Agreement Between Resting Energy Expenditure Predictive Formulas and Indirect Calorimetry in Non-Dialysis Dependent Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Patient Selection
2.2. Anthropometric Measures
2.3. Resting Energy Expenditure Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, C.; Wang, A.Y.; et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J. Ren. Nutr. 2013, 23, 77–90. [Google Scholar] [CrossRef]
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, M.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E.; et al. Global prevalence of protein-energy wasting in kidney disease: A meta-analysis of contemporary observational studies from the international society of renal nutrition and metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am. J. Kidney Dis. 2020, 76 (Suppl. 1), S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Avesani, C.M.; Cuppari, L.; Silva, A.C.; Sigulem, D.M.; Cendoroglo, M.; Sesso, R.; Draibe, S.A. Resting energy expenditure in pre-dialysis diabetic patients. Nephrol. Dial. Transplant. 2001, 16, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Cuppari, L.; de Carvalho, A.B.; Avesani, C.M.; Kamimura, M.A. Increased resting energy expenditure in hemodialysis patients with severe hyperparathyroidism. J. Am. Soc. Nephrol. 2004, 15, 2933–2939. [Google Scholar] [CrossRef]
- Utaka, S.; Avesani, C.M.; Draibe, S.A.; Kamimura, M.A.; Andreoni, S.; Cuppari, L. Inflammation is associated with increased energy expenditure in chronic kidney disease patients. Am. J. Clin. Nutr. 2005, 82, 801–805. [Google Scholar] [CrossRef]
- Kamimura, M.A.; Avesani, C.M.; Bazanelli, A.P.; Baria, F.; Draibe, S.A.; Cuppari, L. Are prediction equations reliable for estimating resting energy expenditure in chronic kidney disease patients? Nephrol. Dial. Transplant. 2021, 26, 544–550. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Wingard, R.L.; Sun, M.; Harvell, J.; Parker, R.A.; Hakim, R.M. Increased energy expenditure in hemodialysis patients. J. Am. Soc. Nephrol. 1996, 7, 2646–2653. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. S1), 5–41. [Google Scholar]
- Vilar, E.; Machado, A.; Garrett, A.; Kozarski, R.; Wellsted, D.; Farrington, K. Disease specific predictive formulas for energy expenditure in the dialysis population. J. Ren. Nutr. 2014, 24, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.C.; Bufarah, M.N.B.; Ponce, D.; Balbi, A.L. Poor agreement between indirect calorimetry and predictive formula of resting energy expenditure in pre-dialytic and dialytic chronic kidney disease. Clin. Nutr. ESPEN 2018, 28, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Byham-Gray, L.D.; Parrott, J.S.; Peters, E.N.; Fogerite, S.G.; Hand, R.K.; Ahrens, S.; Marcus, A.F.; Fiutem, J.J. Modeling a predictive energy equation specific for maintenance hemodialysis. J. Parenter. Enter. Nutr. 2017, 42, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.O.; Avesani, C.M.; Kamimura, M.A.; Aoike, D.T.; Cuppari, L. Estimating resting energy expenditure of patients on dialysis: Development and validation of a predictive equation. Nutrition 2019, 67–68, 110527. [Google Scholar] [CrossRef]
- Fernandes, T.O.; Avesani, C.M.; Aoike, D.T.; Cuppari, L. New predictive equations to estimate resting energy expenditure of non-dialysis dependent chronic kidney disease patients. J. Nephrol. 2021, 34, 1235–1242. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612, Erratum in: Ann Intern Med. 2011, 155, 408. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.B.D.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Diener, J.R.C. Calorimetria indireta. Rev. Assoc. Med. Bras. 1997, 43, 245–253. [Google Scholar] [CrossRef]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- McBride, G.B. A Proposal for Strength-Of-Agreement Criteria for Lin’s Concordance Correlation Coefficient. 2005 NIWA Client Report: HAM2005-062; National Institute of Water and Atmospheric Research: Auckland, New Zealand, 2005. [Google Scholar]
