Functional Improvement at One Year in Fibrotic Interstitial Lung Diseases—Prognostic Value of Baseline Biomarkers and Anti-Inflammatory Therapies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Primary Outcome
3.2. Secondary Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Wijsenbeek, M.; Suzuki, A.; Maher, T.M. Interstitial lung diseases. Lancet 2022, 400, 769–786. [Google Scholar] [CrossRef] [PubMed]
- George, P.M.; Spagnolo, P.; Kreuter, M.; Altinisik, G.; Bonifazi, M.; Martinez, F.J.; Molyneaux, P.L.; Renzoni, E.A.; Richeldi, L.; Tomassetti, S.; et al. Progressive fibrosing interstitial lung disease: Clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir. Med. 2020, 8, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Wijsenbeek, M.; Kreuter, M.; Olson, A.; Fischer, A.; Bendstrup, E.; Wells, C.D.; Denton, C.P.; Mounir, B.; Zouad-Lejour, L.; Quaresma, M.; et al. Progressive fibrosing interstitial lung diseases: Current practice in diagnosis and management. Curr. Med. Res. Opin. 2019, 35, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Yamano, Y.; Kataoka, K.; Takei, R.; Sasano, H.; Yokoyama, T.; Matsuda, T.; Kimura, T.; Mori, Y.; Furukawa, T.; Fukuoka, J.; et al. Interstitial pneumonia with autoimmune features and histologic usual interstitial pneumonia treated with anti-fibrotic versus immunosuppressive therapy. Respir. Investig. 2023, 61, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; du Bois, R. Interstitial lung disease in connective tissue disorders. Lancet 2012, 380, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Wijsenbeek, M.; Cottin, V. Spectrum of fibrotic lung diseases. N. Engl. J. Med. 2020, 383, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: An official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef]
- Wells, A.U.; Brown, K.K.; Flaherty, K.R.; Kolb, M.; Thannickal, V.J. What’s in a name? that which we call IPF, by any other Name would act the same. Eur. Respir. J. 2018, 51, 1800692. [Google Scholar] [CrossRef]
- Ghazipura, M.; Mammen, M.J.; Herman, D.D.; Hon, S.M.; Bissell, B.D.; Macrea, M.; Kheir, F.; Khor, Y.H.; Knight, S.L.; Raghu, G.; et al. Nintedanib in progressive pulmonary fibrosis: A systematic review and meta-analysis. Ann. Am. Thorac. Soc. 2022, 19, 1040–1049. [Google Scholar] [CrossRef]
- Rajan, S.K.; Cottin, V.; Dhar, R.; Danoff, S.; Flaherty, K.R.; Brown, K.K.; Mohan, A.; Renzoni, E.; Mohan, M.; Udwadia, Z.; et al. Progressive pulmonary fibrosis: An expert group consensus statement. Eur. Respir. J. 2023, 61, 2103187. [Google Scholar] [CrossRef]
- Distler, O.; Brown, K.K.; Distler, J.H.W.; Assassi, S.; Maher, T.M.; Cottin, V.; Varga, J.; Coeck, C.; Gahlemann, M.; Sauter, W.; et al. Design of a randomised, placebo-controlled clinical trial of nintedanib in patients with systemic sclerosis-associated interstitial lung disease (SENSCISTM). Clin. Exp. Rheumatol. 2017, 35 (Suppl. S106), 75–81. [Google Scholar]
