Retinal Function in Long-Term Type 1 Diabetes without Retinopathy: Insights from Pattern Electroretinogram and Pattern Visual Evoked Potentials Assessments
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418. [Google Scholar] [CrossRef]
- Klein, B.E.K. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007, 14, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Hernández, C. Neurodegeneration is an early event in diabetic retinopathy: Therapeutic implications. Br. J. Ophthalmol. 2012, 96, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Salvi, L.; Plateroti, P.; Balducci, S.; Bollanti, L.; Conti, F.G.; Vitale, M.; Recupero, S.M.; Enrici, M.M.; Fenicia, V.; Pugliese, G. Abnormalities of retinal ganglion cell complex at optical coherence tomography in patients with type 2 diabetes: A sign of diabetic polyneuropathy, not retinopathy. J. Diabetes Complicat. 2016, 30, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, A.M.; Sampson, G.P.; Pritchard, N.; Edwards, K.; Vagenas, D.; Russell, A.W.; Malik, R.A.; Efron, N. Retinal nerve fibre layer thinning associated with diabetic peripheral neuropathy. Diabet. Med. 2012, 29, e106–e111. [Google Scholar] [CrossRef]
- Boned-Murillo, A.; Albertos-Arranz, H.; Diaz-Barreda, M.D.; Orduna-Hospital, E.; Sánchez-Cano, A.; Ferreras, A.; Cuenca, N.; Pinilla, I. Optical Coherence Tomography Angiography in Diabetic Patients: A Systematic Review. Biomedicines 2022, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, A.I.; Zedan, R.H.; Macky, T.A.; Esmat, S.M. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy. Int. J. Ophthalmol. 2017, 10, 427–433. [Google Scholar] [CrossRef]
- Montesano, G.; Gervasoni, A.; Ferri, P.; Allegrini, D.; Migliavacca, L.; De Cillà, S.; Rossetti, L. Structure–function relationship in early diabetic retinopathy: A spatial correlation analysis with OCT and microperimetry. Eye 2017, 31, 931–939. [Google Scholar] [CrossRef]
- Orduna-Hospital, E.; Otero-Rodríguez, J.; Perdices, L.; Sánchez-Cano, A.; Boned-Murillo, A.; Acha, J.; Pinilla, I. Microperimetry and Optical Coherence Tomography Changes in Type-1 Diabetes Mellitus without Retinopathy. Diagnostics 2021, 11, 136. [Google Scholar] [CrossRef]
- McAnany, J.J.; Park, J.C.; Liu, K.; Liu, M.; Chen, Y.F.; Chau, F.Y.; Lim, J.I. Contrast sensitivity is associated with outer-retina thickness in early-stage diabetic retinopathy. Acta Ophthalmol. 2020, 98, e224–e231. [Google Scholar] [CrossRef]
- Ewing, F.M.E.; Deary, I.J.; Strachan, M.W.J.; Frier, B.M. Seeing Beyond Retinopathy in Diabetes: Electrophysiological and Psychophysical Abnormalities and Alterations in Vision. Endocr. Rev. 1998, 19, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Saeed, R.; Iqbal, I.; Bajwa, J.A.; Falak, S. Evaluation of color vision and contrast sensitivity in diabetic patients without retinopathy. Adv. Ophthalmol. Vis. Syst. 2019, 9, 71–76. [Google Scholar] [CrossRef]