- Panesar, A.; Agarwal, R. Resting energy expenditure in chronic kidney disease: Relationship with glomerular filtration rate. Clin. Nephrol. 2003, 59, 360–366. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical approach to nutrition, protein-energy wasting, sarcopenia, and cachexia in patients with chronic kidney disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.; Brody, R.; Sackey, J.; Parrott, J.S.; Peters, E.; Byham-Gray, L. Current methods for developing predictive energy equations in maintenance dialysis are imprecise. Ann. Med. 2022, 54, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, Z.; Ma, T.; Li, Z.; Chen, Y.; Zheng, Y.; Dong, J. Novel equation for estimating resting energy expenditure in patients with chronic kidney disease. Am. J. Clin. Nutr. 2021, 113, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
Authors | Formulas | Reference |
---|---|---|
Fernandes et al., 2019 Country: Brazil | REE (kcal/day) = 956.02 − (8.08 × age) + (11.07 × body weight (Kg)) + 136.4 (if man) | [14] |
Fernandes et al., 2021 Country: Brazil | REE (kcal/day) = 854 + (7.4 × body weight (Kg)) + (179 × sex) − (3.3 × age) + (2.1 × eGFR) + 26 (if DM) In: sex: male = 1; female = 2; DM = diabetes mellitus | [15] |
Byham-Gray et al., 2017 (MHDE-CRP) Country: USA | REE male (Kcal/day) = 1027.8 − (5.19 × age) + (9.67 × body weight) + (2.71 × CRP) REE female (Kcal/day) = 820.47 − (5.19 × age) + (9.67 × body weight) + (2.71 × CRP) In: Body weight in kilograms (after dialysis) and CRP in mg/dL. If CRP is not available, A1C or serum creatinine can replace this model. | [13] |
Byham-Gray et al., 2017 (MHDE-SCr) Country: USA | REE male (Kcal/day) = 1024.41 − (4.9 × age) + (10.21 × body weight) − (3.25 × serum creatinine) REE female (Kcal/day) = 802.0 − (4.9 × age) + (10.21 × body weight) − (3.25 × serum creatinine) In: Body weight in kilograms (after dialysis) and serum creatinine in mg/dL. | [13] |
Villar et al., 2014 Country: United Kingdom | REE (Kcal/day) = −2.497 × Factorage + (0.011 × height (cm) × 2.023 × weight (Kg) × 0.6291) + 68.171 × Factorsex In: Factorage = 1 if 65 years or older and 0 if younger than 65, and Factorsex = 1 if male and 0 if female. | [11] |
Variables | Patients |
---|---|
Demographic parameters | |
Mean age (years) | 65 ± 13 |
Black race (%) | 10 (19) |
Female (%) | 20 (38) |
Clinical parameters | |
Causes of chronic kidney disease | |
Diabetes mellitus (%) | 20 (37.7) |
Hypertension (%) | 20 (37.7) |
Glomerulonephritis (%) | 12 (22.4) |
eGFR (mL/min/1.73 m2) | 12.43 ± 3.65 |
CPR (mg/dL) | 1.55 (0.5–6.5) |
REE by IC mean (Kcal/day) | 1341.38 ± 371.05 |
RQ mean | 0.99 ± 0.19 |
Nutritional parameters | |
Body weight (Kg) | 74.72 ± 14.36 |
Body mass index (Kg/m2) | 27.84 ± 4.56 |
Mean ± SD | p | Bland–Altman Analysis | Lin’s Correlation Coefficient | Accuracy ± 10% | Accuracy ± 20% | ||
---|---|---|---|---|---|---|---|
Bias Mean | Agreement Limits | ||||||
Indirect calorimetry | 1341.4 ± 371.0 | ||||||
[14] | 1261.6 ± 218.3 | <0.000 | 90.70 | −547.45 to −393.80 | 0.5731 | 31.3% | 78.2% |
[15] | 1367.4 ± 367.5 | <0.000 | 15.02 | −653.51 to −398.90 | 0.7892 | 32.4% | 85.1% |
[13] | 1309.3 ± 226.0 | <0.000 | 17.23 | −581.90 to −437.64 | 0.6520 | 41.9% | 75.4% |
[13] | 1352.1 ± 242.8 | <0.000 | −21.62 | −620.97 to −476.25 | 0.6672 | 46.1% | 78.8% |
[11] | 1494.5 ± 231.7 | <0.000 | −142.25 | −793.22 to −636.48 | 0.5283 | 38.4% | 64.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, M.C.; Bufarah, M.N.B.; de Oliveira, R.B.; de Góes, C.R.; Balbi, A.L. Agreement Between Resting Energy Expenditure Predictive Formulas and Indirect Calorimetry in Non-Dialysis Dependent Chronic Kidney Disease. Diagnostics 2024, 14, 2603. https://doi.org/10.3390/diagnostics14222603
de Oliveira MC, Bufarah MNB, de Oliveira RB, de Góes CR, Balbi AL. Agreement Between Resting Energy Expenditure Predictive Formulas and Indirect Calorimetry in Non-Dialysis Dependent Chronic Kidney Disease. Diagnostics. 2024; 14(22):2603. https://doi.org/10.3390/diagnostics14222603
Chicago/Turabian Stylede Oliveira, Mariana Cassani, Marina Nogueira Berbel Bufarah, Rodrigo Bueno de Oliveira, Cassiana Regina de Góes, and André Luís Balbi. 2024. "Agreement Between Resting Energy Expenditure Predictive Formulas and Indirect Calorimetry in Non-Dialysis Dependent Chronic Kidney Disease" Diagnostics 14, no. 22: 2603. https://doi.org/10.3390/diagnostics14222603
APA Stylede Oliveira, M. C., Bufarah, M. N. B., de Oliveira, R. B., de Góes, C. R., & Balbi, A. L. (2024). Agreement Between Resting Energy Expenditure Predictive Formulas and Indirect Calorimetry in Non-Dialysis Dependent Chronic Kidney Disease. Diagnostics, 14(22), 2603. https://doi.org/10.3390/diagnostics14222603