- Ryerson, C.J.; Vittinghoff, E.; Ley, B.; Lee, J.S.; Mooney, J.J.; Jones, K.D.; Elicker, B.M.; Wolters, P.J.; Koth, L.L.; King, T.E.; et al. Predicting survival across chronic interstitial lung disease: The ILD-GAP model. Chest 2014, 145, 723–728. [Google Scholar] [CrossRef]
- Raghu, G.; Flaherty, K.R.; Lederer, D.J.; Lynch, D.A.; Colby, T.V.; Myers, J.L.; Groshong, S.D.; Larsen, B.T.; Chung, J.H.; Steele, M.P.; et al. Use of a molecular classifier to identify usual interstitial pneumonia in conventional transbronchial lung biopsy samples: A prospective validation study. Lancet Respir. Med. 2019, 7, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Bowman, W.S.; Newton, C.A.; Linderholm, A.L.; Neely, M.L.; Pugashetti, J.V.; Kaul, B.; Vo, V.; Echt, G.A.; Leon, W.; Shah, R.J.; et al. Proteomic biomarkers of progressive fibrosing interstitial lung disease: A multicentre cohort analysis. Lancet Respir. Med. 2022, 10, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Akbari, K.; Walcherberger, S.; Hergan, B.; Horner, A.; Hepp, M.; Kaiser, B.; Pieringer, H.; Lamprecht, B. Computed tomography findings as determinants of pulmonary function tests in fibrotic interstitial lung diseases-network-analyses and multivariate models. Chron. Respir. Dis. 2020, 17, 1479973120967025. [Google Scholar] [CrossRef]
- Hoffmann-Vold, A.M.; Allanore, Y.; Alves, M.; Brunborg, C.; Airó, P.; Ananieva, L.P.; Czirják, L.; Guiducci, S.; Hachulla, E.; Li, M.; et al. Progressive interstitial lung disease in patients with systemic sclerosis-associated interstitial lung disease in the EUSTAR database. Ann. Rheum. Dis. 2021, 80, 219–227. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (strobe) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Gruden, J.F.; Naidich, D.P.; Machnicki, S.C.; Cohen, S.L.; Girvin, F.; Raoof, S. An algorithmic approach to the interpretation of diffuse lung disease on chest ct imaging: A theory of almost everything. Chest 2020, 157, 612–635. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Hawle, P.; Akbari, K.; Horner, A.; Hintenberger, R.; Kaiser, B.; Lamprecht, B.; Lang, D. Clinical, imaging, and blood biomarkers to assess 1-year progression risk in fibrotic interstitial lung diseases-development and validation of the honeycombing, traction bronchiectasis, and monocyte (HTM)-score. Front. Med. 2022, 9, 1043720. [Google Scholar] [CrossRef]
- Ley, B.; Ryerson, C.J.; Vittinghoff, E.; Ryu, J.H.; Tomassetti, S.; Lee, J.S.; Poletti, V.; Buccioli, M.; Elicker, B.M.; Jones, K.D.; et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann. Intern. Med. 2012, 156, 684–691. [Google Scholar] [CrossRef]
- Dhooria, S.; Agarwal, R.; Sehgal, I.S.; Prasad, K.T.; Garg, M.; Bal, A.; Aggarwal, A.N.; Behera, D. Spectrum of interstitial lung diseases at a tertiary center in a developing country: A study of 803 subjects. PLoS ONE 2018, 13, e0191938. [Google Scholar] [CrossRef] [PubMed]
