Systematic Review on the Use of 3D-Printed Models for Planning, Training and Simulation in Vascular Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources, Search Strategy and Selection Criteria
2.2. Data Extraction, Outcome Measures, and Evaluation of Study Quality
- Diagnostic imaging technique;
- Image processing and post-processing software;
- 3D-printing technologies and materials;
- Feasibility of 3D-printing technology application in vascular surgery;
- 3D-printed models in vascular training;
- 3D-printed models in vascular planning.
2.3. Definitions
3. Results
3.1. Review Design and Baseline Characteristics
3.2. Diagnostic Imaging
3.3. Software for 3D Model Generation
3.4. 3D-Printing Technology in Vascular Surgery
3.5. Feasibility of 3D-Printing Technology for Vascular Models
3.6. 3D-Printed Models in Vascular Surgery Training
3.7. 3D-Printed Models in Vascular Surgery Planning
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wanhainen, A.; Van Herzeele, I.; Bastos Goncalves, F.; Bellmunt Montoya, S.; Berard, X.; Boyle, J.R.; D’Oria, M.; Prendes, C.F.; Karkos, C.D.; Kazimierczak, A.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 192–331. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, C.; Willaert, W.; Kawa, E.; Centola, M.; Steger, B.; Dirnhofer, R.; Mangin, P.; Grabherr, S. Postmortem Circulation: A New Model for Testing Endovascular Devices and Training Clinicians in Their Use. Clin. Anat. 2014, 27, 556–562. [Google Scholar] [CrossRef]
- Nayahangan, L.J.; Konge, L.; Schroeder, T.V.; Paltved, C.; Lindorff-Larsen, K.G.; Nielsen, B.U.; Eiberg, J.P. A National Needs Assessment to Identify Technical Procedures in Vascular Surgery for Simulation Based Training. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Goudie, C.; Kinnin, J.; Bartellas, M.; Gullipalli, R.; Dubrowski, A. The Use of 3D Printed Vasculature for Simulation-Based Medical Education within Interventional Radiology. Cureus 2019, 11, e4381. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. bmj 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.N.; Fàbregues, S.; Bartlett, G.; Boardman, F.; Cargo, M.; Dagenais, P.; Gagnon, M.-P.; Griffiths, F.; Nicolau, B.; O’Cathain, A.; et al. The Mixed Methods Appraisal Tool (MMAT) Version 2018 for Information Professionals and Researchers. Educ. Inf. 2018, 34, 285–291. [Google Scholar] [CrossRef]
- Kaschwich, M.; Horn, M.; Matthiensen, S.; Stahlberg, E.; Behrendt, C.-A.; Matysiak, F.; Bouchagiar, J.; Dell, A.; Ellebrecht, D.; Bayer, A.; et al. Accuracy Evaluation of Patient-Specific 3D-Printed Aortic Anatomy. Ann. Anat. Anat. Anz. Off. Organ. Anat. Ges. 2021, 234, 151629. [Google Scholar] [CrossRef]
- O’Reilly, M.K.; Reese, S.; Herlihy, T.; Geoghegan, T.; Cantwell, C.P.; Feeney, R.N.M.; Jones, J.F.X. Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine. Anat. Sci. Educ. 2016, 9, 71–79. [Google Scholar] [CrossRef]
- Shibata, E.; Takao, H.; Amemiya, S.; Ohtomo, K. 3D-Printed Visceral Aneurysm Models Based on Ct Data for Simulations of Endovascular Embolization: Evaluation of Size and Shape Accuracy. Am. J. Roentgenol. 2017, 209, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Stanislaus, I.; McGahon, C.; Pattabathula, K.; Bryant, S.; Pinto, N.; Jenkins, J.; Meinert, C. Quality Assurance in 3D-Printing: A Dimensional Accuracy Study of Patient-Specific 3D-Printed Vascular Anatomical Models. Front. Med. Technol. 2023, 5, 1097850. [Google Scholar] [CrossRef]
