The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and Applications
Abstract
:1. Introduction
2. The Use of ML in the Diagnosis of Kidney Transplant Rejection
2.1. Histopathology
2.2. Gene Expression
2.2.1. Microarray-Based Molecular Diagnostic System
2.2.2. Studies Based on Data from the Gene Expression Omnibus (GEO) Database
2.3. Standard-of-Care Parameters
2.4. Radiologic Evaluation
3. The Application of ML-Based Algorithms in Clinical Practice
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bastani, B. The present and future of transplant organ shortage: Some potential remedies. J. Nephrol. 2020, 33, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Mayrdorfer, M.; Liefeldt, L.; Wu, K.; Rudolph, B.; Zhang, Q.; Friedersdorff, F.; Lachmann, N.; Schmidt, D.; Osmanodja, B.; Naik, M.G.; et al. Exploring the Complexity of Death-Censored Kidney Allograft Failure. J. Am. Soc. Nephrol. 2021, 32, 1513–1526. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.A.; Chandran, S.; Burger, I.M.; Zhang, C.A.; Goldstein, R.B. Complications of Ultrasound-Guided Renal Transplant Biopsies. Am. J. Transplant. 2016, 16, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.; Halimi, J.M.; de Fréminville, J.B.; Gatault, P.; Gueguen, J.; Goin, N.; Longuet, H.; Barbet, C.; Bisson, A.; Sautenet, B.; et al. A Universal Bleeding Risk Score in Native and Allograft Kidney Biopsies: A French Nationwide Cohort Study. J. Clin. Med. 2023, 12, 3527. [Google Scholar] [CrossRef] [PubMed]
- Roufosse, C.; Simmonds, N.; Clahsen-van Groningen, M.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasińska, A.; Rabant, M.; et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, 1795–1814. [Google Scholar] [CrossRef]
- Schinstock, C.A.; Sapir-Pichhadze, R.; Naesens, M.; Batal, I.; Bagnasco, S.; Bow, L.; Campbell, P.; Clahsen-van Groningen, M.C.; Cooper, M.; Cozzi, E.; et al. Banff survey on antibody-mediated rejection clinical practices in kidney transplantation: Diagnostic misinterpretation has potential therapeutic implications. Am. J. Transplant. 2019, 19, 123–131. [Google Scholar] [CrossRef]
- Yoo, D.; Maggiore, U. Artificial intelligence for forecasting live donor kidney function. J. Nephrol. 2024, 37, 1429–1431. [Google Scholar] [CrossRef]
- Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 2023, 186, 1772–1791. [Google Scholar] [CrossRef]
- Badrouchi, S.; Bacha, M.M.; Hedri, H.; Ben Abdallah, T.; Abderrahim, E. Toward generalizing the use of artificial intelligence in nephrology and kidney transplantation. J. Nephrol. 2023, 36, 1087–1100. [Google Scholar] [CrossRef]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [CrossRef]
- Seyahi, N.; Ozcan, S.G. Artificial intelligence and kidney transplantation. World J. Transplant. 2021, 11, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Basuli, D.; Roy, S. Beyond Human Limits: Harnessing Artificial Intelligence to Optimize Immunosuppression in Kidney Transplantation. J. Clin. Med. Res. 2023, 15, 391–398. [Google Scholar] [CrossRef]
- Thishya, K.; Vattam, K.K.; Naushad, S.M.; Raju, S.B.; Kutala, V.K. Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation. PLoS ONE 2018, 13, e0191921. [Google Scholar] [CrossRef] [PubMed]
- Lukomski, L.; Pisula, J.; Wagner, T.; Sabov, A.; Große Hokamp, N.; Bozek, K.; Popp, F.; Kann, M.; Kurschat, C.; Becker, J.U.; et al. First experiences with machine learning predictions of accelerated declining eGFR slope of living kidney donors 3 years after donation. J. Nephrol. 2024, 37, 1631–1642. [Google Scholar] [CrossRef]
- Jeon, J.; Song, Y.; Yu, J.Y.; Jung, W.; Lee, K.; Lee, J.E.; Huh, W.; Cha, W.C.; Jang, H.R. Prediction of post-donation renal function using machine learning techniques and conventional regression models in living kidney donors. J. Nephrol. 2024, 37, S61. [Google Scholar] [CrossRef]
- Yoo, D.; Divard, G.; Raynaud, M.; Cohen, A.; Mone, T.D.; Rosenthal, J.T.; Bentall, A.J.; Stegall, M.D.; Naesens, M.; Zhang, H.; et al. A Machine Learning-Driven Virtual Biopsy System For Kidney Transplant Patients. Nat. Commun. 2024, 15, 554. [Google Scholar] [CrossRef]