- Joung, K.I.; Park, H.; Park, S.; Shin, J.Y.; Kim, Y.H. Nationwide epidemiologic study for fibrosing interstitial lung disease (F-ILD) in South Korea: A population-based study. BMC Pulm. Med. 2023, 23, 98. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, R.B.; Burke, N.; Fell, C.; Dion, G.; Kolb, M. Epidemiology and survival of idiopathic pulmonary fibrosis from national data in Canada. Eur. Respir. J. 2016, 48, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Fernández Pérez, E.R.; Daniels, C.E.; Schroeder, D.R.; St Sauver, J.; Hartman, T.E.; Bartholmai, B.J.; Yi, E.S.; Ryu, J.H. Incidence, Prevalence, and Clinical Course of Idiopathic Pulmonary Fibrosis: A Population-Based Study. Chest 2010, 137, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Navaratnam, V.; Fleming, K.M.; West, J.; Smith, C.J.; Jenkins, R.G.; Fogarty, A.; Hubbard, R.B. The Rising Incidence of Idiopathic pulmonary fibrosis in the U.K. Thorax 2011, 66, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Duchemann, B.; Annesi-Maesano, I.; Jacobe de Naurois, C.; Sanyal, S.; Brillet, P.Y.; Brauner, M.; Kambouchner, M.; Huynh, S.; Naccache, J.M.; Borie, R.; et al. Prevalence and incidence of interstitial lung diseases in a multi-ethnic county of greater Paris. Eur. Respir. J. 2017, 50, 1602419. [Google Scholar] [CrossRef] [PubMed]
- He, S.H.; He, Y.J.; Guo, K.J.; Liang, X.; Li, S.S.; Li, T.F. Risk factors for progression of interstitial lung disease in sjögren’s syndrome: A single-centered, retrospective study. Clin. Rheumatol. 2022, 41, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Sheng, J.; Qiu, X.; Wang, D.; Wang, D.; Wang, Y.; Xiao, Y.; Cai, H. Acute exacerbations of fibrosing interstitial lung disease associated with connective tissue diseases: A population-based study. BMC Pulm. Med. 2019, 19, 215. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zheng, Z.; Zhang, Z.; Yang, Y.; Cui, J.; Wang, Z.; Xue, J.; Chi, S.; Cao, M.; Chen, J. Prediction of progressive pulmonary fibrosis in patients with anti-synthetase syndrome-associated interstitial lung disease. Clin. Rheumatol. 2023, 42, 1917–1929. [Google Scholar] [CrossRef]
- Scott, M.K.D.; Quinn, K.; Li, Q.; Carroll, R.; Warsinske, H.; Vallania, F.; Chen, S.; Carns, M.A.; Aren, K.; Sun, J.; et al. Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: A retrospective, multicentre cohort study. Lancet Respir. Med. 2019, 7, 497–508. [Google Scholar] [CrossRef]
- Kreuter, M.; Lee, J.S.; Tzouvelekis, A.; Oldham, J.M.; Molyneaux, P.L.; Weycker, D.; Atwood, M.; Kirchgaessler, K.U.; Maher, T.M. Monocyte count as a prognostic biomarker in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2021, 204, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Peng, H.; Sun, H.; Peng, X.; Tang, C.; Gan, Y.; Chen, X.; Mathur, A.; Hu, B.; Slade, M.D.; et al. Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in mammalian lung fibrosis. Sci. Transl. Med. 2014, 6, 240ra76. [Google Scholar] [CrossRef] [PubMed]
