 0.674 | 0.674 | 0.674 | |
MACRO-AVERAGING | 0.591 | 0.615 | 0.578 |
PRECISION | RECALL | F1 | ACCURACY | |
---|---|---|---|---|
ISUP 1 | 0 | 0 | 0 | 0.802 |
ISUP 2–5 | 0.802 | 1 | 0.890 | |
MICRO-AVERAGING | 0.802 | 0.802 | 0.802 | |
MACRO-AVERAGING | 0.401 | 0.5 | 0.445 |
PRECISION | RECALL | F1 | ACCURACY | |
---|---|---|---|---|
ISUP 1 | 0.525 | 0.392 | 0.477 | 0.803 |
ISUP 2 | 0.857 | 0.881 | 0.868 | |
ISUP 3 | 0.758 | 0.691 | 0.712 | |
ISUP 5 | 0.843 | 0.916 | 0.868 | |
MICRO-AVERAGING | 0.803 | 0.803 | 0.803 | |
MACRO-AVERAGING | 0.746 | 0.720 | 0.724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telecan, T.; Caraiani, C.; Boca, B.; Sipos-Lascu, R.; Diosan, L.; Balint, Z.; Hendea, R.M.; Andras, I.; Crisan, N.; Lupsor-Platon, M. Automatic Characterization of Prostate Suspect Lesions on T2-Weighted Image Acquisitions Using Texture Features and Machine-Learning Methods: A Pilot Study. Diagnostics 2025, 15, 106. https://doi.org/10.3390/diagnostics15010106
Telecan T, Caraiani C, Boca B, Sipos-Lascu R, Diosan L, Balint Z, Hendea RM, Andras I, Crisan N, Lupsor-Platon M. Automatic Characterization of Prostate Suspect Lesions on T2-Weighted Image Acquisitions Using Texture Features and Machine-Learning Methods: A Pilot Study. Diagnostics. 2025; 15(1):106. https://doi.org/10.3390/diagnostics15010106
Chicago/Turabian StyleTelecan, Teodora, Cosmin Caraiani, Bianca Boca, Roxana Sipos-Lascu, Laura Diosan, Zoltan Balint, Raluca Maria Hendea, Iulia Andras, Nicolae Crisan, and Monica Lupsor-Platon. 2025. "Automatic Characterization of Prostate Suspect Lesions on T2-Weighted Image Acquisitions Using Texture Features and Machine-Learning Methods: A Pilot Study" Diagnostics 15, no. 1: 106. https://doi.org/10.3390/diagnostics15010106
APA StyleTelecan, T., Caraiani, C., Boca, B., Sipos-Lascu, R., Diosan, L., Balint, Z., Hendea, R. M., Andras, I., Crisan, N., & Lupsor-Platon, M. (2025). Automatic Characterization of Prostate Suspect Lesions on T2-Weighted Image Acquisitions Using Texture Features and Machine-Learning Methods: A Pilot Study. Diagnostics, 15(1), 106. https://doi.org/10.3390/diagnostics15010106