Interstitial Fibrosis as a Common Counterpart of Histopathological Risk Factors in Papillary Thyroid Microcarcinoma: A Retrospective Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Data Collection
2.3. Preoperative Evaluation
- Total thyroidectomy with CLND: indicated for patients with multifocal or bilateral tumors, patients with a history of head and neck radiation therapy (RT), a family history of thyroid cancer, or clinical evidence of lymph node metastasis.
- Lobectomy + isthmectomy with CLND: suitable for patients with a single tumor focus less than 1 cm, no extrathyroidal extension, and no clinical lymph node metastasis (clinical N0), provided there is no history of RT, family history of thyroid cancer or an indication to remove the contralateral lobe.
2.4. Ethical Approval
2.5. Pathology Review
2.6. Inclusion and Exclusion Criteria
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cady, B.; Sedgwick, C.E.; Meissner, W.A.; Wool, M.S.; Salzman, F.A.; Werber, J. Risk factor analysis in differentiated thyroid cancer. Cancer 1979, 43, 810–820. [Google Scholar] [CrossRef]
- Hughes, D.T.; Haymart, M.R.; Miller, B.S.; Gauger, P.G.; Doherty, G.M. The most commonly occurring papillary thyroid cancer in the United States is now a microcarcinoma in a patient older than 45 years. Thyroid 2011, 21, 231–236. [Google Scholar] [CrossRef]
- Perros, P.; Boelaert, K.; Colley, S.; Evans, C.; Evans, R.M.; Gerrard Ba, G.; Gilbert, J.; Harrison, B.; Johnson, S.J.; Giles, T.E.; et al. Guidelines for the management of thyroid cancer. Clin. Endocrinol. 2014, 81 (Suppl. 1), 1–122. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Sugitani, I.; Fujimoto, Y. Symptomatic versus asymptomatic papillary thyroid microcarcinoma: A retrospective analysis of surgical outcome and prognostic factors. Endocr. J. 1999, 46, 209–216. [Google Scholar] [CrossRef]
- Holoubek, S.A.; Yan, H.; Khokar, A.H.; Kuchta, K.M.; Winchester, D.J.; Prinz, R.A.; Moo-Young, T.A. Aggressive variants of papillary thyroid microcarcinoma are associated with high-risk features, but not decreased survival. Surgery 2020, 167, 19–27. [Google Scholar] [CrossRef]
- Kuo, E.J.; Goffredo, P.; Sosa, J.A.; Roman, S.A. Aggressive variants of papillary thyroid microcarcinoma are associated with extrathyroidal spread and lymph-node metastases: A population-level analysis. Thyroid 2013, 23, 1305–1311. [Google Scholar] [CrossRef]
- Piersma, B.; Hayward, M.K.; Weaver, V.M. Fibrosis and cancer: A strained relationship. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188356. [Google Scholar] [CrossRef]
- Kondo, T.; Okabayashi, K.; Hasegawa, H.; Tsuruta, M.; Shigeta, K.; Kitagawa, Y. The impact of hepatic fibrosis on the incidence of liver metastasis from colorectal cancer. Br. J. Cancer 2016, 115, 34–39. [Google Scholar] [CrossRef]
- Miura, K.; Hamanaka, K.; Koizumi, T.; Kitaguchi, Y.; Terada, Y.; Nakamura, D.; Kumeda, H.; Agatsuma, H.; Hyogotani, A.; Kawakami, S. Clinical significance of preoperative serum albumin level for prognosis in surgically resected patients with non-small cell lung cancer: Comparative study of normal lung, emphysema, and pulmonary fibrosis. Lung Cancer 2017, 111, 88–95. [Google Scholar] [CrossRef]