- Farris, A.B.; Moghe, I.; Wu, S.; Hogan, J.; Cornell, L.D.; Alexander, M.P.; Kers, J.; Demetris, A.J.; Levenson, R.M.; Tomaszewski, J.; et al. Banff Digital Pathology Working Group: Going digital in transplant pathology. Am. J. Transplant. 2020, 20, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Farris, A.B.; Alexander, M.P.; Balis, U.G.J.; Barisoni, L.; Boor, P.; Bülow, R.D.; Cornell, L.D.; Demetris, A.J.; Farkash, E.; Hermsen, M.; et al. Banff Digital Pathology Working Group: Image Bank, Artificial Intelligence Algorithm, and Challenge Trial Developments. Transpl. Int. 2023, 36, 11783. [Google Scholar] [CrossRef]
- Loupy, A.; Mengel, M.; Haas, M. Thirty years of the International Banff Classification for Allograft Pathology: The past, present, and future of kidney transplant diagnostics. Kidney Int. 2022, 101, 678–691. [Google Scholar] [CrossRef]
- Hermsen, M.; de Bel, T.; den Boer, M.; Steenbergen, E.J.; Kers, J.; Florquin, S.; Roelofs, J.; Stegall, M.D.; Alexander, M.P.; Smith, B.H.; et al. Deep Learning-Based Histopathologic Assessment of Kidney Tissue. J. Am. Soc. Nephrol. 2019, 30, 1968–1979. [Google Scholar] [CrossRef]
- Becker, J.U.; Mayerich, D.; Padmanabhan, M.; Barratt, J.; Ernst, A.; Boor, P.; Cicalese, P.A.; Mohan, C.; Nguyen, H.V.; Roysam, B. Artificial intelligence and machine learning in nephropathology. Kidney Int. 2020, 98, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Kers, J.; Bülow, R.D.; Klinkhammer, B.M.; Breimer, G.E.; Fontana, F.; Abiola, A.A.; Hofstraat, R.; Corthals, G.L.; Peters-Sengers, H.; Djudjaj, S.; et al. Deep learning-based classification of kidney transplant pathology: A retrospective, multicentre, proof-of-concept study. Lancet Digit. Health 2022, 4, e18–e26. [Google Scholar] [CrossRef] [PubMed]
- Dou, M.; Ding, C.; Zheng, B.; Deng, G.; Zhu, K.; Xu, C.; Xue, W.; Ding, X.; Zheng, J.; Tian, P. Immune-Related Genes for Predicting Future Kidney Graft Loss: A Study Based on GEO Database. Front. Immunol. 2022, 13, 859693. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Liu, P.; Song, L.; Wagner, P.; Bartlett, D.; Ma, L.; Li, X.; Rahimian, M.A.; Tseng, G.; Randhawa, P.; et al. Diagnosis of T-cell-mediated kidney rejection by biopsy-based proteomic biomarkers and machine learning. Front. Immunol. 2023, 14, 1090373. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Massie, A.B.; Caffo, B.S.; Jackson, K.R.; Segev, D.L. Machine learning to predict transplant outcomes: Helpful or hype? A national cohort study. Transpl. Int. 2020, 33, 1472–1480. [Google Scholar] [CrossRef]
- Shehata, M.; Ghazal, M.; Khalifeh, H.A.; Khalil, A.; Shalaby, A.; Dwyer, A.C.; Bakr, A.M.; Keynton, R.; El-Baz, A. A deep learning-based cad system for renal allograft assessment: Diffusion, bold, and clinical biomarkers. In Proceedings of the 2020 IEEE International Conference on Image Processing, Abu Dhabi, United Arab Emirates, 25–28 October 2020; Volume 2020, pp. 355–359. [Google Scholar] [CrossRef]
- Fu, Q.; Agarwal, D.; Deng, K.; Matheson, R.; Yang, H.; Wei, L.; Ran, Q.; Deng, S.; Markmann, J.F. An Unbiased Machine Learning Exploration Reveals Gene Sets Predictive of Allograft Tolerance After Kidney Transplantation. Front. Immunol. 2021, 12, 695806. [Google Scholar] [CrossRef]
- Lu, Z.; Tang, F.; Li, Z.; Xie, Z.; Zheng, H.; Zhang, J.; Gao, Y.; Lu, Z.; Cai, Y.; Lai, Y.; et al. Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation. Dis. Markers 2022, 2022, 6575052. [Google Scholar] [CrossRef]
- Reeve, J.; Böhmig, G.A.; Eskandary, F.; Einecke, G.; Gupta, G.; Madill-Thomsen, K.; Mackova, M.; Halloran, P.F. Generating automated kidney transplant biopsy reports combining molecular measurements with ensembles of machine learning classifiers. Am. J. Transplant. 2019, 19, 2719–2731. [Google Scholar] [CrossRef]
- van Baardwijk, M.; Cristoferi, I.; Ju, J.; Varol, H.; Minnee, R.C.; Reinders, M.E.J.; Li, Y.; Stubbs, A.P.; Clahsen-van Groningen, M.C. A Decentralized Kidney Transplant Biopsy Classifier for Transplant Rejection Developed Using Genes of the Banff-Human Organ Transplant Panel. Front. Immunol. 2022, 13, 841519. [Google Scholar] [CrossRef]