- Misharin, A.V.; Morales-Nebreda, L.; Reyfman, P.A.; Cuda, C.M.; Walter, J.M.; McQuattie-Pimentel, A.C.; Chen, C.I.; Anekalla, K.R.; Joshi, N.; Williams, K.J.N.; et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 2017, 214, 2387–2404. [Google Scholar] [CrossRef] [PubMed]
- Ehrchen, J.M.; Roth, J.; Barczyk-Kahlert, K. More than suppression: Glucocorticoid action on monocytes and macrophages. Front. Immunol. 2019, 10, 2028. [Google Scholar] [CrossRef]
- Elmér, E.; Nived, P.; Pettersson, Å.; Skattum, L.; Hellmark, T.; Kapetanovic, M.C.; Johansson, Å.C.M. Methotrexate treatment suppresses monocytes in nonresponders to pneumococcal conjugate vaccine in rheumatoid arthritis patients. J. Immunol. Res. 2022, 2022, 7561661. [Google Scholar] [CrossRef]
All Patients (n = 142) | |||||
---|---|---|---|---|---|
Variable | All Patients (n = 142) | Progression at 1 Year (n = 73) | Stable at 1 Year (n = 25) | Improvement at 1 Year (n = 44) | p-Value |
Baseline characteristics | |||||
Mean age (SE) | 67.0 (1.1) | 70.4 (1.0) | 64.8 (2.5) | 62.4 (2.4) | 0.023 |
Age ≥70 years (%) | 47.2 | 54.8 | 36.0 | 40.9 | 0.162 |
Female sex (%) | 36.6 | 32.9 | 28.0 | 47.7 | 0.167 |
Treatment characteristics (%) | |||||
Anti-inflammatory | 52.1 | 41.1 | 52.0 | 70.5 | 0.066 |
Antifibrotic | 12.0 | 15.1 | 12.0 | 6.8 | |
Anti-inflammatory and antifibrotic | 7.0 | 11.0 | 8.0 | 0.0 | |
No ILD-specific therapy | 28.9 | 32.0 | 28.0 | 22.7 | |
Any anti-inflammatory treatment | 59.1 | 52.1 | 60.0 | 70.5 | 0.146 |
Any antifibrotic treatment | 19.0 | 26.1 | 20.0 | 6.8 | 0.037 |
Pulmonary functions tests; mean (SE) | |||||
FVC (% pred.) | 81.3 (1.5) | 84.3 (2.1) | 84.6 (3.9) | 74.5 (2.6) | 0.017 |
FEV1 (% pred.) | 82.8 (1.6) | 86.6 (2.1) | 84.4 (4.1) | 75.9 (2.5) | 0.018 |
DLCO (% pred.) | 55.2 (1.5) | 57.1 (2.0) | 58.2 (3.4) | 50.3 (2.6) | 0.104 |
Peripheral blood biomarkers; mean (SE) | |||||
Absolute leukocyte count (G/L) | 8.8 (0.3) | 8.6 (0.4) | 8.8 (1.0) | 9.0 (0.4) | 0.442 |
Neutrophil-to-lymphocyte ratio | 5.3 (0.8) | 4.7 (0.9) | 6.5 (2.9) | 5.8 (1.0) | 0.164 |
Absolute monocyte count (G/L) | 0.6 (0.1) | 0.6 (0.1) | 0.5 (0.1) | 0.6 (0.1) | 0.046 |
Absolute eosinophil count (G/L) | 0.2 (0.1) | 0.2 (0.1) | 0.1 (0.0) | 0.2 (0.1) | 0.397 |
C-reactive protein (mg/dL) | 1.2 (0.2) | 0.9 (0.2) | 1.1 (0.5) | 1.8 (0.4) | 0.285 |
Lactate dehydrogenase (U/L) | 248.3 | 241.4 (9.8) | 224.8 (12.1) | 272.5 (15.7) | 0.095 |
Bronchoalveolar lavage; mean (SE) n = 81 | |||||
BAL—Macrophage fraction | 57.7 (3.1) | 61.2 (4.2) | 57.5 (8.3) | 52.9 (5.3) | 0.484 |
BAL—Lymphocyte fraction | 17.9 (2.2) | 14.7 (2.4) | 9.3 (2.8) | 26.5 (5.0) | 0.038 |
BAL—Neutrophile fraction | 15.1 (2.2) | 17.5 (3.5) | 18.9 (7.3) | 10.1 (1.9) | 0.592 |
BAL—Eosinophile fraction | 4.1 (0.9) | 3.8 (1.4) | 5.1 (1.8) | 4.1 (1.4) | 0.631 |
Computed tomography finding scores; median (range), mean (SE) | |||||