- Isarangkul, W. Dense fibrosis. Another diagnostic criterion for papillary thyroid carcinoma. Arch. Pathol. Lab. Med. 1993, 117, 645–646. [Google Scholar]
- Liu, X.; Zhang, S.; Gang, Q.; Shen, S.; Zhang, J.; Lun, Y.; Xu, D.; Duan, Z.; Xin, S. Interstitial fibrosis in papillary thyroid microcarcinoma and its association with biological behavior. Oncol. Lett. 2018, 15, 4937–4943. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Song, X.; Ma, Y.-Q.; Li, J.-L.; Li, Y.-X.; Wang, G.-F.; Liu, P.; Liu, P.-L.; Cao, S.; Shi, H.-Y. Significance of interstitial fibrosis and p16 in papillary thyroid carcinoma. Endocr. J. 2022, 69, 1253–1259. [Google Scholar] [CrossRef]
- Hay, I.D.; Grant, C.S.; Taylor, W.F.; McConahey, W.M. Ipsilateral lobectomy versus bilateral lobar resection in papillary thyroid carcinoma: A retrospective analysis of surgical outcome using a novel prognostic scoring system. Surgery 1987, 102, 1088–1095. [Google Scholar]
- Cady, B.; Rossi, R. An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery 1988, 104, 947–953. [Google Scholar]
- Pisanu, A.; Saba, A.; Podda, M.; Reccia, I.; Uccheddu, A. Nodal metastasis and recurrence in papillary thyroid microcarcinoma. Endocrine 2015, 48, 575–581. [Google Scholar] [CrossRef]
- Jeon, M.J.; Choi, Y.M.; Kwon, H.; Lee, Y.-M.; Sung, T.-Y.; Yoon, J.H.; Chung, K.-W.; Hong, S.J.; Kim, T.Y.; Shong, Y.K.; et al. Features Predictive of Distant Metastasis in Papillary Thyroid Microcarcinomas. Thyroid 2016, 26, 161–168. [Google Scholar] [CrossRef]
- Sezer, A.; Celik, M.; Bulbul, B.Y.; Can, N.; Tastekin, E.; Ayturk, S.; Ustun, F.; Guldiken, S.; Sut, N. Relationship between lymphovascular invasion and clinicopathological features of papillary thyroid carcinoma. Bosn. J. Basic Med. Sci. 2017, 17, 144–151. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Kim, E.K.; Kim, M.J.; Son, E.J.; Chung, W.Y.; Park, C.S.; Nam, K.H. Papillary microcarcinoma of the thyroid: Predicting factors of lateral neck node metastasis. Ann. Surg. Oncol. 2009, 16, 1348–1355. [Google Scholar] [CrossRef]
- Wada, N.; Duh, Q.-Y.; Sugino, K.; Iwasaki, H.; Kameyama, K.; Mimura, T.; Ito, K.; Takami, H.; Takanashi, Y. Lymph node metastasis from 259 papillary thyroid microcarcinomas: Frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann. Surg. 2003, 237, 399–407. [Google Scholar] [CrossRef]
- Noguchi, S.; Yamashita, H.; Uchino, S.; Watanabe, S. Papillary microcarcinoma. World J. Surg. 2008, 32, 747–753. [Google Scholar] [CrossRef]
- Hay, I.D.; Bergstralh, E.J.; Goellner, J.R.; Ebersold, J.R.; Grant, C.S. Predicting outcome in papillary thyroid carcinoma: Development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery 1993, 114, 1050–1057, discussion 7–8. [Google Scholar]
- Chow, S.M.; Law, S.C.; Chan, J.K.; Au, S.K.; Yau, S.; Lau, W.H. Papillary microcarcinoma of the thyroid-Prognostic significance of lymph node metastasis and multifocality. Cancer 2003, 98, 31–40. [Google Scholar] [CrossRef]