- Reeve, J.; Böhmig, G.A.; Eskandary, F.; Einecke, G.; Lefaucheur, C.; Loupy, A.; Halloran, P.F. Assessing rejection-related disease in kidney transplant biopsies based on archetypal analysis of molecular phenotypes. JCI Insight 2017, 2, e94197. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Hu, X. A Three-Gene Peripheral Blood Potential Diagnosis Signature for Acute Rejection in Renal Transplantation. Front. Mol. Biosci. 2021, 8, 661661. [Google Scholar] [CrossRef] [PubMed]
- Chauveau, B.; Garric, A.; Di Tommaso, S.; Raymond, A.A.; Visentin, J.; Vermorel, A.; Dugot-Senant, N.; Déchanet-Merville, J.; Duong Van Huyen, J.P.; Rabant, M.; et al. WARS1, TYMP and GBP1 display a distinctive microcirculation pattern by immunohistochemistry during antibody-mediated rejection in kidney transplantation. Sci. Rep. 2022, 12, 19094. [Google Scholar] [CrossRef] [PubMed]
- Madill-Thomsen, K.S.; Böhmig, G.A.; Bromberg, J.; Einecke, G.; Eskandary, F.; Gupta, G.; Hidalgo, L.G.; Myslak, M.; Viklicky, O.; Perkowska-Ptasinska, A.; et al. Donor-Specific Antibody Is Associated with Increased Expression of Rejection Transcripts in Renal Transplant Biopsies Classified as No Rejection. J. Am. Soc. Nephrol. 2021, 32, 2743–2758. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.; Khalifa, F.; Soliman, A.; Ghazal, M.; Taher, F.; El-Ghar, M.A.; Dwyer, A.C.; Gimel’farb, G.; Keynton, R.S.; El-Baz, A. Computer-Aided Diagnostic System for Early Detection of Acute Renal Transplant Rejection Using Diffusion-Weighted MRI. IEEE Trans. Biomed. Eng. 2019, 66, 539–552. [Google Scholar] [CrossRef]
- Pineda, S.; Sigdel, T.K.; Chen, J.; Jackson, A.M.; Sirota, M.; Sarwal, M.M. Novel Non-Histocompatibility Antigen Mismatched Variants Improve the Ability to Predict Antibody-Mediated Rejection Risk in Kidney Transplant. Front. Immunol. 2017, 8, 1687. [Google Scholar] [CrossRef]
- Halloran, P.F.; Matas, A.; Kasiske, B.L.; Madill-Thomsen, K.S.; Mackova, M.; Famulski, K.S. Molecular phenotype of kidney transplant indication biopsies with inflammation in scarred areas. Am. J. Transplant. 2019, 19, 1356–1370. [Google Scholar] [CrossRef]
- Kim, Y.G.; Choi, G.; Go, H.; Cho, Y.; Lee, H.; Lee, A.R.; Park, B.; Kim, N. A Fully Automated System Using A Convolutional Neural Network to Predict Renal Allograft Rejection: Extra-validation with Giga-pixel Immunostained Slides. Sci. Rep. 2019, 9, 5123. [Google Scholar] [CrossRef]
- Abdeltawab, H.; Shehata, M.; Shalaby, A.; Khalifa, F.; Mahmoud, A.; El-Ghar, M.A.; Dwyer, A.C.; Ghazal, M.; Hajjdiab, H.; Keynton, R.; et al. A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction. Sci. Rep. 2019, 9, 5948. [Google Scholar] [CrossRef]
- Kang, T.; Ding, W.; Zhang, L.; Ziemek, D.; Zarringhalam, K. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data. BMC Bioinform. 2017, 18, 565. [Google Scholar] [CrossRef]
- Choi, G.; Kim, Y.G.; Cho, H.; Kim, N.; Lee, H.; Moon, K.C.; Go, H. Automated detection algorithm for C4d immunostaining showed comparable diagnostic performance to pathologists in renal allograft biopsy. Mod. Pathol. 2020, 33, 1626–1634. [Google Scholar] [CrossRef]
- Labriffe, M.; Woillard, J.B.; Gwinner, W.; Braesen, J.H.; Anglicheau, D.; Rabant, M.; Koshy, P.; Naesens, M.; Marquet, P. Machine learning-supported interpretation of kidney graft elementary lesions in combination with clinical data. Am. J. Transplant. 2022, 22, 2821–2833. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Tseng, G.; Wang, Z.; Huang, Y.; Randhawa, P. Diagnosis of T-cell-mediated kidney rejection in formalin-fixed, paraffin-embedded tissues using RNA-Seq-based machine learning algorithms. Hum. Pathol. 2019, 84, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Zhi, R.; Zhang, X.D.; Hou, Y.; Jiang, K.W.; Li, Q.; Zhang, J.; Zhang, Y.D. RtNet: A deep hybrid neural network for the identification of acute rejection and chronic allograft nephropathy after renal transplantation using multiparametric MRI. Nephrol. Dial. Transplant. 2022, 37, 2581–2590. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.J.; Park, J.B.; Lee, K.W. Prediction of very early subclinical rejection with machine learning in kidney transplantation. Sci. Rep. 2023, 13, 22387. [Google Scholar] [CrossRef]