- Kärkkäinen, J.M.; Sandri, G.; Tenorio, E.R.; Alexander, A.; Bjellum, K.; Matsumoto, J.; Morris, J.; Mendes, B.C.; DeMartino, R.R.; Oderich, G.S. Simulation of Endovascular Aortic Repair Using 3D Printed Abdominal Aortic Aneurysm Model and Fluid Pump. Cardiovasc. Interv. Radiol. 2019, 42, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Matyjas, M.; Sauerbrey, M.; Wyschkon, S.; de Bucourt, M.; Scheel, M. Three-Dimensional Simulator: Training for Beginners in Endovascular Embolization with Liquid Agents. CVIR Endovasc. 2021, 4, 78. [Google Scholar] [CrossRef] [PubMed]
- Marconi, S.; Negrello, E.; Mauri, V.; Pugliese, L.; Peri, A.; Argenti, F.; Auricchio, F.; Pietrabissa, A. Toward the Improvement of 3D-Printed Vessels’ Anatomical Models for Robotic Surgery Training. Int. J. Artif. Organs 2019, 42, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Bortman, J.; Mahmood, F.; Schermerhorn, M.; Lo, R.; Swerdlow, N.; Mahmood, F.; Matyal, R. Use of 3-Dimensional Printing to Create Patient-Specific Abdominal Aortic Aneurysm Models for Preoperative Planning. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Tam, M.D.; Latham, T.R.; Lewis, M.; Khanna, K.; Zaman, A.; Parker, M.; Grunwald, I.Q. A Pilot Study Assessing the Impact of 3-D Printed Models of Aortic Aneurysms on Management Decisions in EVAR Planning. Vasc. Endovasc. Surg. 2016, 50, 4–9. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, R.P.; Chand, A.; Vidiyala, S.; Arechavala, S.M.; Mitsouras, D.; Rudin, S.; Ionita, C.N. Advanced 3D Mesh Manipulation in Stereolithographic Files and Post-Print Processing for the Manufacturing of Patient-Specific Vascular Flow Phantoms. In Proceedings of the Progress in Biomedical Optics and Imaging Proceedings of SPIE; Cook, T.S., Zhang, J., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9789. [Google Scholar]
- Magagna, P.; Xodo, A.; Menegolo, M.; Campana, C.; Ghiotto, L.; Salvador, L.; Grego, F. Applications of Three-Dimensional Printing in the Management of Complex Aortic Diseases. AORTA Stamford Conn. 2022, 10, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Little, C.D.; Mackle, E.C.; Maneas, E.; Chong, D.; Nikitichev, D.; Constantinou, J.; Tsui, J.; Hamilton, G.; Rakhit, R.D.; Mastracci, T.M.; et al. A Patient-Specific Multi-Modality Abdominal Aortic Aneurysm Imaging Phantom. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Kaschwich, M.; Dell, A.; Matysiak, F.; Bouchagiar, J.; Bayer, A.; Scharfschwerdt, M.; Ernst, F.; Kleemann, M.; Horn, M. Development of an Ultrasound-Capable Phantom with Patient-Specific 3D-Printed Vascular Anatomy to Simulate Peripheral Endovascular Interventions. Ann. Anat. Anat. Anz. Off. Organ. Anat. Ges. 2020, 232, 151563. [Google Scholar] [CrossRef]
- Coles-Black, J.; Bolton, D.; Chuen, J. Accessing 3D Printed Vascular Phantoms for Procedural Simulation. Front. Surg. 2020, 7, 626212. [Google Scholar] [CrossRef]
- Foresti, R.; Fornasari, A.; Bianchini Massoni, C.; Mersanne, A.; Martini, C.; Cabrini, E.; Freyrie, A.; Perini, P. Surgical Medical Education via 3D Bioprinting: Modular System for Endovascular Training. Bioengineering 2024, 11, 197. [Google Scholar] [CrossRef]