- Archana, R.; Rajalakshmi, T.; Vijay Sai, P. Non-invasive technique to detect diabetic retinopathy based on Electrooculography signal using machine learning classifiers. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2022, 236, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.F.; Brigell, M.G.; McCulloch, D.L.; Westall, C.A.; Bach, M. ISCEV standard for clinical electro-oculography (2010 update). Doc. Ophthalmol. 2011, 122, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bach, M.; Brigell, M.G.; Hawlina, M.; Holder, G.E.; Johnson, M.A.; McCulloch, D.L.; Meigen, T.; Viswanathan, S. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc. Ophthalmol. 2013, 126, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.M.; O’Connor, P.S.; Young, R.S.; Kincaid, M.; Bentley, R. The pattern ERG in man following surgical resection of the optic nerve. Investig. Ophthalmol. Vis. Sci. 1987, 28, 492–499. [Google Scholar]
- Miura, G. Visual Evoked Potentials for the Detection of Diabetic Retinal Neuropathy. Int. J. Mol. Sci. 2023, 24, 7361. [Google Scholar] [CrossRef]
- Odom, J.V.; Bach, M.; Brigell, M.; Holder, G.E.; McCulloch, D.L.; Mizota, A.; Tormene, A.P. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Adamiec-Mroczek, J.; Zając-Pytrus, H.; Misiuk-Hojło, M. Caspase-Dependent Apoptosis of Retinal Ganglion Cells During the Development of Diabetic Retinopathy. Adv. Clin. Exp. Med. 2015, 24, 531–535. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, D.; Chen, X.; Zhao, L.; Tian, Q.; Liu, C.; Zhou, B.L.S. Decrease in retinal neuronal cells in streptozotocin-induced diabetic mice. Mol. Vis. 2012, 18, 1411–1420. [Google Scholar]
- Lynch, S.K.; Abràmoff, M.D. Diabetic retinopathy is a neurodegenerative disorder. Vis. Res. 2017, 139, 101–107. [Google Scholar] [CrossRef]
- van Dijk, H.W.; Kok, P.H.B.; Garvin, M.; Sonka, M.; Devries, J.H.; Michels, R.P.J.; van Velthoven, M.E.J.; Schlingemann, R.O.; Verbraak, F.D.; Abràmoff, M.D. Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients with Minimal Diabetic Retinopathy. Investig. Opthalmology Vis. Sci. 2009, 50, 3404–3409. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, H.W.; Verbraak, F.D.; Kok, P.H.B.; Garvin, M.K.; Sonka, M.; Lee, K.; Devries, J.H.; Michels, R.P.J.; van Velthoven, M.E.J.; Schlingemann, R.O.; et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3660–3665. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, H.W.; Verbraak, F.D.; Stehouwer, M.; Kok, P.H.B.; Garvin, M.K.; Sonka, M.; DeVries, J.H.; Schlingemann, R.O.; Abràmoff, M.D. Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vis. Res. 2011, 51, 224–228. [Google Scholar] [CrossRef]
- Pinilla, I.; Idoipe, M.; Perdices, L.; Sanchez-Cano, A.; Acha, J.; Lopez-Galvez, M.I.; Cuenca, N.; Abecia, E.; Orduna-Hospital, E. Changes in Total and Inner Retinal Thicknesses in Type 1 Diabetes with No Retinopathy after 8 Years of Follow-Up. Retina 2020, 40, 1379–1386. [Google Scholar] [CrossRef]
- Vujosevic, S.; Toma, C.; Villani, E.; Gatti, V.; Brambilla, M.; Muraca, A.; Ponziani, M.C.; Aimaretti, G.; Nuzzo, A.; Nucci, P.; et al. Early Detection of Microvascular Changes in Patients with Diabetes Mellitus without and with Diabetic Retinopathy: Comparison between Different Swept-Source OCT-A Instruments. J. Diabetes Res. 2019, 2019, 2547216. [Google Scholar] [CrossRef]
- van Dijk, H.W.; Verbraak, F.D.; Kok, P.H.B.; Stehouwer, M.; Garvin, M.K.; Sonka, M.; DeVries, J.H.; Schlingemann, R.O.; Abràmoff, M.D. Early Neurodegeneration in the Retina of Type 2 Diabetic Patients. Investig. Opthalmology Vis. Sci. 2012, 53, 2715. [Google Scholar] [CrossRef] [PubMed]