- Bestard, O.; Augustine, J.; Wee, A.; Poggio, E.; Mannon, R.B.; Ansari, M.J.; Bhati, C.; Maluf, D.; Benken, S.; Leca, N.; et al. Prospective observational study to validate a next-generation sequencing blood RNA signature to predict early kidney transplant rejection. Am. J. Transplant. 2024, 24, 436–447. [Google Scholar] [CrossRef]
- Qian, Y.; Qiu, Y.; Li, C.C.; Wang, Z.Y.; Cao, B.W.; Huang, H.X.; Ni, Y.H.; Chen, L.L.; Sun, J.Y. A novel diagnostic method for pituitary adenoma based on magnetic resonance imaging using a convolutional neural network. Pituitary 2020, 23, 246–252. [Google Scholar] [CrossRef]
- Weir-McCall, J.R.; Debruyn, E.; Harris, S.; Qureshi, N.R.; Rintoul, R.C.; Gleeson, F.V.; Gilbert, F.J. Diagnostic Accuracy of a Convolutional Neural Network Assessment of Solitary Pulmonary Nodules Compared With PET With CT Imaging and Dynamic Contrast-Enhanced CT Imaging Using Unenhanced and Contrast-Enhanced CT Imaging. Chest 2023, 163, 444–454. [Google Scholar] [CrossRef]
- Kim, G.R.; Lee, E.; Kim, H.R.; Yoon, J.H.; Park, V.Y.; Kwak, J.Y. Convolutional Neural Network to Stratify the Malignancy Risk of Thyroid Nodules: Diagnostic Performance Compared with the American College of Radiology Thyroid Imaging Reporting and Data System Implemented by Experienced Radiologists. AJNR Am. J. Neuroradiol. 2021, 42, 1513–1519. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. arXiv 2016, arXiv:1603.02754. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a Random Forests Model. J. Mach. Learn. Res. 2010, 13, 1063–1095. [Google Scholar]
- Breiman, L. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Madill-Thomsen, K.S.; Halloran, P.F. Precision diagnostics in transplanted organs using microarray-assessed gene expression: Concepts and technical methods of the Molecular Microscope® Diagnostic System (MMDx). Clin. Sci. 2024, 138, 663–685. [Google Scholar] [CrossRef]
- Halloran, P.F.; Reeve, J.; Akalin, E.; Aubert, O.; Bohmig, G.A.; Brennan, D.; Bromberg, J.; Einecke, G.; Eskandary, F.; Gosset, C.; et al. Real Time Central Assessment of Kidney Transplant Indication Biopsies by Microarrays: The INTERCOMEX Study. Am. J. Transplant. 2017, 17, 2851–2862. [Google Scholar] [CrossRef]
- Halloran, P.F.; Madill-Thomsen, K.S.; Reeve, J. The Molecular Phenotype of Kidney Transplants: Insights From the MMDx Project. Transplantation 2024, 108, 45–71. [Google Scholar] [CrossRef] [PubMed]
- Reeve, J.; Sellarés, J.; Mengel, M.; Sis, B.; Skene, A.; Hidalgo, L.; de Freitas, D.G.; Famulski, K.S.; Halloran, P.F. Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am. J. Transplant. 2013, 13, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Sellarés, J.; Reeve, J.; Loupy, A.; Mengel, M.; Sis, B.; Skene, A.; de Freitas, D.G.; Kreepala, C.; Hidalgo, L.G.; Famulski, K.S.; et al. Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am. J. Transplant. 2013, 13, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Pereira, A.B.; Chang, J.; Matas, A.; Picton, M.; De Freitas, D.; Bromberg, J.; Serón, D.; Sellarés, J.; Einecke, G.; et al. Potential impact of microarray diagnosis of T cell-mediated rejection in kidney transplants: The INTERCOM study. Am. J. Transplant. 2013, 13, 2352–2363. [Google Scholar] [CrossRef]
- Halloran, P.F.; Pereira, A.B.; Chang, J.; Matas, A.; Picton, M.; De Freitas, D.; Bromberg, J.; Serón, D.; Sellarés, J.; Einecke, G.; et al. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: An international prospective study (INTERCOM). Am. J. Transplant. 2013, 13, 2865–2874. [Google Scholar] [CrossRef]
- Halloran, P.F.; Reeve, J.; Madill-Thomsen, K.S.; Demko, Z.; Prewett, A.; Billings, P. The Trifecta Study: Comparing Plasma Levels of Donor-derived Cell-Free DNA with the Molecular Phenotype of Kidney Transplant Biopsies. J. Am. Soc. Nephrol. 2022, 33, 387–400. [Google Scholar] [CrossRef]