Reticular abnormalities | 6 (0–6) 4.9 (1.6) | 6 (0–6) 5.0 (1.6) | 6 (0–6) 4.8 (1.9) | 6 (1–6) 4.9 (1.5) | 0.807 |
Honeycombing | 0 (0–6) 0.6 (1.5) | 0 (0–6) 0.9 (1.9) | 0 (0–6) 0.6 (1.5) | 0 (0–3) 0.2 (0.6) | 0.063 |
Ground glass opacities | 0 (0–6) 1.7 (2.3) | 0 (0–6) 1.4 (2.2) | 0 (0–6) 1.6 (2.4) | 2 (0–6) 2.4 (2.5) | 0.047 |
Emphysema | 0 (0–6) 0.6 (1.3) | 0 (0–6) 0.5 (1.2) | 0 (0–6) 0.7 (1.5) | 0 (0–6) 0.5 (1.4) | 0.534 |
Traction bronchiectasis | 2 (0–6) 2.8 (1.9) | 2 (0–6) 3.0 (1.9) | 2 (0–6) 1.8 (1.5) | 2 (0–6) 3.0 (2.1) | 0.019 |
Diagnosis (%) | |||||
CHP | 7.8 | 5.5 | 12.0 | 9.1 | 0.024 |
CTD-ILD | 22.5 | 17.8 | 16.0 | 34.1 | |
iNSIP | 21.1 | 27.4 | 24.0 | 9.1 | |
iPAF | 13.4 | 15.1 | 20.0 | 6.8 | |
IPF | 15.5 | 20.6 | 16.0 | 6.8 |
MV Analysis Dependent Variable: Improvement | Univariate | Multivariate | ||||||
---|---|---|---|---|---|---|---|---|
All Patients | Anti-Inflammatory | All Patients | Anti-Inflammatory | |||||
Independent Variables | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value |
Age (<60 vs. ≥60) | 4.6 (1.8–12.1) | 0.002 | 8.5 (2.1–33.4) | 0.002 | 5.4 (1.9–15.4) | 0.002 | 8.5 (2.1–33.4) | 0.002 |
Sex (female vs. male) | 1.9 (0.9–4.0) | 0.115 | 1.0 (0.4–2.6) | 0.972 | ||||
LDH (≥250 vs. <250) | 2.1 (1.0–4.6) | 0.066 | 2.1 (0.8–5.7) | 0.149 | 2.5 (1.0–5.8) | 0.043 | ||
Monocytes (<0.8 vs. ≥0.8) | 3.4 (1.2–10.0) | 0.022 | 3.0 (0.7–12.3) | 0.126 | 3.5 (1.1–11.3) | 0.034 | ||
Honeycombing (0 vs. >0) | 4.2 (1.1–15.1) | 0.031 | 5.6 (0.6–49.5) | 0.12 | ||||
Ground Glass Opacities (>0 vs. 0) | 2.5 (1.2–5.3) | 0.021 | 2.4 (0.9–6.7) | 0.081 | ||||
Traction bronchiectasis (0 vs. >0) | 1.3 (0.5–3.9) | 0.586 | 3.5 (0.6–19.2) | 0.156 | ||||
DLCO %-predicted (base) (<43% vs. ≥43%) | 2.9 (1.3–6.7) | 0.01 | 3.6 (1.2–10.8) | 0.019 | not included | not included | ||
FVC%-predicted (base) (<95% vs. ≥95%) | 4.6 (1.5–14.4) | 0.009 | 9.3 (1.1–78.2) | 0.04 | not included | not included |
Patients with Anti-Inflammatory Treatment (n = 84) | |||||
---|---|---|---|---|---|
Variable | All Patients (n = 84) | Progression at 1 Year (n = 38) | Stable at 1 Year (n = 15) | Improvement at 1 Year (n = 31) | p-Value |
Baseline characteristics | |||||
Mean age (SE) | 66.2 (1.5) | 70.2 (1.4) | 66.8 (2.9) | 61.1 (3.1) | 0.122 |
Age ≥70 years (%) | 40 (47.6) | 22 (57.9) | 6 (40.0) | 12 (38.7) | 0.229 |
Female sex (%) | 35 (41.7) | 17 (44.7) | 4 (26.7) | 14 (45.2 | 0.429 |
Pulmonary functions tests; mean (SE) | |||||
FVC (% pred.) | 80.3 (2.1) | 82.9 (3.0) | 89.4 (4.8) | 72.7 (3.0) | 0.008 |
FEV1 (% pred.) | 81.9 (2.0) | 84.9 (2.9) | 89.3 (4.4) | 74.8 (3.0) | 0.018 |
DLCO (% pred.) | 52.9 (1.8) | 53.9 (2.1) | 58.9 (5.4) | 48.7 (3.1) | 0.183 |
Treatment characteristics (%) | |||||
Additional antifibrotic treatment | 10 (11,9%) | 8 (80%) | 2 (20%) | 0 (0%) | 0,027 |
Peripheral blood biomarkers; mean (SE) | |||||