- McAnany, J.J.; Persidina, O.S.; Park, J.C. Clinical electroretinography in diabetic retinopathy: A review. Surv. Ophthalmol. 2022, 67, 712–722. [Google Scholar] [CrossRef]
- Ventura, L.M.; Golubev, I.; Feuer, W.J.; Porciatti, V. The PERG in diabetic glaucoma suspects with no evidence of retinopathy. J. Glaucoma 2010, 19, 243–247. [Google Scholar] [CrossRef]
- Mermeklieva, E.A. Pattern electroretinography and retinal changes in patients with diabetes mellitus type 2. Neurophysiol. Clin. 2019, 49, 209–215. [Google Scholar] [CrossRef]
- Jain, P. Ocular Electrophysiology. Delhi J. Ophthalmol. 2015, 26, 58–66. [Google Scholar] [CrossRef]
- Sivakumar, R.; Ravindran, G.; Muthayya, M.; Lakshminarayanan, S.; Velmurughendran, C.U. Diabetic Retinopathy Analysis. J. Biomed. Biotechnol. 2005, 2005, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Lecleire-Collet, A.; Audo, I.; Aout, M.; Girmens, J.F.; Sofroni, R.; Erginay, A.; le Gargasson, J.F.; Mohand-Saïd, S.; Meas, T.; Guillausseau, P.J.; et al. Evaluation of retinal function and flicker light-induced retinal vascular response in normotensive patients with diabetes without retinopathy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2861–2867. [Google Scholar] [CrossRef] [PubMed]
- Lasta, M.; Pemp, B.; Schmidl, D.; Boltz, A.; Kaya, S.; Palkovits, S.; Werkmeister, R.; Howorka, K.; Popa-Cherecheanu, A.; Garhöfer, G.; et al. Neurovascular dysfunction precedes neural dysfunction in the retina of patients with type 1 diabetes. Investig. Ophthalmol. Vis. Sci. 2013, 54, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Deák, K.; Fejes, I.; Janáky, M.; Várkonyi, T.; Benedek, G.; Braunitzer, G. Further Evidence for the Utility of Electrophysiological Methods for the Detection of Subclinical Stage Retinal and Optic Nerve Involvement in Diabetes. Med. Princ. Pract. 2016, 25, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Chau, F.Y.; Lim, J.I.; McAnany, J.J. Electrophysiological and pupillometric measures of inner retina function in nonproliferative diabetic retinopathy. Doc. Ophthalmol. 2019, 139, 99–111. [Google Scholar] [CrossRef]
- Tabl, M. Early detection of neurodegeneration in type 2 diabetic patients without diabetic retinopathy using electroretinogram and spectral-domain optical coherence tomography. J. Egypt. Ophthalmol. Soc. 2020, 113, 26. [Google Scholar] [CrossRef]
- Caputo, S.; Di Leo, M.A.S.; Falsini, B.; Ghirlanda, G.; Porciatti, V.; Minella, A.; Greco, A.V. Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care 1990, 13, 412–418. [Google Scholar] [CrossRef]
- Falsini, B.; Porciatti, V.; Scalia, G.; Caputo, S.; Minnella, A.; Di Leo, M.A.S.; Ghirlanda, G. Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc. Ophthalmol. 1989, 73, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Uccioli, L. Visual electrophysiological responses in persons with type 1 diabetes. Diabetes. Metab. Res. Rev. 2001, 17, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, O.; Guerci, B.; Algan, M.; Lonchamp, P.; Weber, M.; Drouin, P. Improved Visual Evoked Potential Latencies In Poorly Controlled Diabetic Patients After Short-Term Strict Metabolic Control. Diabetes Care 1994, 17, 1141–1147. [Google Scholar] [CrossRef]