- Weidmann, L.; Harmacek, D.; Lopez, K.C.; Helmchen, B.M.; Gaspert, A.; Korach, R.; Bortel, N.; Schmid, N.; von Moos, S.; Rho, E.; et al. Limitations of biopsy-based transcript diagnostics to detect T cell-mediated allograft rejection. Nephrol. Dial. Transplant. 2024, gfae147. [Google Scholar] [CrossRef]
- Harmacek, D.; Weidmann, L.; Castrezana Lopez, K.; Schmid, N.; Korach, R.; Bortel, N.; von Moos, S.; Rho, E.; Helmchen, B.; Gaspert, A.; et al. Molecular diagnosis of antibody-mediated rejection: Evaluating biopsy-based transcript diagnostics in the presence of donor-specific antibodies but without microvascular inflammation, a single-center descriptive analysis. Am. J. Transplant. 2024, 24, 1652–1663. [Google Scholar] [CrossRef]
- Halloran, P.F.; Madill-Thomsen, K.S.; Böhmig, G.; Bromberg, J.; Budde, K.; Barner, M.; Mackova, M.; Chang, J.; Einecke, G.; Eskandary, F.; et al. Subthreshold rejection activity in many kidney transplants currently classified as having no rejection. Am. J. Transplant. 2024. [Google Scholar] [CrossRef]
- Mengel, M.; Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Akalin, E.; Clahsen-van Groningen, M.C.; Dagobert, J.; Demetris, A.J.; Duong van Huyen, J.P.; et al. Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation-Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. Am. J. Transplant. 2020, 20, 2305–2317. [Google Scholar] [CrossRef]
- Freuchet, A.; Roy, P.; Armstrong, S.S.; Oliaeimotlagh, M.; Kumar, S.; Orecchioni, M.; Ali, A.J.; Khan, A.; Makings, J.; Lyu, Q.; et al. Identification of human exT(reg) cells as CD16(+)CD56(+) cytotoxic CD4(+) T cells. Nat. Immunol. 2023, 24, 1748–1761. [Google Scholar] [CrossRef]
- Lantz, B.J.; Moriwaki, M.; Oyebamiji, O.M.; Guo, Y.; Gonzalez Bosc, L. Chronic hypoxia disrupts T regulatory cell phenotype contributing to the emergence of exTreg-T(H)17 cells. Front. Physiol. 2023, 14, 1304732. [Google Scholar] [CrossRef]
- Clough, E.; Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; et al. NCBI GEO: Archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 2024, 52, D138–D144. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Huang, M.L.; Hung, Y.H.; Lee, W.M.; Li, R.K.; Jiang, B.R. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Sci. World J. 2014, 2014, 795624. [Google Scholar] [CrossRef]
- Geng, R.; Huang, X.; Li, L.; Guo, X.; Wang, Q.; Zheng, Y.; Guo, X. Gene expression analysis in endometriosis: Immunopathology insights, transcription factors and therapeutic targets. Front. Immunol. 2022, 13, 1037504. [Google Scholar] [CrossRef]
- Yang, Y.; Yi, X.; Cai, Y.; Zhang, Y.; Xu, Z. Immune-Associated Gene Signatures and Subtypes to Predict the Progression of Atherosclerotic Plaques Based on Machine Learning. Front. Pharmacol. 2022, 13, 865624. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; Ji, W.; Shi, Y.; Lai, G.; Chi, H.; Huang, W.; Cheng, C. Machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinson’s disease. Front. Genet. 2022, 13, 1010361. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Pan, S. Discovery and Validation of Key Biomarkers Based on Immune Infiltrates in Alzheimer’s Disease. Front. Genet. 2021, 12, 658323. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Zhang, Y.; Xue, X.; Hua, Y. Identification of four-gene signature to diagnose osteoarthritis through bioinformatics and machine learning methods. Cytokine 2023, 169, 156300. [Google Scholar] [CrossRef]
- Huang, E.; Mengel, M.; Clahsen-van Groningen, M.C.; Jackson, A.M. Diagnostic Potential of Minimally Invasive Biomarkers: A Biopsy-centered Viewpoint From the Banff Minimally Invasive Diagnostics Working Group. Transplantation 2023, 107, 45–52. [Google Scholar] [CrossRef]
- Balakrishnama, S.; Ganapathiraju, A. Linear Discriminant Analysis—A Brief Tutorial. 1995. Available online: https://www.music.mcgill.ca/~ich/classes/mumt611/classifiers/lda_theory.pdf (accessed on 5 April 2024).