- Marone, E.M.; Auricchio, F.; Marconi, S.; Conti, M.; Rinaldi, L.F.; Pietrabissa, A.; Argenteri, A. Effectiveness of 3D Printed Models in the Treatment of Complex Aortic Diseases. J. Cardiovasc. Surg. 2018, 59, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Taher, F.; Falkensammer, J.; McCarte, J.; Strassegger, J.; Uhlmann, M.; Schuch, P.; Assadian, A. The Influence of Prototype Testing in Three-Dimensional Aortic Models on Fenestrated Endograft Design. J. Vasc. Surg. 2017, 65, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Borracci, R.A.; Ferreira, L.M.; Alvarez Gallesio, J.M.; Tenorio Núñez, O.M.; David, M.; Eyheremendy, E.P. Three-Dimensional Virtual and Printed Models for Planning Adult Cardiovascular Surgery. Acta Cardiol. 2021, 76, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.; De Luccia, N. A Simulator for Training in Endovascular Aneurysm Repair: The Use of Three Dimensional Printers. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, M.E.; Bordet, M.; Chavent, B.; Reijnen, M.M.P.J.; Frisch, N.; Midy, D.; Feugier, P.; Millon, A.; Lardenoije, J.-W.; Assadian, A.; et al. Assessment of Fenestrated Anaconda Stent Graft Design by Numerical Simulation: Results of a European Prospective Multicenter Study. J. Vasc. Surg. 2022, 75, 99–108.e2. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, R.; Zech, C.J.; Deutschmann, M.; Scharinger, B.; Hecht, S.; Hergan, K.; Rezar, R.; Hitzl, W.; Meissnitzer, M. Endovascular Embolization Techniques in Acute Thoracic and Abdominal Bleedings Can Be Technically Reproduced and Trained in a Standardized Simulation Setting Using SLA 3D Printing: A 1-Year Single-Center Study. Insights Imaging 2022, 13, 72. [Google Scholar] [CrossRef]
- Göçer, H.; Durukan, A.B.; Tunç, O.; Naser, E.; Gürbüz, H.A.; Ertuğrul, E. Evaluation of 3D Printing in Planning, Practicing, and Training for Endovascular Lower Extremity Arterial Interventions. Turk. Gogus Kalp Damar Cerrahisi Derg. 2021, 29, 20–26. [Google Scholar] [CrossRef]
- Kaschwich, M.; Sieren, M.; Matysiak, F.; Bouchagiar, J.; Dell, A.; Bayer, A.; Ernst, F.; Ellebrecht, D.; Kleemann, M.; Horn, M. Feasibility of an Endovascular Training and Research Environment with Exchangeable Patient Specific 3D Printed Vascular Anatomy: Simulator with Exchangeable Patient-Specific 3D-Printed Vascular Anatomy for Endovascular Training and Research. Ann. Anat. Anat. Anz. Off. Organ. Anat. Ges. 2020, 231, 151519. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.M.; Sonka, M.; et al. 3D Slicer as an Image Computing; Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ITK-SNAP Home. Available online: http://www.itksnap.org/pmwiki/pmwiki.php (accessed on 1 March 2024).
- Torres, I.; De Luccia, N. Artificial Vascular Models for Endovascular Training (3D Printing). Innov. Surg. Sci. 2018, 3, 225–234. [Google Scholar] [CrossRef]
- Marti, P.; Lampus, F.; Benevento, D.; Setacci, C. Trends in Use of 3D Printing in Vascular Surgery: A Survey. Int. Angiol. J. Int. Union Angiol. 2019, 38, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Stana, J.; Grab, M.; Kargl, R.; Tsilimparis, N. 3D Printing in the Planning and Teaching of Endovascular Procedures. Radiol. Heidelb. Ger. 2022, 62, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Lawaetz, J.; Skovbo Kristensen, J.S.; Nayahangan, L.J.; Van Herzeele, I.; Konge, L.; Eiberg, J.P. Simulation Based Training and Assessment in Open Vascular Surgery: A Systematic Review. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Maguire, S.C.; Traynor, O.; Strawbridge, J.; O’Callaghan, A.; Kavanagh, D.O. A Systematic Review of Simulation in Open Abdominal Aortic Aneurysm Repair. J. Vasc. Surg. 2020, 71, 1802–1808.e1. [Google Scholar] [CrossRef]