- Mariani, E.; Moreo, G.; Colucci, G.B. Study of visual evoked potentials in diabetics without retinopathy: Correlations with clinical findings and polyneuropathy. Acta Neurol. Scand. 1990, 81, 337–340. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, G.; Deshpande, V.K. Visual evoked potential changes in patients with diabetes mellitus without retinopathy. Int. J. Res. Med. Sci. 2015, 3, 3591–3598. [Google Scholar] [CrossRef]
- Heravian, J.; Ehyaei, A.; Shoeibi, N.; Azimi, A.; Ostadi-Moghaddam, H.; Yekta, A.-A.; Khoshsima, M.J.; Esmaily, H. Pattern Visual Evoked Potentials in Patients with Type II Diabetes Mellitus. J. Ophthalmic Vis. Res. 2012, 7, 225–230. [Google Scholar] [PubMed]
- Shrivastava, S.K.; Verma, V.; Tonpay, P.S.; Milind Shiralkar, M.S.N. Visual evoked potentials in type-1 diabetes without retinopathy: Co-relations with duration of diabetes. J. Evol. Med. Dent. Sci. 2014, 3, 1065–1070. [Google Scholar]
- Balta, O.; Sungur, G.; Yakin, M.; Unlu, N.; Balta, O.B.; Ornek, F. Pattern Visual Evoked Potential Changes in Diabetic Patients without Retinopathy. J. Ophthalmol. 2017, 2017, 8597629. [Google Scholar] [CrossRef] [PubMed]
- Boschi, M.C.; Frosini, R.; Mencucci, R.; Sodi, A. The influence of early diabetes on the pattern electroretinogram. Doc. Ophthalmol. 1989, 71, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Trick, G.L.; Burde, R.M.; Gordon, M.O.; Kilo, C.; Santiago, J.V. Retinocortical conduction time in diabetics with abnormal pattern reversal electroretinograms and visual evoked potentials. Doc. Ophthalmol. 1988, 70, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, V.; Piatti, P.M.; Filippi, M.; Pacchioni, M.; Pastore, M.R.; Canal, N.; Comi, G. Effects of hyperglycaemia on visual evoked potentials in insulin-dependent diabetic patients. Acta Diabetol. 1992, 29, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Han, H.S.; Kim, H. Visual-evoked potentials in children and adolescents with newly diagnosed diabetes. Turk. Pediatr. Ars. 2017, 52, 133–137. [Google Scholar] [CrossRef]
- Nippert, A.R.; Newman, E.A. Regulation of blood flow in diabetic retinopathy. Vis. Neurosci. 2020, 37, E004. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.S.; Ling, L.H.; Ong, P.G.; Foulds, W.; Tai, E.S.; Wong, T.Y. Dynamic Responses in Retinal Vessel Caliber With Flicker Light Stimulation and Risk of Diabetic Retinopathy and Its Progression. Investig. Opthalmology Vis. Sci. 2017, 58, 2449. [Google Scholar] [CrossRef] [PubMed]
- Bresnick, G.H.; Korth, K.; Groo, A.; Palta, M. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy. Preliminary report. Arch. Ophthalmol. 1984, 102, 1307–1311. [Google Scholar] [CrossRef] [PubMed]
- Mandecka, A.; Dawczynski, J.; Blum, M.; Müller, N.; Kloos, C.; Wolf, G.; Vilser, W.; Hoyer, H.; Müller, U.A. Influence of Flickering Light on the Retinal Vessels in Diabetic Patients. Diabetes Care 2007, 30, 3048–3052. [Google Scholar] [CrossRef] [PubMed]
- Garhöfer, G.; Zawinka, C.; Resch, H.; Kothy, P.; Schmetterer, L.; Dorner, G.T. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br. J. Ophthalmol. 2004, 88, 887–890. [Google Scholar] [CrossRef]