- Hastie, T.; Tibshirani, R.; Tibshirani, R.J. Extended Comparisons of Best Subset Selection, Forward Stepwise Selection, and the Lasso. arXiv 2017, arXiv:1707.08692. [Google Scholar]
- Li, L.; Zhang, D.; Cao, X. EBF1, PAX5, and MYC: Regulation on B cell development and association with hematologic neoplasms. Front. Immunol. 2024, 15, 1320689. [Google Scholar] [CrossRef]
- Ningappa, M.; Ashokkumar, C.; Higgs, B.W.; Sun, Q.; Jaffe, R.; Mazariegos, G.; Li, D.; Weeks, D.E.; Subramaniam, S.; Ferrell, R.; et al. Enhanced B Cell Alloantigen Presentation and Its Epigenetic Dysregulation in Liver Transplant Rejection. Am. J. Transplant. 2016, 16, 497–508. [Google Scholar] [CrossRef]
- Ashokkumar, C.; Ningappa, M.; Raghu, V.; Mazariegos, G.; Higgs, B.W.; Morgan, P.; Remaley, L.; Fazzolare Martin, T.; Holzer, P.; Trostle, K.; et al. Enhanced Donor Antigen Presentation by B Cells Predicts Acute Cellular Rejection and Late Outcomes After Transplantation. Transplant. Direct 2024, 10, e1589. [Google Scholar] [CrossRef]
- Emmert-Streib, F.; Dehmer, M. High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection. Mach. Learn. Knowl. Extr. 2019, 1, 359–383. [Google Scholar] [CrossRef]
- Post, M.; Cuapio, A.; Osl, M.; Lehmann, D.; Resch, U.; Davies, D.M.; Bilban, M.; Schlechta, B.; Eppel, W.; Nathwani, A.; et al. The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development. Front. Immunol. 2017, 8, 535. [Google Scholar] [CrossRef] [PubMed]
- Zundler, S.; Becker, E.; Spocinska, M.; Slawik, M.; Parga-Vidal, L.; Stark, R.; Wiendl, M.; Atreya, R.; Rath, T.; Leppkes, M.; et al. Hobit- and Blimp-1-driven CD4(+) tissue-resident memory T cells control chronic intestinal inflammation. Nat. Immunol. 2019, 20, 288–300. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, Z.; Keung, K.L.; Shang, H.; Wei, C.; Cravedi, P.; Sun, Z.; Xi, C.; Woytovich, C.; Farouk, S.; et al. A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. J. Am. Soc. Nephrol. 2019, 30, 1481–1494. [Google Scholar] [CrossRef]
- Lee, J.; Barbachan, E.S.M.; Bao, Y.; Whitmarsh, R.; Banerjee, S.; O’Connor, J.; Holbert, J.; Bratton, T.K.; Broin, P.; Akalin, E. Performance and Advancement of the Kidney Solid Organ Response Test. Transplantation 2023, 107, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Goutaudier, V.; Danger, R.; Catar, R.A.; Racapé, M.; Philippe, A.; Elias, M.; Raynaud, M.; Aubert, O.; Bouton, D.; Girardin, F.; et al. Evaluation of non-invasive biomarkers of kidney allograft rejection in a prospective multicenter unselected cohort study (EU-TRAIN). Kidney Int. 2024, 106, 943–960. [Google Scholar] [CrossRef]
- Akalin, E.; Mas, V.R. Inside look: Are noninvasive biomarkers up to standard? Am. J. Transplant. 2024, 24, 320–321. [Google Scholar] [CrossRef]
- Park, S.; Sellares, J.; Tinel, C.; Anglicheau, D.; Bestard, O.; Friedewald, J.J. European Society of Organ Transplantation Consensus Statement on Testing for Non-Invasive Diagnosis of Kidney Allograft Rejection. Transpl. Int. 2023, 36, 12115. [Google Scholar] [CrossRef]
- Naesens, M.; Roufosse, C.; Haas, M.; Lefaucheur, C.; Mannon, R.B.; Adam, B.A.; Aubert, O.; Böhmig, G.A.; Callemeyn, J.; Clahsen-van Groningen, M.; et al. The Banff 2022 Kidney Meeting Report: Reappraisal of microvascular inflammation and the role of biopsy-based transcript diagnostics. Am. J. Transplant. 2024, 24, 338–349. [Google Scholar] [CrossRef]
- Peloso, A.; Naesens, M.; Thaunat, O. The Dawn of a New Era in Kidney Transplantation: Promises and Limitations of Artificial Intelligence for Precision Diagnostics. Transpl. Int. 2023, 36, 12010. [Google Scholar] [CrossRef]
- Gotlieb, N.; Azhie, A.; Sharma, D.; Spann, A.; Suo, N.J.; Tran, J.; Orchanian-Cheff, A.; Wang, B.; Goldenberg, A.; Chassé, M.; et al. The promise of machine learning applications in solid organ transplantation. NPJ Digit. Med. 2022, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Izonin, I.; Tkachenko, R.; Havryliuk, M.; Gregus, M.; Yendyk, P.; Tolstyak, Y. An Adaptation of the Input Doubling Method for Solving Classification Tasks in Case of Small Data Processing. Procedia Comput. Sci. 2024, 241, 171–178. [Google Scholar] [CrossRef]
Reference | Focus Area | Type of Study | n and Type of Cases | Type of AI Algorithm | Main Results |
---|---|---|---|---|---|