Absolute leukocyte count (G/L) | 8.9 (0.3) | 8.7 (0.6) | 8.5 (0.9) | 9.2 (0.5) | 0.379 |
Neutrophil-to-lymphocyte ratio | 5.7 (0.9) | 5.7 (1.7) | 4.1 (1.1) | 6.5 (1.1) | 0.170 |
Absolute monocyte count (G/L) | 0.6 (0.1) | 0.6 (0.1) | 0.6 (0.1) | 0.5 (0.1) | 0.638 |
Absolute eosinophil count (G/L) | 0.2 (0.1) | 0.2 (0.1) | 0.1 (0.0) | 0.2 (0.1) | 0.662 |
C-reactive protein (mg/dL) | 1.2 (0.2) | 0.7 (0.2) | 0.7 (0.2) | 2.1 (0.6) | 0.308 |
Lactate dehydrogenase (U/L) | 259.7 (11.1) | 253.1 (16.2) | 218.9 (12.7) | 288.6 (21.0) | 0.078 |
Bronchoalveolar lavage; mean (SE) n = 81 | |||||
BAL—Macrophage fraction | 54.9 (3.5) | 58.7 (4.9) | 59.7 (9.9) | 49.0 (5.7) | 0.429 |
BAL—Lymphocyte fraction | 22.1 (2.9) | 19.3 (3.3) | 11.9 (3.7) | 28.9 (5.7) | 0.215 |
BAL—Neutrophile fraction | 12.8 (1.9) | 13.0 (3.1) | 17.4 (6.6) | 10.8 (2.2) | 0.551 |
BAL—Eosinophile fraction | 4.7 (1.2) | 4.6 (2.1) | 5.6 (2.4) | 4.5 (1.6) | 0.647 |
Computed tomography finding scores; median (range), mean (SE) | |||||
Reticular abnormalities | 6 (0–6) 4.8 (1.7) | 6 (0–6) 4.6 (1.8) | 6 (2–6) 4.9 (1.7) | 6 (1–6) 4.9 (1.5) | 0.740 |
Honeycombing | 0 (0–6) 0.3 (1.1) | 0 (0–6) 0.6 (1.5) | 0 (0–2) 0.1 (0.5) | 0 (0–2) 0.1 (0.4) | 0.179 |
Ground glass opacities | 1.5 (0–6) 2.2 (2.5) | 0.5 (0–6) 1.9 (2.4) | 0 (0–6) 1.7 (2.4) | 2 (0–6) 2.9 (2.5) | 0.118 |
Emphysema | 0 (0–6) 0.5 (1.2) | 0 (0–6) 0.6 (1.2) | 0 (0–6) 0.8 (1.8) | 0 (0–4) 0.2 (0.7) | 0.151 |
Traction bronchiectasis | 2 (0–6) 2.9 (2.0) | 2 (0–6) 3.1 (1.8) | 2 (0–6) 1.7 (1.7) | 2 (0–6) 3.2 (2.2) | 0.043 |
Diagnosis (%) | |||||
CHP | 10.7 | 10.5 | 6.7 | 12.9 | 0.232 |
CTD-ILD | 23.8 | 21.1 | 20.0 | 29.0 | |
iNSIP | 19.1 | 23.7 | 33.3 | 6.5 | |
iPAF | 13.1 | 15.8 | 13.3 | 9.7 | |
IPF | 4.8 | 5.3 | 13.3 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, G.; Thöne, P.; Kaiser, B.; Lamprecht, B.; Lang, D. Functional Improvement at One Year in Fibrotic Interstitial Lung Diseases—Prognostic Value of Baseline Biomarkers and Anti-Inflammatory Therapies. Diagnostics 2024, 14, 1544. https://doi.org/10.3390/diagnostics14141544
Shao G, Thöne P, Kaiser B, Lamprecht B, Lang D. Functional Improvement at One Year in Fibrotic Interstitial Lung Diseases—Prognostic Value of Baseline Biomarkers and Anti-Inflammatory Therapies. Diagnostics. 2024; 14(14):1544. https://doi.org/10.3390/diagnostics14141544
Chicago/Turabian StyleShao, Guangyu, Paul Thöne, Bernhard Kaiser, Bernd Lamprecht, and David Lang. 2024. "Functional Improvement at One Year in Fibrotic Interstitial Lung Diseases—Prognostic Value of Baseline Biomarkers and Anti-Inflammatory Therapies" Diagnostics 14, no. 14: 1544. https://doi.org/10.3390/diagnostics14141544
APA StyleShao, G., Thöne, P., Kaiser, B., Lamprecht, B., & Lang, D. (2024). Functional Improvement at One Year in Fibrotic Interstitial Lung Diseases—Prognostic Value of Baseline Biomarkers and Anti-Inflammatory Therapies. Diagnostics, 14(14), 1544. https://doi.org/10.3390/diagnostics14141544