- McAnany, J.J.; Park, J.C.; Chau, F.Y.; Leiderman, Y.I.; Lim, J.I.; Blair, N.P. Amplitude Loss of the High-Frequency Flicker Electroretinogram in Early Diabetic Retinopathy. Retina 2019, 39, 2032–2039. [Google Scholar] [CrossRef]
- Pescosolido, N.; Barbato, A.; Stefanucci, A.; Buomprisco, G. Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J. Diabetes Res. 2015, 2015, 319692. [Google Scholar] [CrossRef]
Type 1 Diabetes Group | Mean ± SD |
---|---|
HbA1c (%) | 7.29 ± 0.89 |
Glycaemia (mg/dL) | 149.00 ± 66.13 |
Total cholesterol (mg/dL) | 190.61 ± 33.15 |
HDL cholesterol (mg/dL) | 62.43 ± 12.38 |
LDL cholesterol (mg/dL) | 114.30 ± 27.78 |
Urea (mg/dL) | 34.35 ± 8.62 |
Creatinine (mg/dL) | 0.78 ± 0.10 |
Albumin/creatinine ratio (mg/g Cr) | 7.13 ± 10.19 |
Control Group n = 46 | T1DM Group n = 46 | ||
---|---|---|---|
Mean ± SD | Mean ± SD | p | |
N35 (ms) | 34.30 ± 3.30 | 34.22 ± 4.10 | 0.693 |
P50 (ms) | 57.75 ± 3.93 | 56.18 ± 5.07 | 0.105 |
N95 (ms) | 99.16 ± 5.90 | 96.57 ± 6.78 | 0.93 |
N35–P50 (µV) | 4.72 ± 2.47 | 3.62 ± 2.10 | 0.018 |
P50–N95 (µV) | 9.32 ± 3.45 | 7.90 ± 3.17 | 0.035 |
Control Group n = 46 | T1DM Group n = 46 | ||
---|---|---|---|
Mean ± SD | Mean ± SD | p | |
N75 (ms) | 73.59 ± 7.30 | 74.36 ± 6.98 | 0.584 |
P100 (ms) | 108.09 ± 4.70 | 109.37 ± 7.13 | 0.56 |
N135 (ms) | 143.68 ± 9.07 | 144.03 ± 10.42 | 0.935 |
N75–P100 (µV) | 12.46 ± 4.75 | 12.23 ± 5.17 | 0.803 |
P100–N135 (µV) | 12.92 ± 5.03 | 12.91 ± 6.31 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias-Alvarez, M.; Sopeña-Pinilla, M.; Fernandez-Espinosa, G.; Orduna-Hospital, E.; Vicente-Garza, I.; Bonet-Rodriguez, A.; Acha-Perez, J.; Rodriguez-Mena, D.; Pinilla, I. Retinal Function in Long-Term Type 1 Diabetes without Retinopathy: Insights from Pattern Electroretinogram and Pattern Visual Evoked Potentials Assessments. Diagnostics 2024, 14, 492. https://doi.org/10.3390/diagnostics14050492
Arias-Alvarez M, Sopeña-Pinilla M, Fernandez-Espinosa G, Orduna-Hospital E, Vicente-Garza I, Bonet-Rodriguez A, Acha-Perez J, Rodriguez-Mena D, Pinilla I. Retinal Function in Long-Term Type 1 Diabetes without Retinopathy: Insights from Pattern Electroretinogram and Pattern Visual Evoked Potentials Assessments. Diagnostics. 2024; 14(5):492. https://doi.org/10.3390/diagnostics14050492
Chicago/Turabian StyleArias-Alvarez, Marta, Maria Sopeña-Pinilla, Guisela Fernandez-Espinosa, Elvira Orduna-Hospital, Ines Vicente-Garza, Anna Bonet-Rodriguez, Javier Acha-Perez, Diego Rodriguez-Mena, and Isabel Pinilla. 2024. "Retinal Function in Long-Term Type 1 Diabetes without Retinopathy: Insights from Pattern Electroretinogram and Pattern Visual Evoked Potentials Assessments" Diagnostics 14, no. 5: 492. https://doi.org/10.3390/diagnostics14050492
APA StyleArias-Alvarez, M., Sopeña-Pinilla, M., Fernandez-Espinosa, G., Orduna-Hospital, E., Vicente-Garza, I., Bonet-Rodriguez, A., Acha-Perez, J., Rodriguez-Mena, D., & Pinilla, I. (2024). Retinal Function in Long-Term Type 1 Diabetes without Retinopathy: Insights from Pattern Electroretinogram and Pattern Visual Evoked Potentials Assessments. Diagnostics, 14(5), 492. https://doi.org/10.3390/diagnostics14050492