Hermsen et al. [20] | Histopathology | The first study for multi-class segmentation of transplant biopsies and nephrectomy samples | 40 transplant biopsies in the training dataset, 102 transplant biopsies from two centers and 15 nephrectomy samples in the test dataset | CNN | CNN-based classifications correlate with components of Banff |
Becker et al. [21] | Histopathology | Retrospective study | 279 images from 12 kidney transplant biopsies (6 biopsies with ABMR and 6 biopsies without ABMR) | CNN | Classification accuracy up to 91.3% |
Kers et al. [22] | Histopathology | Retrospective, multi-center, proof-of-concept study | 5844 digital whole slide images from 1948 patients | CNN | AUROC 0.87 for classifying kidney biopsy as normal vs. pathological, AUROC 0.75 for classifying pathological kidney biopsy as rejection or other diseases |
Dou et al. [23] | Immune related genes | Retrospective study based on data from GEO database | 8 datasets from the GEO database | SVM and RFE | Upregulation of 5 genes related to rejection and allograft loss, RiskScore predicted allograft loss (AUROC values of 1- and 3-year allograft survival 0.804 and 0.793, respectively) |
Fang et al. [24] | Biopsy-based proteomic profiling | Proof-of-principle study | Biopsy samples from 15 patients | LDA, SVM, RF | 329 proteins differentially expressed in TCMR, RF-based model predicted TCMR with 80% accuracy |
Bae et al. [25] | Comparison of regression to ML models in predicting different transplant outcomes, including 1-year acute rejection | Retrospective study based on data from the Scientific Registry of Transplant Recipients | Registry data from 133,431 adult deceased-donor kidney transplant recipients | GB, RF | Regression outperformed ML in predicting rejection |
Shehata et al. [26] | Diagnostic performance of RT-CAD based on DW-MRI, BOLD-MRI, SCr and CrCl in predicting rejection | Retrospective study | Clinical, histologic and imaging data from 47 patients | ANN | 93.3% accuracy, 90% sensitivity, and 95% specificity of RT-CAD in distinguishing between AR and NR, AUROC was 0.92 |
Fu et al. [27] | Prediction of spontaneous kidney allograft tolerance | Retrospective study based on data from GEO database | Genomic microarray data from 63 tolerant patients from the GEO database | 14 different ML models, BSS was the most powerful model | Sensitivity 91.7% and specificity 93.8% in the test group, EBF1 and HLA-DOA most important genes in kidney allograft rejection |
Lu et al. [28] | Prediction of acute rejection | Retrospective study based on data from GEO database | 3 datasets from the GEO database | LASSO and SVM | 5 genes associated with AR, ZNF683 with the highest predictive performance of AR (AUROC 0.641~0.906) |
Reeve et al. [29] | Assessing rejection in kidney transplant biopsies using the MMDx | Prospective proof-of-concept study | Microarray measurements of gene expression in 1679 biopsies | 12 different ML classifiers, the median was used as an ensemble score | Disagreement between histologic diagnoses and MMDx: balanced accuracy 78% for ABMR and 73% for TCMR |
van Baardwijk et al. [30] | Open access system to diagnose rejection based on gene expression (panel of 770 genes) | Retrospective study based on data from the GEO database | Gene expression data from 1181 kidney transplant biopsies, 3 different models | RF | B-HOT plus model was the most accurate with AUROC of 0.965 and 0.982 for NR and ABMR, respectively |
Reeve et al. [31] | Diagnosing rejection based on molecular phenotypes | Prospective study from 13 centers | Microarray data from 1208 kidney transplant biopsies | AA | 32% discrepancy rate with histology, AA predicted allograft failure better than histology |
Wang et al. [32] | Diagnosing AR based on gene expression in peripheral blood | Retrospective study based on data from the GEO database | Gene expression profiles of 251 renal transplant patients with biopsy-proven diagnosis | RF, SVM-RFE, LASSO | Diagnostic model based on three genes (TSEN15, CAPRIN1, PRR34-AS1) showed high accuracy in predicting AR (AUROC 0.925 in the validation cohort) |
Chauveau et al. [33] | Prediction of ABMR based on immunohistochemical analysis of 3 proteins, WARS1, TYMP and GBP1 | Retrospective single-center study | Kidney biopsies from 54 patients | CNN, RF | AUROC 0.89 (±0.02) for WARS1, 0.80 (±0.04) for TYMP and 0.89 (±0.04) for GBP1 in diagnosing ABMR versus other diagnosis |