- Conzo, G.; Tartaglia, E.; Calò, P.G.; de Bellis, A.; Esposito, K.; Gambardella, C.; Iorio, S.; Pasquali, D.; Santini, L.; Sinisi, M.A.; et al. Role of prophylactic central compartment lymph node dissection in clinically N0 differentiated thyroid cancer patients: Analysis of risk factors and review of modern trends. World J. Surg. Oncol. 2016, 14, 149. [Google Scholar] [CrossRef]
- Chen, L.; Wu, Y.H.; Lee, C.H.; Chen, H.A.; Loh, E.W.; Tam, K.W. Prophylactic Central Neck Dissection for Papillary Thyroid Carcinoma with Clinically Uninvolved Central Neck Lymph Nodes: A Systematic Review and Meta-analysis. Int. J. Surg. 2018, 42, 2846–2857. [Google Scholar] [CrossRef]
- Leng, X.; Li, Y.; Wang, Y.; Chen, X.; Xu, H.; Li, X. Shear Wave Elastography Combined with Connective Tissue Growth Factor for Prognostic Evaluation of Papillary Thyroid Carcinoma. J. Ultrasound Med. 2024, 43, 521–530. [Google Scholar] [CrossRef]
- Petersen, M.; Schenke, S.A.; Firla, J.; Croner, R.S.; Kreissl, M.C. Shear Wave Elastography and Thyroid Imaging Reporting and Data System (TIRADS) for the Risk Stratification of Thyroid Nodules—Results of a Prospective Study. Diagnostics 2022, 12, 109. [Google Scholar] [CrossRef]
- Klarich, S.; White, M.L. Systematic Review of Ultrasound Strain Elastography for the Assessment of Thyroid Nodules Smaller than 10 mm. Clin. Imaging 2023, 88, 120–127. [Google Scholar] [CrossRef]
- Zhi, J.; Zhao, J.; Gao, M.; Pan, Y.; Wu, J.; Li, Y.; Li, D.; Yu, Y.; Zheng, X. Impact of major different variants of papillary thyroid microcarcinoma on the clinicopathological characteristics: The study of 1041 cases. Int. J. Clin. Oncol. 2018, 23, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Altiner, S.; Kozan, R.; Emral, A.C.; Taneri, F.; Karamercan, A. Effects of Patient and Tumor Characteristics on Central LymphNode Metastasis in Papillary Thyroid Cancer: A Guide for Selective Node Dissection. Arch. Iran. Med. 2022, 25, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Conzo, G.; Mauriello, C.; Docimo, G.; Gambardella, C.; Thomas, G.; Cavallo, F.; Tartaglia, E.; Napolitano, S.; Varriale, R.; Rossetti, G.; et al. Clinicopathological pattern of lymph node recurrence of papillary thyroid cancer. Implications for surgery. Int. J. Surg. 2014, 12 (Suppl. 1), S194–S197. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
Papillary microcarcinoma | Patients younger than 18 years old |
Dissection of at least 3 lymph nodes | Inadequate lymph node dissection |
Same surgical teams | Tumors larger than 1 cm |
Age (years) | 42.5 ± 12.84 (19–73) |
Age groups (<45/≥45) | 43/32 |
Gender (n,%) | |
- Male | 13 (17.3%) |
- Female | 62 (82.7%) |
Classic Variant | Follicular Variant | p Value | χ2 Value | |
---|---|---|---|---|
Gender | ||||
- Male | 7 (58.3%) | 5 (41.7%) | 0.74 | 0.107 |
- Female | 38 (63.3%) | 22 (36.7%) | ||
Age | ||||
- 18–45 | 27 (64.3%) | 15 (35.7%) | 0.71 | 0.137 |
- 45+ | 18 (60%) | 12 (40%) | ||
Tumor size | ||||
- 0–5 mm | 14 (63.6%) | 8 (36.4%) | 0.895 | 0.17 |
- Over 5 mm | 31 (62%) | 19 (38%) | ||
Lymph node metastasis | ||||
- Yes | 17 (63%) | 10 (37%) | 0.95 | 0.004 |
- No | 28 (62.2%) | 17 (37.8%) | ||
Focality | ||||
- Multifocal | 13 (50%) | 13 (50%) | 0.139 | 2.71 |
- Unifocal | 32 (69.6%) | 14 (30.4%) | ||
Bilaterality | ||||
- Bilateral | 9 (47.4%) | 10 (52.6%) | 0.112 | 2.522 |