- Foresti, R.; Rossi, S.; Pinelli, S.; Alinovi, R.; Sciancalepore, C.; Delmonte, N.; Selleri, S.; Caffarra, C.; Raposio, E.; Macaluso, G.; et al. In-Vivo Vascular Application via Ultra-Fast Bioprinting for Future 5D Personalised Nanomedicine. Sci. Rep. 2020, 10, 3205. [Google Scholar] [CrossRef]
Author | Year | Carotid Arteries | Thoraco-Abdominal | Infrainguinal Arteries | Visceral Arteries | Aneurysm Disease | Steno-Occlusive Disease |
---|---|---|---|---|---|---|---|
Foresti [21] | 2024 | X | X | ||||
Nguyen [10] | 2023 | X | X | ||||
Kaufmann [27] | 2022 | X | X | ||||
Magagna [17] | 2022 | X | X | X | |||
Little [18] | 2022 | X | X | ||||
Göçer [28] | 2021 | X | X | ||||
Matyjas [12] | 2021 | X | |||||
Kliewer [26] | 2021 | X | X | X | |||
Kaschwich [7] | 2021 | X | X | ||||
Coles-Black [20] | 2021 | X | X | ||||
Kaschwich [19] | 2020 | X | X | ||||
Borracci [24] | 2020 | X | X | X | X | ||
Kärkkäinen [11] | 2019 | X | X | ||||
Marconi S. [13] | 2019 | X | X | ||||
Bortman [14] | 2019 | X | X | ||||
Marone [22] | 2018 | X | X | X | |||
Shibata [9] | 2017 | X | X | ||||
Taher [23] | 2017 | X | X | X | |||
Torres [25] | 2017 | X | X | ||||
Tam [15] | 2016 | X | X | ||||
O’Hara [16] | 2016 | X | X | ||||
O’Reilly [8] | 2015 | X | X | X | X |
Software | Supplier | Category | Model Design | Image Processing/3D Reconstruction | .STL File Generation | .STL File Post-Processing | Author |
---|---|---|---|---|---|---|---|
Autodesk fusion 360 | Autodesk, Inc. (San Francisco, CA, USA) | CAD/CAM | x | x | x | Matyjas [12] | |
SolidWorks® v. 2015 | Solidsolution (Vélizy-Villacoublay, France) | CAD | x | x | Foresti [21] | ||
Mimics | Materialise NV (Leuven, Belgium) | MI | x | x | Nguyen [10]; Kärkkäinen [11]; Bortman [14]; Taher [23] | ||
OsiriX | Pixmeo (Geneva, Switzerland) | MI | x | x | Shibata [9]; Tam [15] | ||
3D Slicer | Open-source (www.slicer.org) | MI | x | x | Little [18]; Coles-Black [20] | ||
ITK-Snap | Open-source (http://www.itksnap.org/) | MI | x | Marconi [13]; Marone [22] | |||
ImageJ | Open-source (https://imagej.nih.gov/ij/index.html accessed on 1 March 204) | MI | x | x | Kaufmann [27] | ||
InVesalius | Open-source (https://www.cti.gov.br/invesalius/ accessed on 1 March 2024) | MI | x | x | Magagna [17] | ||
Mimics Innovation Suite | Materialise NV (Leuven, Belgium) | MI | x | x | Göçer [28] | ||
Vascular Modelling Toolkit | Open-source (http://www.vmtk.org/) | MI | x | x | x | Marconi [13] | |
TeraRecon iNtuition Unlimited | TeraRecon (Durham, NC, USA) | MI | x | x | Torres [32] | ||
Vitrea 3D Station | Vital Images, Inc. (Minnetonka, MN, USA) | MI | x | x | O’Hara [16] | ||
Syngo.via * | Siemens Healthineers (Herlangen, Germany) | MI | x | x | Kaschwich [19,29] | ||
Blender | Open-source (www.blender.org) | ME | x | x | x | Kaufmann [27] | |
Meshmixer | Open-source (San Francisco, CA, USA) | ME | x | x | Little [18]; Magagna [17]; Matyas [12]; Coles-Black [20]; Kaschwich [19,29]; Borracci [24]; Torres [25]; O’Hara [16] | ||
3-matic | Materialise NV (Leuven, Belgium) | ME | x | Nguyen [10]; Kärkkäinen [11]; Bortman [14] | |||
Meshlab | Open-source (www.meshlab.net) | ME | x | Marconi [13] | |||
Magics | Materialise NV (Leuven, Belgium) | AM | x | Torres [25] | |||