Madill-Thomsen et al. [34] | The relevance of DSA positivity in biopsies classified as NR | Data from the INTERCOMEX study | Microarray results from 1679 biopsy samples | 12 ML algorithms | DSA positivity in NR biopsies associated with mildly increased expression of ABMR-related transcripts and decreased allograft survival |
Shehata et al. [35] | CAD system for early AR detection using DW-MRI data | Prospective single-center study | 100 patients with NR and AR with imaging, laboratory and histologic data | AE | Diagnostic accuracy to distinguish AR and NR was 94% to 97% |
Pineda et al. [36] | Prediction of rejection based on mismatched non-HLA genetic variants | Prospective single-center study | 27 kidney transplant recipients and 28 kidney donors | RF | 65 non-HLA variants predictive of ABMR, 25 variants predictive of TCMR |
Halloran et al. [37] | Frequency of rejection in i-IFTA by using histology and MMDx | Data from the INTERCOMEX study | 234 indication biopsies from 189 patients | MMDx classifier algorithms | i-IFTA biopsies occurred later, showed more scarring, and had more ABMR, TCMR was not common in i-IFTA |
Kim et al. [38] | Histopathology | Retrospective single-center study | 380 kidney biopsies | CNN | Deep-learning-assisted labeling increased the performance of the detection model to recognise C4d positive/negative PTCs |
Abdeltawab et al. [39] | Non-invasive diagnosis of acute rejection based on DW-MRI and clinical biomarkers | Multi-center study | 56 renal transplant recipients | CNN | 92.9% accuracy based on imaging and clinical biomarkers in distinguishing NR from AR with 93.3% sensitivity and 92.3% specificity |
Kang et al. [40] | Prediction of AR based on gene expression data | Retrospective study based on data from the GEO database | Two datasets from the GEO database | ANN | The PI3K/AKT/MTOR pathway related to AR |
Choi et al. [41] | Histopathology | Bicentric retrospective study | 186 slides of renal allografts | CNN | ML algorithm showed similar diagnostic performance to pathologists |
Labriffe et al. [42] | Histopathology | Retrospective multi-center study | Data from several independent datasets | XGB | A mean AUROC 0.95–0.97 for ABMR diagnosis, 0.91–0.94 for TCMR, >0.96 for IFTA |
Liu et al. [43] | RNA-Seq for the diagnosis of TCMR in FFPE tissue | Proof-of-concept study | Discovery data from 10 patients | LDA, RF, SVM | Sensitivity of RF to diagnose TCMR up to 88%, specificity 100% |
Zhi et al. [44] | Diagnosing rejection using multiparametric MRI | Single-center retrospective study | Clinical and MRI data from 252 kidney graft recipients | CNN | AUROC up to 0.745 combining clinical and MRI data |
Jo et al. [45] | Risk assessment model for early subclinical rejection | Single-center retrospective study | Data from 987 patients | RF, XGB, elastic net | HLA II mismatch and induction agent important predictors of early subclinical rejection, AUROC 0.712 for elastic net prediction model |
Bestard et al. [46] | Prediction of early AR based on Tutivia™—a peripheral blood gene expression signature | Multi-center observational prospective study with the aim to validate Tutivia™ | Data from 151 kidney transplant recipients | Different proprietary ML algorithms | Tutivia™ + creatinine greater AUROC than creatinine alone to predict early AR, AUROC up to 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belčič Mikič, T.; Arnol, M. The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and Applications. Diagnostics 2024, 14, 2482. https://doi.org/10.3390/diagnostics14222482
Belčič Mikič T, Arnol M. The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and Applications. Diagnostics. 2024; 14(22):2482. https://doi.org/10.3390/diagnostics14222482
Chicago/Turabian StyleBelčič Mikič, Tanja, and Miha Arnol. 2024. "The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and Applications" Diagnostics 14, no. 22: 2482. https://doi.org/10.3390/diagnostics14222482
APA StyleBelčič Mikič, T., & Arnol, M. (2024). The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and Applications. Diagnostics, 14(22), 2482. https://doi.org/10.3390/diagnostics14222482