- Unilateral | 36 (67.9%) | 17 (32.1%) | ||
Lymphovascular invasion | ||||
- Yes | 6 (37.5%) | 10 (62.5%) | 0.019 | 5.486 |
- No | 39 (69.6%) | 17 (30.4%) | ||
Extracapsular invasion | ||||
- Yes | 15 (50%) | 15 (50%) | 0.064 | 3.429 |
- No | 30 (71.4%) | 12 (28.6%) | ||
Perineural invasion | ||||
- Yes | 0 (0%) | 2 (100%) | 0.064 | 3.429 |
- No | 45 (64.3%) | 25 (35.7%) | ||
Surgical margin | ||||
- Positive | 2 (66.7%) | 1 (33.3%) | 0.879 | 0.023 |
- Negative | 43 (62.3%) | 26 (37.7%) | ||
Hashimoto’s thyroiditis | ||||
- Yes | 23 (67.6%) | 11 (32.4%) | 0.393 | 0.728 |
- No | 22 (57.9%) | 16 (42.1%) |
Interstitial Fibrosis | p Value | χ2 Value | ||
---|---|---|---|---|
Yes | No | |||
Gender | ||||
- Male | 6 (46.2%) | 7 (53.8%) | 0.063 | 3.449 |
- Female | 45 (72.6%) | 17 (27.4%) | ||
Age | ||||
- 18–45 | 33 (76.7%) | 10 (23.3%) | 0.06 | 3.541 |
- 45+ | 18 (56.3%) | 14 (43.7%) | ||
Tumor size | ||||
- 0–5 mm | 13 (59.1%) | 9 (40.9%) | 0.287 | 1.136 |
- Over 5 mm | 38 (71.7%) | 15 (28.3%) | ||
Lymph node metastasis | ||||
- Yes | 23 (82.1%) | 5 (17.9%) | 0.043 | 4.107 |
- No | 28 (59.6%) | 19 (40.4%) | ||
Focality | ||||
- Multifocal | 24 (88.9%) | 3 (11.1%) | 0.004 | 8.46 |
- Unifocal | 27 (56.2%) | 21 (43.8%) | ||
Bilaterality | ||||
- Bilateral | 18 (90%) | 2 (10%) | 0.023 | 6.066 |
- Unilateral | 33 (60%) | 22 (40%) | ||
Lymphovascular invasion | ||||
- Yes | 13 (81.3%) | 3 (18.8%) | 0.2 | 1.641 |
- No | 38 (64.4%) | 21 (35.6%) | ||
Extracapsular invasion | ||||
- Yes | 29 (93.5%) | 2 (6.5%) | <0.001 | 15.85 |
- No | 22 (50%) | 22 (50%) | ||
Perineural invasion | ||||
- Yes | 2 (100%) | 0 (0%) | 0.325 | 3.449 |
- No | 49 (67.1%) | 24 (32.9%) | ||
Surgical margin | ||||
- Positive | 1 (33.3%) | 2 (66.7%) | 0.189 | 1.726 |
- Negative | 50 (69.4%) | 22 (30.6%) | ||
Hashimoto’s thyroiditis | ||||
- Yes | 21 (61.8%) | 13 (38.2%) | 0.292 | 1 |
- No | 30(73.2%) | 11 (26.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahin, C.; Inan, M.A.; Bilezikci, B.; Bostanci, H.; Taneri, F.; Kozan, R. Interstitial Fibrosis as a Common Counterpart of Histopathological Risk Factors in Papillary Thyroid Microcarcinoma: A Retrospective Analysis. Diagnostics 2024, 14, 1624. https://doi.org/10.3390/diagnostics14151624
Sahin C, Inan MA, Bilezikci B, Bostanci H, Taneri F, Kozan R. Interstitial Fibrosis as a Common Counterpart of Histopathological Risk Factors in Papillary Thyroid Microcarcinoma: A Retrospective Analysis. Diagnostics. 2024; 14(15):1624. https://doi.org/10.3390/diagnostics14151624
Chicago/Turabian StyleSahin, Can, Mehmet Arda Inan, Banu Bilezikci, Hasan Bostanci, Ferit Taneri, and Ramazan Kozan. 2024. "Interstitial Fibrosis as a Common Counterpart of Histopathological Risk Factors in Papillary Thyroid Microcarcinoma: A Retrospective Analysis" Diagnostics 14, no. 15: 1624. https://doi.org/10.3390/diagnostics14151624
APA StyleSahin, C., Inan, M. A., Bilezikci, B., Bostanci, H., Taneri, F., & Kozan, R. (2024). Interstitial Fibrosis as a Common Counterpart of Histopathological Risk Factors in Papillary Thyroid Microcarcinoma: A Retrospective Analysis. Diagnostics, 14(15), 1624. https://doi.org/10.3390/diagnostics14151624