Netfabb | Autodesk, Inc. (San Francisco, CA, USA) | AM | x | Marone [22] | |||
Slic3r | Open-source (https://slic3r.org/) | AM | x | x | Foresti [21] | ||
MATLAB * | MathWorks, Inc. (Natick, MA, USA) | MC | Marconi [13], Shibata [9] |
Printer | Suppliers |
---|---|
CubePro | 3D Systems Corporation (Rock Hill, SC, USA) |
ProJet 3500 | 3D Systems Corporation (Rock Hill, SC, USA) |
Projet460 Plus | 3D Systems Corporation (Rock Hill, SC, USA) |
ZPrinterVR 250 | 3D Systems Corporation (Rock Hill, SC, USA) |
sPro 60 | 3D Systems Corporation (Rock Hill, SC, USA) |
Felix 3 | FELIXprinters (Ijsselstein, The Netherlands) |
Form 1+ | Formlabs (Somerville, MA, USA) |
Form 2 | Formlabs (Somerville, MA, USA) |
Form 3 | Formlabs (Somerville, MA, USA) |
Ultimaker S3 | Ultimaker B.V. (Utrecht, The Netherlands) |
Ultimaker S5 | Ultimaker B.V. (Utrecht, The Netherlands) |
MakerBot Replicator 2X | Stratasys (Eden Prairie, MN, USA)/MakerBot (New York City, NY, USA) |
Objet260 Connex3 | Stratasys (Eden Prairie, MN, USA) |
Objet30 Prime | Stratasys (Eden Prairie, MN, USA) |
Stratasys J750 | Stratasys (Eden Prairie, MN, USA) |
J750 Digital Anatomy | Stratasys (Eden Prairie, MN, USA) |
Objet350 Connex | Stratasys (Eden Prairie, MN, USA) |
Objet500 Connex3 | Stratasys (Eden Prairie, MN, USA) |
Objet Eden 260V | Stratasys (Eden Prairie, MN, USA) |
FlashForge Creator Pro | Flashforge (Zhejiang, China) |
Prusa i3 MK3S+ | Prusa Research (Prague, Czech Republic) |
ZPrinter 450 | Z Corporation (3D Systems Corporation, Rock Hill, SC, USA) |
Orcabot 3D printer | Mendel-Parts (Prodim International, Helmond, The Netherlands) |
Author | Year | Printer | 3D-Printing Technology | Model Material | Model Hardness | Model Appearance | Printing Time (h) | Cost (EUR) | Accuracy * |
---|---|---|---|---|---|---|---|---|---|
Foresti [21] | 2024 | Form 2 | SLA | M-based resin | rigid | transparent | 21 | 200 | high |
Nguyen [10] | 2023 | Ultimaker S5 | FDM | PLA | rigid | opaque | n.a. | n.a. | high |
sPro 60 | SLS | nylon | rigid | opaque | n.a. | n.a. | high | ||
J750 Digital Anatomy | PolyJet | PUR-based resin | (1) rigid; (2) flexible | opaque | n.a. | n.a. | high | ||
Form 3 | SLA | M-based resin | rigid | opaque | n.a. | n.a. | high | ||
Kaufmann [27] | 2022 | Form 3 | SLA | M-based resin | flexible | transparent | n.a. | low | high |
Magagna [17] | 2022 | n.a. | n.a. | silicone | rigid | opaque | 24–72 | 1000–1500 | high |
Little [18] | 2022 | Ultimaker S3 | FDM | PVA | rigid | opaque | n.a. | 100 | high |
Göçer [28] | 2021 | Form 2 | SLA | M-based resin | rigid | transparent | 6 | 400 | high |
Matyjas [12] | 2021 | Form 2 | SLA | M-based resin | rigid | transparent | 8 | low | high |
Kliewer [26] | 2021 | External provider ** | n.a. | n.a. | rigid | transparent | n.a. | n.a. | high |
Kaschwich [7] | 2021 | Objet500 Connex3 | PolyJet | PUR-based resin | flexible + rigid | opaque | n.a. | n.a. | high |
Coles-Black [20] | 2021 | Objet500 Connex3Stratasys J750ProJet 3500 | PolyJet | PUR-based resin | flexible | transparent | n.a. | 650–930 | high |
Form 2 | SLA | M-based resin | rigid or flexible | opaque or transparent | n.a. | 50–100 | high | ||
FlashForge Creator Pro Prusa i3 MK3S + Ultimaker S5MakerBot Replicator 2X | FDM | ABS | rigid | opaque | 24–48 | 10–20 | high | ||
Kaschwich [29] | 2020 | Felix3 | FDM | silicone | rigid | opaque | n.a. | low | n.a. |
Borracci [24] | 2020 | External provider § | FDM | n.a. | rigid or flexible | opaque or transparent | n.a. | 90–460 | high |
Kärkkäinen [11] | 2019 | Objet500 Connex3 | PolyJet | PUR-based resin | flexible + rigid | opaque | 24–36 | 280–370 | high |
Marconi [13] | 2019 | Objet260 Connex3 | PolyJet | PUR-based resin | flexible + rigid | opaque | 10 | n.a. | high |
Bortman [14] | 2019 | Objet30 Prime | PolyJet | PUR-based resin | rigid | opaque | 3 | 30 | high |
Marone [22] | 2018 | Projet460 Plus | ColorJet | silicone | rigid | opaque | 8 | 100–150 | high |
Shibata [9] | 2017 | CubePro | FDM | nylon | rigid | n.a. | n.a. | low | high |
Taher [23] | 2017 | External provider * | SLA | M-based resin | rigid | transparent | n.a. | n.a. | high |
Torres [25] | 2017 | Form 1+ | SLA | M-based resin | flexible | transparent | n.a. | 150 | high |
MakerBot Replicator 2X | FDM | silicone | rigid | opaque | n.a. | 120 | high | ||
Objet350 Connex | PolyJet | PUR-based resin | (1) flexible; (2) rigid; (3) flexible + rigid | (1) opaque; (2) transparent; (3) opaque | n.a. | 475 | high | ||
Tam [15] | 2016 | ZPrinter 450 | ColorJet | plaster | rigid | opaque | 24 | 185 | good |
Orcabot 3D printer | FDM | PLA | rigid | opaque | 24 | 185 | high | ||
O’Hara [16] | 2016 | Objet Eden 260V | PolyJet | PUR-based resin | flexible | opaque | 24 | n.a. | high |
O’Reilly [8] | 2015 | ZPrinterVR 250 | ColorJet | silicone | rigid | opaque | n.a. | low | high |
Author | Year | Patient-Specific 3D Model | In-House Designed Set-Up | 3D-Printed Model Only | Simulated Technique |
---|---|---|---|---|---|
Foresti [21] | 2023 | no | yes | no | PTA |
Nguyen [10] | 2023 | yes | yes | no | EVAR |
Kaufmann [27] | 2022 | yes | yes | no | Endovascular embolization |
Magagna [17] | 2022 | yes | yes | no | EVAR |
Little [18] | 2022 | yes | no | yes | EVAR |
Göçer [28] | 2021 | yes | no | yes | PTA |
Matyjas [12] | 2021 | no | yes | no | Endovascular embolization |
Kaschwich [19] | 2020 | yes | yes | no | DUS guided peripheral endovascular intervention |
Kärkkäinen [11] | 2019 | yes | yes | no | EVAR |
Torres [25] | 2017 | yes | no | yes | EVAR |
O’Reilly [8] | 2015 | yes | yes | no | Femoral artery access with DUS imaging |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catasta, A.; Martini, C.; Mersanne, A.; Foresti, R.; Bianchini Massoni, C.; Freyrie, A.; Perini, P. Systematic Review on the Use of 3D-Printed Models for Planning, Training and Simulation in Vascular Surgery. Diagnostics 2024, 14, 1658. https://doi.org/10.3390/diagnostics14151658
Catasta A, Martini C, Mersanne A, Foresti R, Bianchini Massoni C, Freyrie A, Perini P. Systematic Review on the Use of 3D-Printed Models for Planning, Training and Simulation in Vascular Surgery. Diagnostics. 2024; 14(15):1658. https://doi.org/10.3390/diagnostics14151658
Chicago/Turabian StyleCatasta, Alexandra, Chiara Martini, Arianna Mersanne, Ruben Foresti, Claudio Bianchini Massoni, Antonio Freyrie, and Paolo Perini. 2024. "Systematic Review on the Use of 3D-Printed Models for Planning, Training and Simulation in Vascular Surgery" Diagnostics 14, no. 15: 1658. https://doi.org/10.3390/diagnostics14151658
APA StyleCatasta, A., Martini, C., Mersanne, A., Foresti, R., Bianchini Massoni, C., Freyrie, A., & Perini, P. (2024). Systematic Review on the Use of 3D-Printed Models for Planning, Training and Simulation in Vascular Surgery. Diagnostics, 14(15), 1658. https://doi.org/10.3390/diagnostics14151658